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1. Introduction
In this work, we are concerned with a nonlinear elliptic problem whose prototype reads

as− div
(

〈A∇u, ∇u〉
p(x)−2

2 A∇u + ω(x) 〈B∇u, ∇u〉
q(x)−2

2 B∇u

)
= f(x, u) in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is an open and bounded subset of RN , with smooth boundary ∂Ω. The variable
exponents p(·), q(·) : Ω → [2, +∞) are two continuous functions satisfying 2 ≤ p(x) < N
and p(x) < q(x) for all x ∈ Ω. The function ω(·) is nonnegative function belonging to
a certain Lebesgue space. The source term f : Ω × R → R is a Carathéodory function
which belongs to a suitable Lebesgue type space to be discuss later. We assume that
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A = (ai,j)1≤i,j≤N , B = (bi,j)1≤i,j≤N are two symmetric diffusion matrices, i.e. ai,j = aj,i

and bi,j = bj,i satisfying

ai,j , bi,j ∈ L∞(Ω) ∩ C1(Ω), (1.2)

〈Aξ, ξ〉 =
N∑

i,j=1
ai,j(x)ξiξj ≥ λA|ξ|2, (1.3)

〈Bξ, ξ〉 =
N∑

i,j=1
bi,j(x)ξiξj ≥ λB|ξ|2, (1.4)

for all ξ ∈ RN and for almost x ∈ Ω, with λA and λB being nonnegative constants, and
〈·, ·〉 stands for the scalar product on RN .

To effectively highlight the novelty and originality of our work, we aim to review perti-
nent existing literature on the same subject. We initiate this process by establishing the
connection between the operator-driven problem (1.1) and certain well-known operators
from earlier literature. It is worth noting that when ω ≡ 0, the operator involved problem
(1.1) reduces to

Ap(x)(u) := − div
(

〈A∇u, ∇u〉
p(x)−2

2 A∇u

)
, (1.5)

which is recognized as the Ap(x)-Laplace operator. It constitutes a generalization of the so-
called p(x)-Laplace operator, i.e. ∆p(x)u = div

(
|∇u|p(x)−2∇u

)
with the latter obtained

as a special case when A equals the identity operator Id in (1.5). The investigation of
partial differential equations involving the p(x)-Laplace operator has garnered escalating
attention in recent years [2, 3, 13–15, 17, 24]. The heightened interest in studying these
operators has been spurred by their diverse applications in areas such as image restora-
tion [1, 18], mathematical biology [26], elastic mechanics [46, 47], electrorheological and
thermorheological fluids [35, 39, 41]. Conversely, partial differential equations featuring
the Ap(x)-Laplace operator have undergone thorough examination in recent years. In [4],
Alvino et al. delved into the eigenvalue problem for an elliptic equation involving the
Ap-Laplace operator with constant exponents (p(x) ≡ p). The authors elucidated certain
properties of the first eigenvalue and its corresponding eigenfunction by establishing a
Payne-Rayner-type inequality in the process. For further exploration of PDEs governed
by the Ap-Laplace operator with constant exponent, we refer the readers to [23,40], along
with references provided therein. In a recent development, Mihǎilescu and Repovš [36]
have tackled a nonlinear elliptic equation with Ap(x)-Laplace operator. Under a suitable
assumption on the variable exponent p(x), the authors combined Schauder’s fixed point
theorem with variational arguments to investigate the existence of solutions. In another
scenario where A ≡ B ≡ Id and ω : Ω → [0, ∞) is a measurable function, the problem
(1.1) governed by the operator taking the form

L(u) := − div
(
|∇u|p(x)−2∇u + ω(x)|∇u|q(x)−2∇u

)
. (1.6)

We would like to emphasize that the operator L is commonly known as the double
phase operator, a term that has gained significant attention in recent years. The term
"double phase" was originally introduced in [19, 20], indicating that the flux function(
|∇u|p(x)−2 + ω(x)|∇u|q(x)−2

)
∇u oscillates between two distinct elliptic scenarios. To

phrase it differently, its behavior depends on the values assumed by the function ω : Ω →
[0, ∞). Specifically, over the subset {x ∈ Ω : ω(x) = 0}, the operator is governed by the
gradient of p(x)-growth, whereas in scenarios where {x ∈ Ω : ω(x) 6= 0}, it is influenced by
the gradient of q(x)-growth. This dual behavior is the fundamental reason for designating
it as the "double phase" operator.
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This type of operator has demonstrated its efficacy in modeling a diverse range of com-
plex physical phenomena, including those arising in nonlinear elasticity, highly anisotropic
materials, and the Lavrentiev phenomenon. For a deeper understanding of the real-world
applications of such operators, we encourage interested readers to explore the following
works [5, 6, 46–48]. It is crucial to highlight that the impetus for investigating this opera-
tor’s advantages can be traced back to Zhikov’s work [46], where the author delved into the
behavior of highly anisotropic materials through the analysis of the following functional:

u 7−→
∫
Ω

(|∇u|p + ω(x)|∇u|q) dx. (1.7)

The inclusion of the modulating coefficient ω(·) serves to regulate the balance between two
distinct materials, each characterized by power hardening rates of p and q respectively. In
the existing literature, comprehensive investigations have explored the well-posedness of
the functional (1.7). This scrutiny is conducted in various works, examining the functional
in its original form [9, 27, 28, 33, 34, 37, 44], as well as in its role as a differential operator
with variable growth behaviors, characterized by functions p(·) and q(·) [8,10,29,42,43,45].

An important line of research, led by Mingione and his collaborators, has delved into
the regularity of minimizers in variational problems and solutions to differential equations
involving double phase operators, as documented in [7, 19, 20]. In a study by Cencelj-
Rǎdulescu-Repovš [11], a class of double phase variational integrals was investigated, gov-
erned by non-uniform potentials with variable exponents p(·) and q(·). Their analysis
of the corresponding Euler equation revealed the existence of two distinct Rayleigh quo-
tients. One of these quotients is linked to the existence of an infinite range of eigenvalues,
while the second one is associated with the nonexistence of eigenvalues. The study [12]
presented a novel parabolic double phase model which was applied in the field of image
processing. The authors not only proved the existence and uniqueness of solutions but
also illustrated the practicality of double phase operators in reducing image noise. In the
subsequent work [16], the same authors extended their research from [12] by considering a
reaction-diffusion parabolic system with variable exponents, governed by the double phase
operator. They examined the existence and uniqueness of weak solutions to the proposed
problem and subsequently validated the robustness of their model in the context of remov-
ing noise from Magnetic Resonance Images. Their research marks a significant milestone
as it represents the first instance of utilizing parabolic double phase problems for image
denoising and decomposition.

In the case where p(·) ≡ p and q(·) ≡ q are constants, Liu and Dai [31] successfully
derived a sign-changing ground-state solution for a double phase problem, employing the
Nehari manifold approach. Their subsequent work [32] extended the investigation, demon-
strating the existence of at least three ground-state solutions through the application of
the strong maximum principle. In a recent contribution [22], the authors established the
first Schauder-type results for minima of nonuniformly elliptic integrals with nearly linear
growth, encompassing the double phase integral operator as a special case. Furthermore,
the paper by Ho and Winkert [28] introduced new embedding results for Musielak-Orlicz
Sobolev spaces of double phase type. Their methodology involved the use of De Giorgi
iteration and localization arguments, yielding appropriate boundedness results for cor-
responding weak solutions to two types of double phase problems, one with Dirichlet
conditions and the other with nonlinear boundary conditions.

The main contribution of this work is to study the existence and uniqueness of solutions
to the innovative double phase problem (1.1). The key novelty of our paper lies in the
integration of a double phase operator with matrices diffusion. To the best of our knowl-
edge, this is the first instance of a study encompassing both of these concepts. Specifically,
problem (1.1) encapsulates two noteworthy phenomena. Firstly, the operator involved in
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(1.1) is the double phase operator, characterized by its ability to switch between two dis-
tinct elliptic situations. Secondly, our work introduces matrices A and B, which serve to
generalize not only the double phase operator (1.6) but also the well-known Ap(x)-Laplace
operator (1.5).

The remainder of this paper is structured as follows: In Section 2, we commence by
revisiting key definitions and notable properties of Lebesgue, Sobolev, and Musielak-Orlicz
spaces with variable exponents. Section 3 is devoted to presenting our main findings.
Using variational calculus theory, we establish two results concerning the existence and
uniqueness of weak solutions to problem (1.1). The first pertains to the scenario when
the source term is independent of the solution. Conversely, the second is dedicated to the
case of strong nonlinear source terms.

2. Mathematical preliminaries
In this section, we offer a concise overview of fundamental properties of variable ex-

ponent Lebesgue-Sobolev spaces. For a more comprehensive understanding, we direct
the reader to see the book [38]. Throughout this paper, we will consistently employ the
following notation:

M(Ω) := {u/ u : Ω → R measurable} .

2.1. Lebesgue and Sobolev spaces with variable exponent
The objective of this section is to establish the necessary foundation for our forthcoming

analysis, centered around the Lebesgue and Sobolev spaces with variable exponents. Let
us denote:

C+(Ω) =
{

p ∈ C(Ω) : inf
x∈Ω

p(x) ≥ 1
}

.

We define the Lebesgue space with a variable exponent as Lp(x)(Ω), where

Lp(x)(Ω) = {u ∈ M(Ω) | Rp(x)(u) < ∞},

here Rp(·) stands for the following convex modular

Rp(x)(u) =
∫
Ω

|u(x)|p(x)dx.

We endow the Lebesgue space Lp(x)(Ω) with the Luxemburg norm

‖u‖Lp(x)(Ω) = inf
{

δ > 0 | Rp(x)

(
u

δ

)
≤ 1

}
.

For each p ∈ C+(Ω) given, we introduce the pair (p−, p+) as follows
p− = inf

x∈Ω
p(x) and p+ = sup

x∈Ω
p(x).

Proposition 2.1 ([25], Theorems 1.2 and 1.3). Let u ∈ Lp(x)(Ω) and {un} ⊂ Lp(x)(Ω).
Then, we have

(i) the inequalities are satisfied

min
{

‖u‖p−

Lp(x)(Ω), ‖u‖p+

Lp(x)(Ω)

}
≤ Rp(x)(u) ≤ max

{
‖u‖p−

Lp(x)(Ω), ‖u‖p+

Lp(x)(Ω)

}
, (2.1)

min
{
R

1
p−

p(x)(u),R
1

p+

p(x)(u)
}

≤ ‖u‖Lp(x)(Ω) ≤ max
{
R

1
p−

p(x)(u),R
1

p+

p(x)(u)
}

. (2.2)

(ii) if un → u in Lp(x)(Ω), then the succeeding statements are equivalent:
(a) lim

n→+∞
‖un − u‖Lp(x)(Ω) = 0.
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(b) lim
n→+∞

Rp(x) (un − u) = 0.

(c) lim
n→+∞

Rp(x) (un) = Rp(x)(u) and un → u in measure in Ω.

Proposition 2.2 ([25], Theorems 1.6 and 1.10). Let p ∈ C+(Ω). Then the space(
Lp(x)(Ω), ‖ · ‖Lp(x)(Ω)

)
is separable. Moreover, when p− > 1, the generalized Lebesgue

space Lp(x)(Ω) becomes uniform convex and thus is reflexive.

For any p ∈ C+(Ω), we define the conjugate exponent of p as p′ which meets 1
p(x) + 1

p′(x) =
1 for all x ∈ Ω, with the convention that 1

∞ = 0. The subsequent proposition is commonly
known as the generalized Hölder inequality.

Proposition 2.3 ([30], Theorem 2.1). Let p ∈ C+(Ω) with p− > 1. For any (u, v) ∈
Lp(x)(Ω) × Lp′(x)(Ω), we have∣∣∣∣∣∣

∫
Ω

uv dx

∣∣∣∣∣∣ ≤ 2‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω).

The following proposition emphasizes notable embedding results for Lebesgue spaces
with variable exponents.

Proposition 2.4 ([25], Theorem 1.11). Let p1, p2 ∈ C+(Ω) with 1 ≤ p1(x) ≤ p2(x)
almost everywhere in Ω. Then, we have the following continuous embedding Lp2(x)(Ω) ↪→
Lp1(x)(Ω).

We define the Sobolev space with a variable exponent as W 1,p(x)(Ω), where

W 1, p(x)(Ω) =
{

u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)
}

.

We equip W 1,p(x)(Ω) with the norm ‖ · ‖W 1, p(x)(Ω) defined as

‖u‖W 1, p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖∇u‖Lp(x)(Ω).

It is not hard to prove that the above norm is equivalent to the one

‖u‖W 1, p(x)(Ω) = inf

δ > 0 |
∫
Ω

(∣∣∣∣∇u(x)
δ

∣∣∣∣p(x)
+
∣∣∣∣u(x)

δ

∣∣∣∣p(x))
dx ≤ 1

 .

Hereafter, we say that the function p(x) satisfies the log-Hölder continuity condition, if
there exists a constant C > 0 such that

|p(x1) − p(x2)| ≤ C

− log |x1 − x2|
, for all x1, x2 ∈ Ω, with |x1 − x2| <

1
2

. (2.3)

Assumption (2.3) ensures the density of the space of smooth functions C∞
c (Ω) within

W 1,p(x)(Ω). For added convenience, we introduce the space W
1,p(x)
0 (Ω) := C∞

c (Ω)W 1,p(x)(Ω),
with its dual space denoted as

(
W

1,p(x)
0 (Ω)

)∗
. Furthermore, for any u ∈ W

1,p(x)
0 (Ω), the

generalized Poincaré inequality holds:

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(Ω), (2.4)

where C is a nonnegative constant depending only on p(x) and Ω. Taking advantage of
generalized Poincaré inequality (2.4), we can establish the following equivalent norm on
the space W

1,p(x)
0 (Ω):

‖u‖
W

1,p(x)
0 (Ω) = ‖∇u‖Lp(x)(Ω).
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In a manner akin to Lp(x)(Ω), when p− > 1, both the Banach spaces W 1,p(x)(Ω) and
W

1,p(x)
0 (Ω) are also separable and reflexive. The ensuing propositions succinctly outline

noteworthy embedding results that establish connections between the spaces W 1,p(x)(Ω)
and Lp(x)(Ω).

Proposition 2.5 ([25], Theorem 2.3). Let (p(·), q(·)) ∈ C+(Ω) × C+(Ω) with p− > 1
and 1 ≤ q(x) < p?(x) for almost x ∈ Ω. Then the embedding W

1,p(x)
0 (Ω) ↪→ Lq(x)(Ω) is

continuous and compact, where

p?(x) :=
{

Np(x)
N−p(x) , if p(x) < N

+∞, if p(x) ≥ N.

2.2. Orlicz-Sobolev spaces with variable exponent
This subsection provides a basic overview of Orlicz-Sobolev spaces, introducing key

concepts. For a more in-depth exploration, readers are encouraged to see the work [21].
Let (p(·), q(·)) ∈ C+(Ω) ×C+(Ω) be such that 1 < p(x) < N and p(x) < q(x) for all x ∈ Ω,
we define H : Ω × [0, ∞) → [0, ∞) as

H(x, r) := rp(x) + ω(x)rq(x), for all (x, r) ∈ Ω × [0, ∞),

where ω is a nonnegative function belonging to L∞(Ω). It is straightforward to confirm
that H is a generalized N -function and is locally integrable. We proceed to introduce the
Musielak-Orlicz space, denoted as LH(Ω)

LH(Ω) = {u ∈ M(Ω) | RH(u) < ∞},

where the convex modular RH is introduced as

RH(u) =
∫
Ω

H (x, |u|) dx.

and endowed LH(Ω) with the norm

‖u‖LH(Ω) = inf
{

δ > 0 | RH

(
u

δ

)
≤ 1

}
.

Also, we introduce the Musielak-Orlicz Sobolev space W 1,H(Ω) as follows

W 1,H(Ω) =
{

u ∈ LH(Ω) | |∇u| ∈ LH(Ω)
}

.

equipped W 1,H(Ω) with the norm

‖u‖W 1, H(Ω) = ‖u‖LH(Ω) + ‖∇u‖LH(Ω).

Moreover, we denote by W 1,H
0 (Ω) the Musielak-Orlicz Sobolev spaces with zero traces,

which, actually, represents the closure of C∞
c (Ω) with respect to W 1,H(Ω) norm, that is

W 1,H
0 (Ω) = C∞

c (Ω)W 1,H(Ω)
.

With these norms, the spaces LH(Ω), W 1,H(Ω), and W 1,H
0 (Ω) attain the properties of being

separable, reflexive, and uniformly convex Banach spaces. The subsequent proposition
elucidates the relationships between the modular RH(·) and the norm ‖ · ‖LH(Ω).

Proposition 2.6 ([21]). Let u be an element of LH(Ω). Then, we have
(i) the inequalities hold

min
{

‖u‖p−

LH(Ω), ‖u‖q+

LH(Ω)

}
≤ RH(u) ≤ max

{
‖u‖p−

LH(Ω), ‖u‖q+

LH(Ω)

}
. (2.5)
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(ii) if p(x) < q(x) < p?(x) for all x ∈ Ω and 0 ≤ ω(·) ∈ L∞(Ω), then, we have

W 1,H(Ω) ↪→ LH(Ω) is compact.

(iii) there exists a nonnegative constant C such that

‖u‖LH(Ω) ≤ C‖∇u‖LH(Ω), for all u ∈ W 1,H
0 (Ω). (2.6)

From (2.6), we can see that the following norm is an equivalent norm of W 1,H
0 (Ω)

‖u‖
W 1,H

0 (Ω) = ‖∇u‖LH(Ω), for all u ∈ W 1,H
0 (Ω).

Notably, it is worth observing that the Lebesgue space with a variable exponent Lp(x)(Ω)
is a particular instance of the Musielak-Orlicz space. In relation to the Musielak-Orlicz
Sobolev space W 1,H(Ω), we present the following set of embedding theorems.

Proposition 2.7 ([21]). Let s(·) ∈ C(Ω). Then, we have
(i) if 1 ≤ s(x) ≤ p(x), for all x ∈ Ω, then the embedding W 1,H(Ω) ↪→ W 1,s(x)(Ω) is

continuous.
(ii) if 1 ≤ s(x) ≤ p?(x), for all x ∈ Ω, then the embedding W 1,H(Ω) ↪→ Ls(x)(Ω) is

continuous.
(iii) if 1 ≤ s(x) < p?(x), for all x ∈ Ω, then the embedding W 1,H(Ω) ↪→ Ls(x)(Ω) is

compact.

Throughout this paper, we assume that (p, q) ∈ C+(Ω) × C+(Ω) take values within
the intervals (p−, p+) and (q−, q+) respectively, satisfying log-Hölder continuity condition
(2.3) such that

2 ≤ p(x) < N and p(x) < q(x). (2.7)
Assumption (2.7) leads to employing the aforementioned properties of Lebesgue and
Sobolev spaces with variable exponent. Furthermore, we assume that ω : Ω → [0, +∞) is
a measurable function belonging to L∞(Ω).

3. Main results
We begin this section by clarifying the notion of weak solutions used to solve problem

(1.1).

Definition 3.1. A measurable function u : Ω → R is said to be a weak solution to problem
(1.1) if it satisfies∫

Ω

〈A∇u, ∇u〉
p(x)−2

2 〈A∇u, ∇ϕ〉 dx +
∫
Ω

ω(x) 〈B∇u, ∇u〉
q(x)−2

2 〈B∇u, ∇ϕ〉 dx =
∫
Ω

f(x, u)ϕ dx,

(3.1)
for all ϕ ∈ W 1,H

0 (Ω).

In the following theorem, we present our first existence result, which pertains to the
case where the source term f(x, u) is independent of the steady-state solution.

Theorem 3.2. Under the assumptions (1.2), (1.3), (1.4) and (2.7), we assume that
f(x, r) = f(x) with f ∈ Lθ(x)(Ω), where θ ∈ C+(Ω) is such that 1

θ(x) + 1
p?(x) = 1. Then,

problem (1.1) admits a unique weak solution.

Proof. Let us start by introducing the energy functional J : W 1,H
0 (Ω) → R associated to

problem (1.1) as follows

J(u) =
∫
Ω

1
p(x)

〈A∇u, ∇u〉
p(x)

2 dx +
∫
Ω

ω(x)
q(x)

〈B∇u, ∇u〉
q(x)

2 dx −
∫
Ω

f(x)u dx. (3.2)
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By employing standard arguments, we can ensure that J belongs to C1(W 1,H
0 (Ω);R) and

its derivative in the weak sense is given by〈
J

′(u), ϕ
〉

=
∫
Ω

〈A∇u, ∇u〉
p(x)−2

2 〈A∇u, ∇ϕ〉 dx +
∫
Ω

ω(x) 〈B∇u, ∇u〉
q(x)−2

2 〈B∇u, ∇ϕ〉 dx −
∫
Ω

f(x)ϕ dx,

for all ϕ ∈ W 1,H
0 (Ω). Therefore, the critical points of J precisely correspond to the weak

solutions of problem (1.1). By analyzing (3.2) and taking into account (1.3) and (1.4), it
follows that

J(u) ≥
∫
Ω

λA

p(x)
|∇u|p(x) dx +

∫
Ω

λB

q(x)
ω(x)|∇u|q(x) dx − ‖f‖Lθ(x)(Ω)‖u‖Lp?(x)(Ω),

≥ λA

p+

∫
Ω

|∇u|p(x) dx + λB

q+

∫
Ω

ω(x)|∇u|q(x) dx − C‖f‖Lθ(x)(Ω)‖u‖
W 1,H

0 (Ω),

where C is the Sobolev embedding constant of W 1,H
0 (Ω) ↪→ Lp?(x)(Ω). We mention that

the later inequality is obtained via the use of Hölder inequality with the help of Proposition
(2.7). Then, we have

J(u) ≥ min
{

λA

p+ ,
λB

q+

}∫
Ω

(
|∇u|p(x) + ω(x)|∇u|q(x)

)
dx − C‖f‖Lθ(x)(Ω)‖u‖

W 1,H
0 (Ω). (3.3)

By taking advantage of (2.5), it results from (3.3) that for any u ∈ W 1,H
0 (Ω) with

‖u‖
W 1,H

0 (Ω) > 1, one has

J(u) ≥ min
{

λA

p+ ,
λB

q+

}
‖u‖p−

W 1,H
0 (Ω)

− C‖f‖Lθ(x)(Ω)‖u‖
W 1,H

0 (Ω). (3.4)

Therefore, inequality (3.4) proves that J is coercive on W 1,H
0 (Ω). But, from the definition

of J, it can see that J is bounded and continuous. In addition, with the help of the
Clarkson’s type inequality (see p. 449 of [4]), it indicates that for all r, s ≥ 2 and for all
ξ1, ξ2 ∈ RN , one has

〈Aξ1, ξ1〉
r
2 + 〈Aξ2, ξ2〉

r
2

2
≥
〈

A

(
ξ1 + ξ2

2

)
,
ξ1 + ξ2

2

〉 r
2

+
〈

A

(
ξ1 − ξ2

2

)
,
ξ1 − ξ2

2

〉 r
2

, (3.5)

〈Bξ1, ξ1〉
s
2 + 〈Bξ2, ξ2〉

s
2

2
≥
〈

B

(
ξ1 + ξ2

2

)
,
ξ1 + ξ2

2

〉 s
2

+
〈

B

(
ξ1 − ξ2

2

)
,
ξ1 − ξ2

2

〉 s
2

. (3.6)

The estimates (3.5) and (3.6) illustrates that J is convex and therefore weakly lower semi-
continuous. Consequently, through the application of classical critical point theory, we
establish the existence of u ∈ W 1,H

0 (Ω) as a minimizer of J. This, in turn, implies that u
constitutes a weak solution to problem (1.1). Furthermore, the strict convexity property
of J allows us to affirm the uniqueness of u. This completes the proof of Theorem 3.2. □

Now, let us comeback to study the existence of solutions to (1.1) when the source term
is nonlinear. To this end, we shall assume that there are two nonnegative constants C1
and C2 such that

|f(x, r)| ≤ C1 + C2|r|δ−1, (3.7)

for a.e x ∈ Ω and for all r ∈ R, where 1 ≤ δ < p−. We have the following existence result.

Theorem 3.3. Assuming that (1.2), (1.3), (1.4), (2.7) and (3.7) are satisfied. Then,
problem (1.1) has a weak solution u in the sense of Definition 3.1.
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Proof. We consider the energy functional K : W 1,H
0 (Ω) → R associated to problem (1.1)

as follows

K(u) =
∫
Ω

1
p(x)

〈A∇u, ∇u〉
p(x)

2 dx +
∫
Ω

ω(x)
q(x)

〈B∇u, ∇u〉
q(x)

2 dx −
∫
Ω

F (x, u) dx, (3.8)

where F (x, r) =
r∫

0

f(x, s) ds. From (3.7), we can see that

|F (x, r)| ≤ C
(
1 + |r|δ

)
, (3.9)

for a.e x ∈ Ω and for all r ∈ R. Furthermore, by setting Ψ(u) =
∫
Ω

F (x, u) dx, it follows

that Ψ′ : W 1,H
0 (Ω) →

(
W 1,H

0 (Ω)
)∗

is completely continuous, which means that if (un) ⇀ u

in W 1,H
0 (Ω), then Ψ(un) → Ψ(u). Consequently, the functional Ψ is weakly continuous. It

is obvious that K belongs to C1(W 1,H
0 (Ω);R). Hence, the weak solutions of (1.1) corre-

spond precisely to the critical points of K. Analyzing (3.8) while considering (1.3), (1.4)
and (3.9), we can deduce that

K(u) ≥ min
{

λA

p+ ,
λB

q+

}∫
Ω

(
|∇u|p(x) + ω(x)|∇u|q(x)

)
dx − C

∫
Ω

|u|δ dx − C3

≥ min
{

λA

p+ ,
λB

q+

}∫
Ω

(
|∇u|p(x) + ω(x)|∇u|q(x)

)
dx − C4‖u‖δ

W 1,H
0 (Ω) − C3.

(3.10)

The latter inequality is derived through the use of Proposition (2.7). Employing (2.5),
it follows from (3.10) that for any u ∈ W 1,H

0 (Ω) with ‖u‖
W 1,H

0 (Ω) > 1, the following
relationship holds:

K(u) ≥ min
{

λA

p+ ,
λB

q+

}
‖u‖p−

W 1,H
0 (Ω)

− C4‖u‖δ
W 1,H

0 (Ω) − C3.

The fact that 1 ≤ δ < p− enables us to establish that

K(u) → +∞ as ‖u‖
W 1,H

0 (Ω) → +∞.

Thus, J is coercive on W 1,H
0 (Ω). As K is weakly lower semicontinuous, we conclude that

K possesses a minimum point, denoted as u in W 1,H
0 (Ω). In consequence, we infer that u

is a weak solution to (1.1). This completes the proof. □
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