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ABSTRACT. In this article, we define eight orthogonal matrices strongly linked to the well-known Helmert matrix.
We derive LU factorizations by providing explicit closed-form formulas for the entries of L and U. Additionally,
we factorize matrices by representing them in relation to diagonal matrices.
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1. INTRODUCTION

Matrix theory finds widespread application in various disciplines such as applied mathematics, computer science,
engineering, statistics and more. Over time, researchers have defined and scrutinized various types of matrices, includ-
ing determinants, inverses, and factorizations, [1-3,7-9, 12—15, 18]. One of them is known as Helmert matrix which
is introduced by Helmert with a prescribed first row and a triangle of zeroes above the diagonal, see [11]. Ann X n
standard Helmert matrix H is of the form

hij=0forj>i>1,

that is, the entries below the first row and above the main diagonal are all zero. H is called Helmertian in the strict
sense if

hi; = \/wj where w; > 0 and ij: L.
1

In [11], Helmert used the matrix with first row entries h;; = n~12. Thus, for example a 6 X 6 Helmert matrix is of the
form
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In [13], Irwin used the matrix with a more general set of positive w;. Usually, Helmert matrix is used in mathematical
statistics [12, 16] especially for analysis of variance, see [5, 10, 17]. In recent years, there has been notable exploration
into g—analogs of the Helmert matrix, see [3,7].

The Pascal matrix stands out as one of the widely recognized matrices. Different matrix representations of the Pascal
triangle are commonly encountered in contemporary literature. In [4], the authors embarks on a systematic exploration
of the matrix representations of the Pascal triangle as independent mathematical entities. The focus of the paper is
primarily on the G—matrices, comprising twelve triangular matrix forms G ,,Gap, ..., G2, of order n + 1 derived
from expanding the Pascal triangle to level n, where n is a natural number greater than or equal to 2. By initiating with
G, and G1,,, for instance, the remaining eleven G—matrices can be produced by utilizing matrix transposition along
with left and right actions of the permutation matrix R, as described in Definition 1.1, [4].

Definition 1.1 ( [4]). A reflection matrix R = [R; ;] or order n + 1 is defined by
Rij=6_, i,j=0,1,...,n,
where 5£ _; is the Kronecker symbol.

In [6], the authors introduce thirty-six complete matrix configurations (referred to as F'P—matrices) of the so-called
n—greatest thomboid sub-block extracted from the Pascal Triangle expanded to level 2n (2 < n € N).

In linear algebra, there are many different matrix decompositions, that means factorizing a matrix into a product of
matrices. A factorization of an n X n Helmert matrix is given in [15] using the matrices R; representing rotations in the
plane of two coordinate axes. The LU—factorizations of g—analogs of the Helmert matrix are given in [3, 7] and for
g = 1, one can obtain the factorization of the classical Helmert matrix.

In this paper, we will use the concept provided by [4], employing the reflection matrix R defined in Definition 1.1,
and the Helmert matrix to define eight special n X n matrices. We provide the LU factorization of these matrices.
Additional factorizations will be derived by expressing these matrices in relation to certain diagonal matrices.

2. VARIANTS OF THE HELMERT MATRIX

In this section, we define eight square matrices. One of them is the well known Helmert matrix and the others are
directly related to Helmert matrix. Throughout the section we will denote the transpose of a matrix A as A”. Let us
denote the classical Helmert matrix as H;.

Let R be the reflection matrix given in Definition 1.1 and ¥ = {f; | i = 1,..., 8}, where

Si(Hy) = Hy

S2(Hy) = RH, = H,
Ss(Hy) =HR =H;
Ja(H;) = RHR = Hy
fs(H;) = H{ = H;s
fs(H;) = RH] = Hg
fMHE)=HR=H,;
fs(H;) = RH| R = H;.

Then, (¥, o) is a group under function composition o. This can be seen by constructing the group operation table of
(7, 0), [4]. We also see that the matrices H; fori = 1,2,..., 8 are orthogonal.
The classical Helmert matrix of order n is given as

r L 1 1 1 1
a \a a a vn
L -+ 0 0 0
V2 V2
L L -2 0 0
V6 V6 V6

Hi=t 1 L s 0
Vi2 V12 Vi2 Viz
1 1 i i L -l
L Vn(n—1) Vn(n-1) Vn(n—1) Vn(n—1) Vn(n-1)



G. Kizilaslan, H. Sahin, Turk. J. Math. Comput. Sci., 16(1)(2024), 229-239

The first row of H; has the form

231

o, ---, 0
| —
n —itimes
__n-1
n(n—1)
n—-2 0
V(n-1)(n-2)
0 0
0
1
\n
L
v
n—i

and for 2 < i < n the form of the i—th row of H; is
1 1 i—1
i — 1 times
The matrix H, of order n is of the form
1 1 1 1
\/n(flfl) \/n(ilfl) Vn(n—1) Vn(n—T)
Vin-D(n=2)  Vn-T)(n-2)
Hy=| 1 Bl _2
V6 V6 V6
I I
¥ 0F L
Vi Vi Nz Vi
The n—th row of the matrix H, has the form
and for 1 <i < n — 1 the form of the i—th row of Hj is
1 1

n—itimes
The matrix H3 of order n is of the form
1

=i+ D= ———.

0

i— 1 times

1 1 1 1
Vi R Va Vi N 1 Tﬁ
. " PR ¢
0 0 ——= — -
H; = \/g % \{a
0 | i i i
el \/(n—ll)(n—Z) \/(n—ll)(n—Z) \/(n—ll)(n—Z) V(in-D(n-2) \/(n—ll)(n—Z)
L™ V=D Vi(n=1) ViGi-1) Vi(n=1) o Nac=y i
The first row of the matrix Hs has the form
[L € € L]
‘/ﬁ 9 \/ﬁ 9 \/ﬁ 9 9 \ﬁ
and for 2 < i < n the form of the i—th row of Hj3 is
i 0 i—1 1 1
— " Nii-D NiG-1) NG
n — i times
i— 1 times
The matrix Hy of order 7 is of the form
| 1 1 1 1 1
Vn(n-1) \/n(n—21) \/n({z—l) Vn(n—-1) \/I‘L(i’l—l)
—_— n— .. —
0 V(in-1)(n-2) V(n=D(n-2) V(n-1)n-2)
0 . .
H,; =
: _2 € €
‘ I
T .
R R Vi R o R
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The n—th row of the matrix H, has the form

Y T T > n
and for 1 <i < n — 1 the form of the i—th row of Hy is
0 0 n—i 1 1
R ~ — ' No-i+Dn-0)  Nm-i+Dhn-0 T No—-i+Dm-0|.
1 — 1 times
n—itimes

The matrix Hs of order 7 is of the form

L L e 1 L
«Iﬁ «/g x{é Vin=1(n-2) Vi(n=T)
R R RS Va-D(n-2) V(=)
€ 0o -2 1 1
Hs = v V6 V(n-D(n-2) Vn(n=T)
1 | . -2 1
v 0 O - e VD
4L 0 0 -
L vn Vn(n-1)
The first column of the matrix Hs has the form
. . . a0
[ N T T > A ]
and for 2 < j < n the form of the j—th column of Hs is
1 1 j-1 0 0 T
VG =D VIG=D T NiG-D T e
j—1times
The matrix Hg of order 7 is of the form
r L 0 0 e 0 ——nzl_j
Vi Vn(n—T)
1 0 _ n=2 1
vn Vin-1)(n-2) Vn(n—T)
1 0 ___n3 1 1
Hg = Vi V(n-2)(n-3) V(n=D(n-2) Vn(n—T)
SR I I
‘f l\ﬁ \1@ \/(n—ll)(n—2) \/n(ln—l)
LV V2 Ve Vo-D(-2)  Va@-1)
The first column of the matrix Hg has the form
[L L L . L]T
W 9 W 9 W 9 9 \/ﬁ
and for 2 < j < n the form of the j—th column of Hg is
T

j-1 1 1
0, -«-,0 , — , S —
w ViG=1 VJG-D VJG-D

j—1times




G. Kizilaslan, H. Sahin, Turk. J. Math. Comput. Sci., 16(1)(2024), 229-239

233

The matrix Hy of order n is of the form

1 1 1 1
\/n(fz—l) \/(n—l])(n—z) \/(n—21)(n—3) \f%
Vn(n=T) Vo—Dn=2)  Vm-2)(n-3) v
1 1 : 2 0
H, = Vn(n-1) Vin-T)(n-2) V6
1 _ -2 . i
Vn(n—T) Vn-1)(n-2) 0 0
__n-1 O
Vn(n—1)
The n—th column of the matrix H; has the form
. L L a0
[ N T T > A ]

and for 1 < j < n—1 the form of the j—th column of Hy is

1 1 B n—j
Jao—j+Dn-j o= hn-) 0 Ja—jrDn-))

n— jtimes
The matrix Hg of order » is of the form
__nzl_ .
vn(n—1) 0 0 0
1 _ n—2 0
Vn(n—T1) V(n=1)(n-2)
1 1 __ n=2 0
H. = Vn(n—T) V(n=1D)(n-2) V(n=-2)(n-3)
8 = . . . .
1 1 1 L
\/n(?— D) Vin— ll)(n—Z) \/(n—ZI)(n—3) ]\5
L Va(=1) Vin=T)(n=2) Vn=2)(n=3) 2
The n—th column of the matrix Hg has the form
[L . . .. ae ]T
\/ﬁ 9 \/ﬁ 9 ‘m 9 9 \/ﬁ

and for 1 < j < n — 1 the form of the j—th column of Hg is

0, -, 0 n—J

1 1
—i— Ne—j+De-)  Ne—j+De-j) i+ Di-j

- <<

ek

<<l

ek

j— 1 times

n — jtimes

3. FACTORIZATIONS OF THE VARIANTS OF THE HELMERT MATRIX

|

Factorizing a matrix in terms of a lower triangular matrix L and an upper triangular matrix U is called an LU fac-
torization. This factorization can be obtained by Gaussian elimination. The product sometimes includes a permutation
matrix P and converts to PLU product. If L is a lower triangular with unit main diagonal and U is an upper triangular,
the LU factorization of a matrix is unique. For all defined matrices H;, we are interested in PLU factorizations. We

use the notation H; = P;L;U; and provide explicit expressions for P;, L;, U; and inverses of these matrices.

We also consider these defined matrices in another perspective. The well known Helmert matrix, the matrix H; with

our representation, can be expressed in terms of a diagonal matrix as follows

11 1 1 - 1
1 -1 0 0 --- 0
1 1 -2 0
H, = D;'S; =D
1 1 1 -3
: : : . . 0
1 1 - - 1 —(n-1)
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where D% is a diagonal matrix with entries df s=n 12,23+, n(n-1). We can obtain diagonal matrices D; and

the matrices S; in a similar manner fori =2,3,...,n.

Let H; denote the square matrix of size n defined as follows fori = 2,3,...,n. In this paper, the identity matrix of
size n is represented as I,, and the matrices L; for i = 2,3,...,n are lower triangular matrices with a main diagonal

consisting of units.

Firstly, for 2 < i < 4, we will find the matrices D; and S; which satisfies H; = Dl.“S,- and for 5 < i < 8, we will find

the matrices D; and S; which satisfies H; = SiDlT'.

i D? Si
1 1 1 —(n—1)]
11 1 —(n-2) 0
1 —(n-3) 0 0
2| &3, =n(n-1),(n—Dn-2),---,23,12,n _ . .
-1 0 0
1 1 1 1
1 1 1 1 - 1
0 0 0 -1 1
0 0 0 -2 1 1
3| d3,;=n12,23,---,(n=1)(n—-2),n(n—1) .
0 -mn-2) 1 1 1 1
-(n—1) 1 1 1 -1
—(n—1) 1 1 1T 1
0 -(n-2) 1 1 1 1
0 0 -n-3) 1 1
4| di;=n(n—1),(n—Dn-2),---,23,12,n :
0 0 0 -1 1
1 1 1 1 -
1 1 1 1 1
1 -1 1 1 1 1
1 0 -2 1 1
50d5;=n12,23,- ,(n=1)(n-2),nn-1)
1 0 —-(n-2) 1
1 0 0 0 —(n-1)]
0 0 0 —(n—1)
0 0 -(n-2) 1
0 —(n-13) 1 1
6| dZ,;=n1223-,(n=1)n-2),n(n-1) .
-1 1 1 1
11 1 1
1 1 1 1 1]
1 1 1 -1 1
1 1 -2 0 1
7 d%iizn(n—l),(n—1)(n—2),---,2.3,1.2,n
1 -n-2) 0 0 1
-(n—1) 0 0 0 1
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—(n—1) 0 0 0 1]
1 —(n—-2) 0 0 1
1 1 -n-3) 0 1

8| dg,;=n(n—1),(n-1)n-2),---,23,1.2,n _
1 1 1 -1 1
|1 1 1 1 1]

TasLE 1. Explicit forms of the matrices Di2 and S ;.

Now, we will present the matrices P, L;, U;, L', U;!. For

1 0 0 --- 0 0]
00 0 -~ 10
00 : 1 00

P=
01 0 : 00
0o 0o 0 --- 0 1

we see that the matrices H,, H3, Hg, H; inludes P in their LU factorization. The LU factorizations of the g—analogs
of the Helmert matrix are provided in [3,7]. Since obtaining the LU factorization of the matrix H; for ¢ = 1 is
straightforward, we will not rewrite the LU factorization of H; in this paper.

i L; U;
- - r 1 I 1 __n=1
n(}l_l) 000 B n(n=1) Vn(n—1) /a(n—1) (n—1)
v 1 0 - - 0 0 2 T =1
= v V2 2
e 1 _3 L a1
w 0 0 0 0 6 Ve 5
2
1 0
nin=1) 0 .0 0 0 ___nl n-1
(-Dn-2) Vi-D(-2)  Na-D(-2)
L Vin-1) 0 - - 0 1J L o 0 N
r L T T
1 0 00 0 ‘Of fz . Va
0 1 0 - 0 T Nn-Dn-2)  Na-hn-2) Vin-D(n-2)
___n3 1 1
0 0 1 0 0 0 V(n=2)(n-3) (n—2)(n-3) (n-2)(n-3)
3
0 0 w0 i 0
A=l — =D _eG=D 0 _2 L
VoD (-2) vz V2 \2
L 0 0 n(n—1) |
[ — n-l 1 s e s 1 1
1 0 0 0 0 nn—1) n(n—1) Vnn=1)
__n2  __1 1
0 1 0 - 0 0 VoD Ve DwnD VoD
___n3 1 1
0 0 1 0 0 0 =2D(n=3) Nm-2)(n-3) (n=2)n=-3)
4 . . .
0 0 0o 10 .
N Ny : 0 2 L
Vn(n—T1) (n-T)(n-2) 2 i -
L o 0 N
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S B S LI
1000 0 Voo V2 Ve (n—1)
2
110 - 0 0 -7 0 0
. 0 0 -2 0 0
i1 o Ve
3 11l 00
: . . n-1
11l Ly : “es 0
n— O O — n ;
— S
i 0 0 T -
10 0 O -0 0o -L L 1 n
11 0 .0 V2 V6 Vo—D(n-2) n(n—1)
0o 0 -2 . P n
V6 V(n-1)(n-2) n(n—1)
6 10 1 0
P00 i b e
1 -1 -1 -11 T Vo-Dn-2) V-1
L 0 . 0 n(n—1)
- T T T T~
Vi) NG-Dn-2) ’ RV
n-1 _ 1 _ L
Lo oo -0 R oy 7= B o w0
7 1 0 1 0 0
. . 0 -3 _L o
o V6 V2
1 0 - 1
—(n-1) -1 -1 -11 _2
v 0
) 0 nl
ro 1 0 0 0 - 07 [ -l 0 0 0o X7
1 0 . om0 /n(n=1) n
n—1 0 _ n=2 0 ﬁ
VDD i1
J S U -3 Vi
o == 0 0 0 ~ e -2
1 1 1
=== | 0
. . _1 A
“ 2 . .li 0 v 2
"l T2 L L 0 0 +nl

TasLE 2. Explicit forms of the matrices L; and U;.

The following table gives the explicit closed formula for the inverses of the matrices L; and U; fori = 2,3,...,8.

i L' U:!
r — J . T T 5
) 1 00 0 0- V=) 5 <5 Nr=y = R
n=1)
B (ﬁ 1o 0 0 . 1
V2 Ve Vin-D(n-2) vn
n(n—1)
- 01 0
V6 _2 iR
2 0 0 -% Vi
1
__ VWD .0
Vin-1)(n-2) 0 _% %/'
L —v&-D) o 0 1 0 V‘"’O o
L \/HA
Vi =) =1 e T
-D(n=2)  n-2)(n-3) V2 vn
'S B B L1
(1) (1) 8 O 8 0 (n-1)(n-2) Vn=T)(n-2) V2 Vn(m-T)
0 0 1 0 0 0
3
. . . . . _3 _ 1 1
o0 o i 0 Yoo D
7 _ =D Vi(n=T)
=l e ! 0 -5 =
0 1
L n(n—1) -
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r——= — I — 1 [ D B
1 0 00 -« 0 \/pgn—l) _V(n;L):rz—-) - (n—zl)(n—s) B ] _\lfz \]Fn
0 1 0 «~ = 0 D@2  Vo-Dw2)  Ve-dw3) V2 Nm
——n2 1 ... L
0 0 1 - 0 0 0 Vo-2(-3) N3 Vi
4 ) .
0 0 010 L
Vi i Vi 0 —2 L
VD Yo-Dn-2 2 1 0 0‘5 ‘{E
n -
r no Nn Nn
1 0 0 0 Vi3S R
-1 1 0 0 0 - 0 0
. 2
N L, e 0
2 2 .
1 1 1
5 -3 -3 -3 1 00
. . . ___n=2 0
S I WS SR VD)
7 e e ) 0 0 o net
L ViG]
,W 0 O % .
2 _ 1L _L L
L0020 S
00 -%-w %
6 -1 01 0
S0 010 o - ,
-1 1 - 11 B 7 y T MR s e
0 oo e e 0 1
L Nn(n=D -
r Vit 1 1 1) ]
Va(n=1) % # _(f)
0 2 1 0
100 0 -0 (=-D)(n-2)  Vn-D(n-2) (n=T)(n-2)
110 - 0
0
7 -10 1 0
. .. _2 .
D : Vo Ve 0
FR 1
0 - 0
0 . 0 £
— m T 0 e
R 0 0 0 =1
10 0 0 -0 o - o : 1
410 -0 ~ VD> N V)]
L . __ n22 . 1
8 n—2 n-2 Lo 0 0 0 (n=2)(n-3) 0 . Vn—2)(n-3)
i 1 : 0
i N L
0 -% =
1
0 o 5 |

TasLE 3. Explicit forms of the matrices Li’1 and U i’l.

Here, we just check that the matrices in the factorization of PH, the matrices Ly, L; Land U,, U; I are inverse. The
others can be obtained similarly. From Table 2 and Table 3, we see that

e [, = I, +J, where J = [x;;] is the matrix with x;; = O and x;; = O for j > 1. Fori # n, x;; = —mlgl:ll))
X = Vn—1.

o U, [u;;]. Then we have u; = l(l forl < i< nandu, = \Vn Uy
——_nl_ ..
N mforn>]>z>2um—mforl<z<n
o L I'= [, — J where J is the matrix deﬁned above.

° Uz’1 = [vij]. Then we have v; = (l 5 forl <i<nandvy = vn(n-1),v; =

—L—forn>j>i>2,
VG-

Wforl_j<n,

A

1 .
——=forl < j<mn,
ViG=1 J

vmzﬁforlsiSn,vij:
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Proof. e We should prove
D Laalsy; = 6,
j<ksi
where ¢;; is the Kronecker delta. But for j > 1, it can be easily seen by the definition of the matrices that this
relation is true. So we only need to prove for j = 1. Since I, and L; ! are the lower triangular matrices with
unit main diagonal, for i = j, we have a lower triangular matrix L,L; ! with unit on the main diagonal. For
i# j=1,wehave

o _ Nn(n-1)  wn(n-1) _
1szk<,-L2”"L2"“ SVeD  vien D

Hence, we get the result.
e For U, and U;", we will show again that

-1
> UaalUsy, = 6ij.
j<k<i

We first consider the main diagonal. Since U, is an upper triangular matrix, the main diagonal entries come

from 1
UV = ————+nn-1=1
1V m\/( )
and fori > 1

i i—1
Wiivip =\ — - =1
( Vi(i — l))( Vi(i — 1))
Otherwise, for i = 1, j < n, we have
1 j—1 1 1

-1
1;]. Uz iUy V=D \/j(j = + Py =D \/j(j -
_ I BN 1
Van=1) \[jG- 1) va(n—1) \[j(j—1)
=0
and fori = 1, j = n, we have
S ooty L
e T A=D1 Vno L V(i =T) Vi
__n-1 1 -1 1 RS
Vn(n —T) Vn Vn(n =T) Vn

Fori>1land j<n,

il
2,9 =~ o= )\ )\ - s Yo )

1 1
m;jl( Vi(i - 1))( Vit - 1))

(=i ) o ( 1 )_
= |-~ i- ) ——=———] =0
( ViiG=DG - 1) ViiG=DG -1

and for i > 1 and j = n we have
Z"U,(Ul:(_;')(L)JF(L)(L)Jr 5 (_ ! )(L)
g2 T U N el N el g U e D\ e

n—i—1 . 1 _
_(\/in(i—l))_(n_l_l)( VinG = 1))_0
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Thus, the result follows.
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