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Abstract. Let F denote the free Leibniz algebra, which is generated by the
set X = {x1, ..., xn} over the field K with characteristic 0. Let R be an ideal

of F . This investigation begins by obtaining a specific matrix representation
for the IA-automorphisms of the Leibniz algebra F/R′. Following this, we

establish a necessary condition for an IA-endomorphism of F/R′ to qualify as

an IA-automorphism. This method is explicitly based on Dieudonné determi-
nant.

1. Introduction

Consider the Leibniz algebra F , the free algebra of finite rank n over a field K.
Let R be an ideal of F , and denote by R′ the commutator subalgebra of R. The
Leibniz algebra F/R′ of rank n is defined in the usual way.

In their work [2], Bahturin and Nabiev established an explicit matrix represen-
tation for automorphisms of a Lie algebra L/R′ that are congruent modulo R/R′,
where L is a free Lie algebra of rank n and R is an ideal of L. Shpilrain, in [9], pro-
vided a necessary condition for the invertibility of a matrix over the integral group
ring of a free group, utilizing a non-commutative determinant. Initially given for
free Lie algebras in [3], this condition was based on a non-commutative determinant.

Furthermore, in [14], the author and Ekici gave a criterion grounded in the
Dieudonné determinant with some applications. Recently, [11] addressed the com-
putation of valuations of Dieudonné determinants of matrices over discrete valuation
skew fields, exploring two applications stemming from this problem.

Leibniz algebras, serving as potential non-(anti)commutative extensions of Lie
algebras, were thoroughly examined in terms of homological algebra by Loday and
Pirashvili in [7]. Numerous findings in Leibniz algebras highlight their close re-
lationship with Lie algebras, prompting attempts to extend specific combinatorial
results from varieties of Lie algebras to their Leibniz counterparts.
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In [8], Mikhalev and Umirbaev derived significant results regarding subalgebras
of free Leibniz algebras. The author investigated the automorphisms of free Leibniz
algebras with rank two in the work documented in [12]. Additionally, Papistas and
Drensky, in their work [5] in 2005, examined automorphisms within the domain of
a free left nilpotent Leibniz algebra with finite rank. Meanwhile, free metabelian
Leibniz algebras were characterized in the reference [6].

On another note, explicit matrix forms for IA-automorphisms of free metabelian
Leibniz algebras were established for rank 3 in [15] and for rank n in [16]. A recent
study by the author in [13] contributed a necessary and sufficient condition for a
set of n elements in F/R′ to function as a generating set.

This study initially derives a matrix representation for the IA-automorphisms
of the Leibniz algebra F/R′, employing similar techniques as presented in [?].
Subsequently, we provide a necessary condition for the invertibility of a matrix
belonging to UL(F/R′). This condition establishes a means for identifying non-
automorphisms within the Leibniz algebra F/R′. Notably, our approach is ex-
plicitly grounded in a non-commutative determinant: the Dieudonné determinant.
Furthermore, we present several applications of this methodology.

2. Preliminaries

Loday and Pirashvili described free Leibniz algebras in [7]. Consider the Leibniz
algebra F generated freely by a set {x1, ..., xn} over a field K of characteristic 0.
Let Ann(F ) represent the ideal of F generated by elements {[x, x] : x ∈ F}. The
algebra FLie = F/Ann(F ) is identified as a Lie algebra. The notation Aut(F ) refers
to the automorphism group of F , while IAut(F ) designates the IA-automorphisms
of F . These automorphisms induce the identity mapping on the quotient algebra
F/F ′, where F ′ is the commutator ideal of F . Let R be a subalgebra of F , and
designate R′ as the derived subalgebra of R. The paper [7] introduces the univer-
sal enveloping algebra for the Leibniz algebra F. Denote by UL(F ), the universal
enveloping algebra of F , i.e., the free associative algebra with the generating set
{r1, ..., rn, l1, ..., ln}, where li = lxi

and ri = rxi
the universal operators of left and

right multiplication on xi. These elements satisfy the following relations

(rxi + lxi)lxj = 0

Denoted by ∆, the kernel of the homomorphism ε : UL(F ) → K defined by ε(rxi
) =

0, ε(lxi) = 0 for i = 1, 2, ..., n, that is augmentation ideal of UL(F ). That is also
an UL(F )-module generated by rxi , lxi , where i = 1, 2, ..., n. We represent the mth
associative power of ∆ as ∆m. Denoted by ∆R, the ideal of UL(F ) is defined as
the kernel of the natural homomorphism σR : UL(F ) → UL(F/R).

Let â represent the image of a ∈ F/R under the natural homomorphism F/R→
(F/R)Lie. Utilizing this homomorphism, we establish the mappinĝ: UL(F/R) → U((F/R)Lie)

where U((F/R)Lie) denotes the universal enveloping algebra of (F/R)Lie. Through-
out the subsequent discussion, we define the Lie algebra (F/R)Lie alongside its

corresponding subalgebra in U((F/R)Lie). This results in r̂x = x̂ and l̂x = −x̂. It
is evident that the kernel of the homomorphism̂is generated by rx + lx, x ∈ F/R.
This kernel is denoted as ∆Ann(F/R). According to the reference [7], the mapping

δ : U((F/R)Lie) → UL(F/R)
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is defined as δ(x̂) = rx. Notably, due to the equality δ̂(x̂) = r̂x = x̂, we establish
the identification of the algebra U((F/R)Lie) with its corresponding subalgebra in
UL(F/R).

3. Automorphisms of F/R′

Consider the abelian Leibniz algebra R/R′ that is freely generated by a set
{a1, a2, . . . , an} as a free K-module. Let F/R be a Leibniz algebra over K, func-
tioning as a free K-module. The wreath product of Leibniz algebras R/R′ and
F/R is defined in a standard manner, akin to the case of Lie algebras [10]. Denoted
as W = (R/R′)wr(F/R), it takes the form W = F/R ⊕ IR/R′ , where it is the
semidirect sum of F/R and the free F/R-module IR/R′ with the free generating
set {a1, a2, . . . , an}. Furthermore, R/R′ is not only a module on F/R but also a
UL(F/R)-module, where the module action is given by

u ∗ rv = [u, v]

u ∗ lv = [v, u]

for u ∈ R/R′, v ∈ F/R and rv, lv ∈ UL(F/R). Let x represent x+R′ ∈ F/R′, and
x denote x+R ∈ F/R.

The proof of the following theorem is identical to the one presented in the case
of Lie algebras, as detailed in [10].

Theorem 3.1. The mapping xj −→ xj + aj , j ∈ {1, 2, ..., n} extends to a
monomorphism µ : F/R′ −→ (R/R′)wr(F/R).

Let AutW represent the automorphism group of W . Consider a subgroup of
AutW denoted as AutW . The elements of AutW are characterized by their in-
variance of IR/R′ and F/R. In other words, if α ∈ AutW , then the automorphism
α :W →W satisfies α(IR/R′) ⊂ IR/R′ and α(F/R) ⊂ F/R.

The subsequent theorem analogies the embedding concept in Lie algebras, ini-
tially established by Bahturin and Nabiyev in [?]. The same arguments are em-
ployed to prove this theorem in the case of Leibniz algebras.

Theorem 3.2. An embedding denoted by ϑ : Aut(F/R′) → Aut((R/R′)wr(F/R))

exists, such that if α ∈ Aut(F/R′) preserves R/R′, and α̃ = ϑ(α), then α̃µ = µα,
where µ represents the embedding defined in Theorem 1.

The proof of the theorem at hand mirrors the demonstration employed by Bah-
turin and Nabiyev in establishing their result for Lie Algebras [?]. The author and
Tas Adiyaman have already given similar proofs in [15, 16] to obtain the explicit
matrix form of IA-automorphisms of the free metabelian Leibniz algebras, and the
theorem is a generalization of the corresponding result in [16].

Theorem 3.3. Let F/R′ be a Leibniz algebra of finite rank. Let G be the group
of invertible matrices of the form E + AQ, where E is the identity matrix, A =
[akj ]n×m is a fix matrix, Q = [qji]m×n is an arbitrary matrix both with coefficients

in UL(F/R), 1 ≤ i, k ≤ n, 1 ≤ j ≤ m. Then IAut(F/R′) ∼= G.
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4. The Dieudonné Determinant

Every invertible square matrix belonging to U((F/R)Lie) can be expressed as
a multiplication of elementary and diagonal matrices, as detailed in [3]. In this
context, elementary matrices differ from the identity matrix by, at most, a single
element outside the diagonal. Consider an algebra

(UL(F )/∆R)/(∆
m/∆R),m ≥ 2.

Denote by Hm the image of this algebra under the homomorphism ̂ and take the
multiplicative group H∗

m of all invertible elements of Hm. Since

(a+u+∆̂R)(a
−1−a−2u+. . .+(−1)m−1a−mum−1+∆̂R) = 1+∆̂R modulo ∆̂m/∆R,

we have

(a+ u+ ∆̂R)
−1 = a−1 − a−2u+ ...+ (−1)m−1a−mum−1 + ∆̂R modulo ∆̂m/∆R.

Therefore, the invertible elements in Hm can be expressed as

a+ u+ ∆̂R + ∆̂m/∆R

with u ∈ ∆̂ and 0 ̸= a ∈ K. Next, consider the commutator subgroup [H∗
m, H

∗
m]

within the group H∗
m. This subgroup is generated, modulo ∆̂m/∆R, by elements

characterized by the following expression

(1− u+ ∆̂R)(1− w + ∆̂R)(1− u+ ∆̂R)
−1(1− w + ∆̂R)

−1

Here, u and w belong to the set ∆. Let Sm be the subsemigroup of ̂UL(F )/∆R

generated by all such elements. For a matrix A belonging to the general linear
group GLn(Hm) over Hm, its Dieudonné determinant is defined by exploiting the
property that every invertible matrix over Hm can be diagonalized. For any arbi-
trary permutation σ ∈ Sn, we link it with the permutation matrix P (σ) = (δi,σ(j)),
where δ represents the Kronecker symbol.

For every invertible matrix A over a skew field, a decomposition A can be ex-
pressed as A = TDP (σ)V known as the Bruhat Normal Form, where

T =

 1 ∗ ∗
... ∗

0 1

 , D = diag(a1, ..., an), V =

 1 . 0
∗ .. .
∗ ∗ 1

 ,
σ is a permutation, P (σ) is the permutation matrix corresponding to σ. The
matrices D and σ are unique with these properties (refer to [4]). The Dieudonné
determinant of A is given by

Dm(A) = π(sgn(σ)a1...an),

where π is the canonical mapping H∗
m → H∗

m/ [H
∗
m, H

∗
m].

Theorem 4.1. Consider R as an ideal and F/R′ as a finitely generated Leibniz al-

gebra. Let M ∈ GLn(UL(F )/∆R) and detm(M) represent any preimage of Dm(M̂)
in UL(F )/∆R, where ∆R ⊂ ∆m for m ≥ 2. Then, for any arbitrary m,

detm(M) = (a+ ru)rgm modulo (∆m/∆R +∆Ann(F/R))

where a ∈ K \ {0}, u ∈ ∆̂R, gm ∈ Sm.
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Proof. Let M ∈ GLn(UL(F )/∆R). Since M is invertible over U(F )/∆R, then

M̂ , the image of M under the homomorphism̂: UL(F/R) → U((F/R)Lie), is an

invertible matrix over ̂UL(F )/∆R and it can be written as M̂ = E.D, where E is
the product of elementary matrices and

D = diag(a1 + ∆̂R, a2 + ∆̂R, ..., an + ∆̂R)

where 0 ̸= ai ∈ K by [14]. Given that the sole invertible elements within U(FLie)

are the elements belonging to the fieldK, the invertible elements within ̂UL(F )/∆R

can be expressed as

a1 + ∆̂R, a2 + ∆̂R, . . . , an + ∆̂R

where the elements a1, . . . , an are constrained to lie within the field K. Consider

the algebra Hm = ( ̂UL(F )/∆R)/(∆̂m/∆R). The image of M̂ over Hm remains

invertible. Consequently, the Dieudonné determinant of M̂ can be expressed as
follows

Dm(M̂) = a1.a2...an + ∆̂R + ( ̂∆m/∆R).

This representation implies that the Dieudonné determinant of M̂ can be further

written as a + u + w, where a = a1 · a2 . . . an ∈ K, u ∈ ∆̂R, and w ∈ ∆̂m/∆R.

Consider the algebra Hm = ( ̂UL(F )/∆R)/( ̂∆m/∆R). The image of M̂ over Hm is

also invertible. Therefore, the Dieudonné determinant of M̂ takes the form

Dm(M̂) = a1.a2...an + ∆̂R + ( ̂∆m/∆R).

This implies that the Dieudonné determinant of M̂ can be expressed as

a+ u+ w

where a = a1.a2 . . . an ∈ K, u ∈ ∆̂R, w ∈ ∆̂m/∆R. An arbitrary preimage detm(M̂)

of Dm(M̂) in ̂UL(F )/∆R is equal to

(a+ u)gm modulo( ̂∆m/∆R),

where, a = a1.a2...an, u ∈ ∆̂R, gm ∈ Sm. Through the homomorphism δ :
U((F/R)Lie) → UL(F/R) defined as δ(x) = rx, for x ∈ (F/R)Lie, it is clear

that any preimage detm(M) of detm(M̂) in UL(F )/∆R can be expressed as

(a+ ru)rgm modulo (∆m/∆R +∆Ann(F/R)),

where ∆Ann(F/R) is an ideal of UL(F/R) generated by the element rv + lv for
v ∈ F/R. □

Now we have

Theorem 4.2. Let ψ be an element of IAut(F/R′). Consider ψ̃ as the restricted
automorphism of ψ to IR/R′ , as defined in Theorem 3.2. Denote by M the matrix

corresponding to ψ̃, and let detm(M) represent an arbitrary preimage of Dm(M̂)
in UL(F )/∆R. It holds

detm(M) = (1 + ru)rgm mod (∆m/∆R +∆Ann(F/R))

where u ∈ ∆̂R and gm ∈ Sm for any m ≥ 2.
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Proof. Given an IA-automorphism ψ of F/R′. By the equality µψ = ψ̃µ from

Theorem 3.2 and the definition of the AutW , there exists an automorphism ψ̃
restricted to IR/R′ with an invertible corresponding matrix M over UL(F )/∆R.
Through the homomorphism

̂: UL(F/R) → U((F/R)Lie),

M̂ is also invertible over ̂UL(F )/∆R, expressed as

M̂ = E.D,

where E is the product of elementary matrices and D = diag(1+∆̂R, 1+∆̂R, ..., 1+

∆̂R). Consequently, this implies

Dm(M̂) = (1 + u)gm modulo ∆̂m/∆R

where, u ∈ ∆̂R and gm ∈ Sm. Thus, according to Theorem 4.1, the arbitrary
preimage of detm(M) in UL(F )/∆R is given by

(1 + ru)rgm modulo (∆m/∆R +∆Ann(F/R)).

□

Remark 4.3. Theorem 4.2 establishes a necessary condition for an IA-endomorphism
of F/R′ to qualify as an IA−automorphism. This condition provides a means to
identify the non-invertibility of a square matrix M over UL(F )/∆R. The process
involves computing detm(M), initiating from m = 1, and proceeding until the
condition outlined in the Theorem 4.2 is contradicted.

Example 4.4. Let R = γm(F ), m-th term of the lower central series of F , for
m ≥ 4 and ψ be the endomorphism of F/γm(F )′ defined as

ψ : x1 → x1 + [x1, x2] + [[x1, [x2, x3]], x4]

xi → xi + wi, i ̸= 1

where wi ∈ γm(F ). Through the verification of Theorem 3.3, it is determined that

the restriction of ψ̃ to IR/R′ is associated with the matrix M of the form
1 + rx2

rx1
+ rx3

lx1
rx4

lx2
.lx1

.rx4
... 0

u21 1 + u22 u23 ... u2n
u31 u32 1 + u33 ... u3n
. . . ... .
un1 un2 un3 ... 1 + unn


where uij ∈ ∆3. Let M be invertible in UL(F )/∆γm(F ). Then, M̂ is also invertible
and which is of the form

1 + x2 x1 − x3x1x4 x2x1x4 ... 0
û21 1 + û22 û23 ... û2n
û31 û32 1 + û33 ... û3n
. . . ... .
ûn1 ûn2 ûn3 ... 1 + ûnn

 .
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Since ∆γm(F ) ⊂ ∆3 for m ≥ 4, consider H3 = ̂U(F )/∆γm(F )/ ̂∆3/∆γm(F ). The

image of elements of M̂ in H3 determines
1 + x2 x1 0 ... 0

0 1 0 ... 0
0 0 1 ... 0
. . . ... .
0 0 0 ... 1

 .
Then, we obtain

D3(M̂) = 1 + x2 modulo (∆̂γm(F ) + ̂∆3/∆γm(F )).

Therefore,

det3(M) = 1 + rx2
+∆γm(F ) +∆3/∆

γm(F )
+∆Ann(F/R).

By Theorem 4.2,

1+rx2
+∆γm(F )+∆3/∆

γm(F )
+∆Ann(F/R) = 1+∆γm(F )+∆3/∆

γm(F )
+∆Ann(F/R).

Hence, it follows that rx2
∈ ∆γm(F ) +∆3/∆

γm(F )
+∆Ann(F/R). This is impossible,

thus, ψ̃ cannot be an automorphism.

Example 4.5. Let R = F ′, and consider the endomorphism ψ on F/R′ defined by
the following mappings

ψ : x1 → x1 + [[x1, x2] , x3] + w1,

xi → xi + wi, i ̸= 1.

where wi ∈ F ′′, i = 1, · · · , n. The associated matrix M is given in the form
1 + rx2

rx3
+ u11 lx1

rx3
+ u12 u13 .. u1n

u21 1 + u22 u23 ... u2n
u31 u32 1 + u33 ... u3n
. . . ... .
un1 un2 un3 ... 1 + unn

 ,
where wij ∈ ∆3. Let M be invertible in UL(F )/∆F ′′ . Hence, M̂ is

1 + x2x3 + û11 −x1x3 + û12 û13 ... û1n
û21 1 + û22 û23 ... û2n
û31 û32 1 + û33 ... û3n
. . . ... .
ûn1 ûn2 ûn3 ... 1 + ûnn


Since, ∆F ′′ ⊂ ∆3, take H3 = ̂UL(F )/∆

F ′′ /∆̂3/∆
F ′′ . M̂ in H3 is

1 + x2x3 −x1x3 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
. . . ... .
0 0 0 ... 1

 .
Then, we obtain

det3(M) = 1 + rx2
rx3

+∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R).
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By Theorem 4.2

1 + rx2
rx3

+∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R) = 1 +∆
F ′′ +∆3/∆

F ′′ +∆Ann(F/R).

This yields rx2
rx3

∈ ∆
F ′′ + ∆3/∆

F ′′ + ∆Ann(F/R). However, this is impossible.

Thus, ψ̃ and ψ are not automorphisms.

Example 4.6. Given an endomorphism ψ of F/F ′′ defined as

ψ : x1 → x1 + [[x2, x2] + [x2, x1] , x1]

xi → xi + [xi, xi] + [xi, x1], i ̸= 1

Its associated matrix M is
1 + lx2

rx1
(rx2

+ lx2
)rx1

0 ... 0
0 1 + rx2

+ lx2
+ rx1

0 ... 0
0 0 1 + rx3

+ lx3
+ rx1

... 0
. . . ... .
0 0 0 ... 1 + rxn

+ lxn
+ rx1


Then, M̂ is 

1− x2x1 0 0 ... 0
0 1 + x1 0 ... 0
0 0 1 + x1 ... 0
. . . ... .
0 0 0 ... 1 + x1


Since, ∆F ′′ ⊂ ∆2, consider H2 = ̂U(F )/∆

F ′′ /∆̂2/∆
F ′′ . M̂ in H2 is

1 0 0 ... 0
0 1 + x1 0 ... 0
0 0 1 + x1 .. 0
. . . ... .
0 0 0 ... 1 + x1


Then,

D3(M̂) = 1 + n.x1 + ...+ (x1)
nmodulo (∆̂

F ′′ + ∆̂2/∆
F ′′ ).

Hence, we obtain

det2(M) = 1 + nrx1
+ ...+ (rx1

)n +∆
F ′′ +∆2/∆

F ′′ +∆Ann(F/R).

By Theorem 4.2, we can express the equation as follows

1+nrx1
+...+(rx1

)n+∆
F ′′+∆2/∆

F ′′+∆Ann(F/R) = 1+∆
F ′′+∆2/∆

F ′′+∆Ann(F/R).

This yields nrx1
+ ... + (rx1

)n ∈ ∆
F ′′ + ∆2/∆

F ′′ + ∆Ann(F/R) and consequently,

nrx1
∈ ∆

F ′′ +∆2/∆
F ′′ +∆Ann(F/R). However, this is impossible. Therefore, ψ is

not an automorphism.

Conclusion

This study initially derives a matrix representation of the IA-automorphisms
on the Leibniz algebra F/R′. Following this, we set forth a prerequisite for an
IA-endomorphism of F/R′ to qualify as an IA-automorphism. In this criterion, we
identify the non-invertibility of a square matrixM over UL(F )/∆R. This approach
explicitly relies on the Dieudonn’e determinant.
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[15] T. Taş Adıyaman, Z. Özkurt, Automorphisms of free metabelian Leibniz algebras of rank
three, Turkish J. Math., Vol.43, No. 5, pp.2262–2274 (2019).
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