An Innovative Approach in Emergency Medicine: Monitoring Brain Oxygenation with Cerebral Oximetry

Özgen Gönenç Çekiç1*

1Department of Emergency, Kanuni Training and Research Hospital, Trabzon Faculty of Medicine, University of Health Sciences, Trabzon, Türkiye

Abstract: The monitoring of cerebral oxygenation is a method that is not commonly integrated into the majority of existing emergency departments (ED), but it has attracted increasing attention, particularly in recent years. As the severity of ischemia escalates during cardiopulmonary resuscitation (CPR), the probability of both survival and favorable neurological outcomes diminishes. Therefore, the imperative development of methods to quantify the magnitude of ischemia, particularly cerebral ischemia, during resuscitation is critical for enhancing overall outcomes. Cerebral oximetry (CO), using near-infrared spectroscopy, represents a noninvasive method for measuring brain oxygenation. The objective of this manuscript is to present an overview of the application of cerebral oximetry in the ED. ©2024 NTMS.

Keywords: Oximetry; Spectroscopy; Near-infrared; Emergencies.

1. Introduction
Cerebral oximetry is a medical technique that measures the oxygen saturation of the blood in the brain. This monitoring method provides real-time information about the levels of oxygen in the brain tissue, helping healthcare professionals assess and manage the oxygen supply to the brain. By monitoring cerebral oxygenation levels, healthcare providers can make informed decisions to optimize oxygen delivery and prevent potential complications related to inadequate brain oxygenation 1.

1.1 Historical Background
Cerebral oximeters, like pulse oximeters, are non-invasive devices capable of continuous monitoring, operating on similar physical principles. This technology was first described by Jobsis in 1977 2. According to his study, the relatively high levels of brain tissue transparency in the near-infrared range (650-1000 nm) facilitated real-time, non-invasive detection of hemoglobin oxygenation using transillumination spectroscopy. Two decades later, the first commercial devices were developed and are now utilized in various medical settings, including cardiovascular surgery, neurosurgery, anesthesia management, and intensive care units (Figure 1).

1.2 Physics
Cerebral oximeter typically consists of sensors or probes that are attached to the patient's forehead (Figure 2). These sensors use near-infrared spectroscopy (NIRS) to measure the amount of oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) in the blood of the brain. The cerebral oximeter emits near-infrared light into the tissues of the forehead. The near-infrared light penetrates the skin and underlying tissues and is partially absorbed by Hb in the blood. Detectors in the cerebral oximeter measure the amount of near-infrared light that is absorbed by

---

*Corresponding Author
Özgen Gönenç Çekiç
Department of Emergency
Trabzon Faculty of Medicine
University of Health Sciences
Trabzon, Türkiye.
Phone: +90 5057040313
E-mail: ozgen_gonencc@hotmail.com

Doi: 10.56766/ntms.1427994

Authors’ ORCIDs
Özgen Gönenç Çekiç
https://orcid.org/0000-0002-0011-7044

Content of this journal is licensed under a Creative Commons Attribution 4.0 International License.
HbO2 and deoxygenated Hb. HbO2 and Hb absorb light differently at specific wavelengths (Figure 3) 3. By comparing the amount of light absorbed at these specific wavelengths, the cerebral oximeter calculates the ratio of HbO2 to total hemoglobin, providing an estimate of the oxygen saturation level in the blood 4.

Figure 1: General view of the cerebral oximeter device.

The estimation of cerebral hemoglobin oxygen saturation is achieved through the application of the Beer-Lambert law 5. Additionally, the presence of extracranial blood poses a potential challenge to accurate CO measurements. To address this issue, cerebral oximeters utilize multiple probes and employ spatial resolution techniques 6. Spatial resolution relies on the principle that the depth of tissue examined is determined by the distance between the light emitter and the light detector 7. The system calculates the ratio of oxyhemoglobin to total hemoglobin within the monitored region as a percentage, presenting it to the user as Regional Oxygen Saturation (rSO2). Typically, cerebral arterial blood oxygen saturation ranges from 98% to 100%, while venous blood tends to have an oxygen saturation of nearly 60%. Consequently, normal rSO2 values are expected to fall between 60% and 80%.

1.3 Limitations of Cerebral Oximetry Measurements
Currently, several CO devices are available for clinical use, each exhibiting variability in measurements due to differences in emitted light wavelengths, variations in light sources among devices, and the utilization of diverse mathematical algorithms for determining cerebral oxygenation values 8. Moreover, extracranial contamination, skin pigmentation, and physiological conditions contribute to the variability of rSO2 values 9,10. Anatomical variations like incomplete Circle of Willis or carotid artery stenosis can further introduce errors in CO values. Therefore, conducting bilateral CO is recommended to minimize potential biases. An overview of various factors that could result in decreased cerebral oxygenation values due to alterations in blood flow or oxygen levels is provided in Table 1. Furthermore, all CO devices exhibit limitations in clinical use, encompassing compromised accuracy in the presence of electrosurgical equipment like diathermy, limited coverage restricted to regional cerebral oxygenation, and the absence of monitoring in significant brain regions 3,11.

Table 1: Factors leading to decreased cerebral oxygenation values.

<table>
<thead>
<tr>
<th>Oxygen Content</th>
<th>Cerebral Blood Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin</td>
<td>Cardiac output</td>
</tr>
<tr>
<td>concentration</td>
<td>Pulmonary function</td>
</tr>
<tr>
<td>Inspired oxygen</td>
<td>Arterial inflow/venous outflow</td>
</tr>
<tr>
<td>concentration</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>Major hemorrhage</td>
</tr>
<tr>
<td>saturation</td>
<td></td>
</tr>
</tbody>
</table>

1.4 Clinical Applications
As outlined above, continuous monitoring of CO facilitates the early detection of changes in brain oxygenation, enabling timely interventions to enhance oxygen delivery and prevent adverse outcomes 12. CO is considered as a safeguard and used in various medical procedures characterized by iatrogenic brain ischemia, including carotid endarterectomy in patients with high-grade carotid artery stenosis, temporary clipping during brain aneurysm surgery, hypothermic circulatory arrest for aortic arch procedures, and other pathologies like traumatic brain injury and stroke that inherently lead to brain ischemia 13-15.

1.5 Cerebral Oximetry in Emergency Department
CO is not widely used in ED, but has attracted attention, especially in last few years. Despite advances in CPR, survival and neurological recovery after cardiac arrest remain very poor due to the impact of severe ischemia and subsequent reperfusion injury 16. As the severity of ischemia intensifies during CPR, there is a reduction in the probability of survival and the attainment of favorable neurological outcomes 17. The consequences of hypoxic-ischemic brain injury following the return of spontaneous circulation (ROSC) post-cardiac arrest are profound, leading to significant mortality and morbidity 18. Consequently, the imperative to enhance overall outcomes necessitates the creation of methodologies for quantifying the extent of cerebral
ischemia throughout the resuscitation process. Numerous preclinical and clinical studies have demonstrated that rSO2 during CPR is correlated with enhanced survival rates following cardiac arrest and improved neurological outcomes 19,20.

Figure 3: Absorption spectra for oxygenated and deoxygenated hemoglobin. Area A represents light wavelengths used by cerebral oximeters 3. Hb: Deoxygenated hemoglobin, HbO2: Oxygenated Hemoglobin.

2. Discussion
The evaluation of central and cerebral circulation through CO in the prehospital setting has the potential to enhance patient outcomes 21. In a CPR environment, the ideal rSO2 monitor should be characterized by a compact, lightweight design and a durable battery. Absolute real-time values, accompanied by suitable indicators, ought to be measured without the need for frequent calibration. Additionally, the monitor should exhibit an absence of detection limits, insensitivity to ambient light, and resistance to extracranial contamination. None of the currently available devices, however, encompass all the aforementioned features indicative of an ideal pre-hospital rSO2 monitor. However, in cases of out-of-hospital cardiac arrest (OHCA), CO monitoring can be used both pre-hospital and during transport to measure CPR effectiveness in patients reaching advanced life support 22,23.

The use of CO monitoring was also examined to determine the potential role of baseline and rSO2 in monitoring CPR effectiveness and predicting ROSC. In a meta-analysis reviewing 13 studies conducted by Liu and colleagues, it was demonstrated that, during CO monitoring, male gender and the location of the arrest may exert an influence on the initial or average rSO2 and ROSC 24. Studies have also indicated that the outcomes may be influenced by geographical variations attributed to country-specific legislation. For instance, in Japan, unlike in many other countries, termination of resuscitation at the scene of OHCA cases is not permitted, and application of CO may contribute to delays 25.

The integration of noninvasive neuromonitoring in the ED and ICU could serve as a valuable adjunct to clinical diagnosis and radiological imaging, especially in patients without primary brain injury 25. In one meta-analysis using NIRS monitoring during resuscitation, a strong correlation was observed between ROSC and NIRS saturation 26. Similarly, NIRS has proven to be valuable in the early detection of changes in cerebrovascular parameters during respiratory distress in patients with acute respiratory distress syndrome and COVID-19 27. The presence of systemic inflammation, commonly noted in sepsis patients frequently encountered in the ED, triggers changes in cerebral blood flow, disruption of the brain-blood barrier, and alterations in autoregulation, ultimately contributing to sepsis-related brain dysfunction 28. In adults, benefits for the continuous assessment of cerebral autoregulation could also be provided by NIRS 29,30.

3. Conclusion
Growing evidence emphasizes the pivotal role of non-invasive cerebral oximetry as a crucial monitoring approach in the care of patients undergoing anesthesia or sedation in the intensive care unit, particularly when the primary injury does not affect the brain directly. This significance extends beyond the perioperative context to include applications in the emergency department and the ICU. NIRS offers distinct advantages as a non-invasive, cost-effective, safe, and readily accessible bedside tool, holding substantial potential for diagnosing and treating patients at risk of neurological complications. Larger-scale studies are necessary to facilitate the widespread integration of NIRS into daily routine practice.

Limitations of the Study
Further research is required to validate cerebral oximetry monitoring in improving patient outcomes in emergency department.

Acknowledgement
None.

Conflict of Interests
The authors have no conflicts of interest to declare.

Financial Support
None.

Author Contributions
Conception and Design of the study, Collection and/or Processing and Literature review, Writing Original Manuscript, Analysis and/or interpretation and final version and is responsible for final approval of the submitted manuscript; ÖGÇ.

Ethical Approval
None.

Data sharing statement
None.

Consent to participate
None.

Informed Statement
None.

References
1. Ali J, Cody J, Maldonado Y, Ramakrishna H. Near-Infrared Spectroscopy (NIRS) for Cerebral and


https://dergipark.org.tr/tr/pub/ntms