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ON THE FAMILY OF METRICS FOR SOME PLATONIC AND
ARCHIMEDEAN POLYHEDRA

OZCAN GELISGEN AND ZEYNEP CAN

ABSTRACT. Convexity is an important property in mathematics and geometry.
In geometry convexity is simply defined as; if every points of a line segment
that connects any two points of the set are in the set then this set is convex. A
polyhedra, when it is convex, is an extremely important solid in 3-dimensional
analytical space. Polyhedra have interesting symmetries. Therefore they have
attracted the attention of scientists and artists from past to present. Thus
polyhedra are discussed in a lot of scientific and artistic works. There are
many relationships between metrics and polyhedra. Some of them are given
in previous studies. For example, in [7] the authors have shown that the unit
sphere of Chinese Checkers 3-space is the deltoidal icositetrahedron. In this
study, we introduce a family of metrics, and show that the spheres of the 3-
dimensional analytical space furnished by these metrics are some well-known
polyhedra.

1. INTRODUCTION

A polyhedron is a geometric solid bounded by polygons. Polygons form the faces
of the solid; an edge of the solid is the intersection of two polygons, and a vertex of
the solid is a point where three or more edges intersect. If all faces of a polyhedron
are identical regular polygons and at every vertex same number of faces meet then
it is called a regular polyhedron. A polyhedron is called semi-regular if all its faces
are regular polygons and all its vertices are equal.

Polyhedra have very interesting symmetries. Therefore they have attracted the
attention of scientists and artists from past to present. Thus mathematicians,
geometers, physicists, chemists, artists have studied and continue to study on poly-
hedra. Consequently, polyhedra take place in many studies with respect to different
fields. As it is stated in [3] and [6], polyhedra have been used for explaining the
world around us in philosophical and scientific way. There are only five regular con-
vex polyhedra known as the platonic solids. These regular polyhedra were known by
the Ancient Greeks. They are generally known as the ”Platonic” or ”cosmic” solids
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because Plato mentioned them in his dialogue Timeous, where each is associated
with one of the five elements - the cube with earth, the icosahedron with water, the
octahedron with air, the tetrahedron with fire and the dodecahedron with universe
( or with ether, the material of the heavens). The story of the rediscovery of the
Archimedean polyhedra during the Renaissance is not that of the recovery of a ’lost’
classical text. Rather, it concerns the rediscovery of actual mathematics, and there
is a large component of human muddle in what with hindsight might have been
a purely rational process. The pattern of publication indicates very clearly that
we do not have a logical progress in which each subsequent text contains all the
Archimedean solids found by its author’s predecessors. In fact, as far as we know,
there was no classical text recovered by Archimedes. The Archimedean solids have
that name because in his Collection, Pappus stated that Archimedes had discovered
thirteen solids whose faces were regular polygons of more than one kind. Pappus
then listed the numbers and types of faces of each solid. Some of these polyhedra
have been discovered many times. According to Heron, the third solid on Pap-
pus’ list, the cuboctahedron, was known to Plato. During the Renaissance, and
especially after the introduction of perspective into art, painters and craftsmen
made pictures of platonic solids. To vary their designs they sliced off the corners
and edges of these solids, naturally producing some of the Archimedean solids as a
result.For more detailed knowledge, see [3] and [6].

The dual polyhedra of the Archimedean solids are called Catalan solids, and they
are exactly thirteen just like Archimedean solids. Platonic solids are regular and
convex polyhedra and Archimedean solids are semi-regular and convex polyhedra.
The Catalan solids are all convex. They are face-transitive when all its faces are
the same but not vertex-transitive. Unlike Platonic solids and Archimedean solids,
the face of Catalan solids are not regular polygons.

As it is stated in [14], Minkowski geometry is a non-Euclidean geometry in a
finite number of dimensions. Here the linear structure is the same as the Euclidean
one but distance is not uniform in all directions. That is, the points, lines and
planes are the same, and the angles are measured in the same way, but the distance
function is different. Thus, instead of the usual sphere in Euclidean space, the
unit ball is a general symmetric convex set. Some mathematicians studied and
improved metric geometry in plane and space. (Some of these are [1, 4, 5, 8, 9, 10]
) According to studies on polyhedra, there are some Minkowski geometries in which
unit spheres of these spaces furnished by some metrics are associated with convex
solids. For example, unit spheres of maximum space and taxicab space are cubes
and octahedrons, respectively, which are Platonic Solids. And unit sphere of CC-
space is a deltoidal icositetrahedron which is a Catalan solid. Therefore, there
are some metrics in which unit spheres of space furnished by them are convex
polyhedra. That is, convex polyhedra are associated with some metrics. When a
metric is given we can find its unit sphere. Naturally a question can be asked; "Is
it possible to find the metric when a convex polyhedron is given?”. In this study,
we introduce a family of metrics and show that spheres of 3-dimensional analytical
space furnished by these metrics are some polyhedra. Then we give relationships
between metrics and some of Platonic and Archimedean solids. Some results for
these relationships are already known from previous studies. But we introduce
three metrics and give three new relationships for cuboctahedron, truncated cube
and truncated octahedron.
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2. ARCHIMEDEAN METRIC

As it is mentioned in introduction, there are some 3-dimensional Minkowski ge-
ometries which have distance function distinct from Euclidean distance and unit
spheres of these geometries are convex polyhedrons. That is, convex polyhedra are
associated with some metrics. When a metric is given, we can find its unit sphere
in related space geometry. This enforce us to the question ” Are there some metrics
whose unit sphere is a convex polyhedron?”. For this goal, firstly, the related poly-
hedra are placed in the 3-dimensional space in such a way that they are symmetric
with respect to the origin. And then the coordinates of vertices are found. Later one
can obtain metric which always supply plane equation related with solid’s surface.
When we started studying on this question, we firstly handled separately convex
polyhedra. But we noticed a relationship between the metrics. Now, we introduce
a family of distances which include Taxicab distance and maximum distance as
special cases in R3.

Definition 2.1. Let u € [0,00) , and Py = (x1,4121), P2 = (x2, Y2, 22) be two points
in R%. The distance function dap : R® x R® — [0,00) Archimedean polyhedral
distance between P; and P» is defined by

dap(Pr, Po)=max {|z1 — x2|, |y1 — v2|, |21 — 22|, u (|x1 — z2| + |y1 — y2| + |21 — 22|) } -

Clearly, there are infinitely many different distance functions in the family of
distance functions defined above, depending on value of u. One can think the def-
inition not to be well-defined since the Archimedean polyhedra distance between
two points can also change according to value of . To remove this confusion, sup-
posing value of u is initially determined and fixed unless otherwise stated. We write
R3 p» = (R3,d4p) for the 3-dimensional analytical space furnished by Archimedean
polyhedral distance defined above.

Since proof is trivial by the definition of maximum function, we give following
lemma without proof which is required to show that each of d4p distances gives a
metric.

Lemma 2.1. Let P, = (z1,y121) and Py = (2,2, 22) be any distinct points in
R3. Then

dap(P1, Py) > |z — x4,
dap(P1, P2) > |y1 — 92|,
dap(P1, Py) > |21 — 2],
dap(Pr, P2) > u(|lzy — x2| + [y1 — ya| + 21 — 22]) .

Theorem 2.1. Every dsp distance determines a metric in R3.

Proof. Let dap : R? x R?® = R is Archimedean polyhedral distance function, and
Pi=(x1,y1,21) , Pa=(x2,y2,22) and Ps=(z3,ys,23) are distinct three points in
R3. We have to show that dsp is positive definite, symmetric, and the triangle
inequality holds for dp.

Absolute value gives always non-negative value and u > 0, then dap(P1, P2) > 0.
Clearly, dap(Py1, P2) = 0 iff P, = P,. So dp is positive definite.

Since |a —b| = |b—a] for all a, b € R, obviously dap(P1, P2) = dap(Ps, P1).
That is, dap is symmetric.

Now, we should prove that dp(Py, P3) < dp(P1, P2) + dp(Ps, P3) for all Py, Py,
P; € R3.
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dp(Py, Ps3)

= max{|ry —x3|,|y1 —y3|, 21 — 23], u (|21 — 23]+ |y1 — y3| + |21 — 23])}

— max |3 — zotx2 — 21, [Ys — Yaty2 — Y1l , |23 — 22+22 — 21],
u(|zs — xotao — 21| +|ys — yoty2 — y1| + |23 — 22+22 — 21|)

|r3 — 22|+ w2 — 21|, |ys — y2| + ly2 — y1, |23 — 22| + |22 — 21|
max

u(|zz — @] + |2 — 21|+ |yz — ya| + |y2 — y1| + |23 — 22| + |22 — 21])
= T

One can easily find that I < dap(P1,Ps) + dap(P2, P;) from Lemma 2.1. So
dap(P1, P3) < dap(P1, Py) + dap(Ps, P3). Consequently, Archimedean polyhedral
distance is a metric in 3-dimensional analytical space. O

According to Archimedean polyhedral metric, distance is one of quantities |z — 2|,
ly1 — ya|, |21 — 22| or u times sum of quantities |x1 — 3|, |y1 — y2|, |21 — 22|. Ge-
ometrically, there are two different paths between two points in R3 . If the line
segment P, P, is out of cones with apex P; and square bases which corner points
are all permutations of the three axis components and all possible +/— sign change
of each axis component of (F1,F(1 — u),0), then

dap (Pr, P2) = u(|x1 — 22| + |y1 — yo| + |21 — 22])

,and the path between P; and P; is union of three line segments which is parallel to
a coordinate axis. Otherwise, the path between P; and P; is a line segment which
is parallel to a coordinate axis. Thus Archimedean polyhedral distance between
P, and P; is u times sum of Euclidean lengths of these three line segments or the
Euclidean length of line segment (See Figure 1).

Figure 1: AP ways from P; to P,

The following proposition gives an equation which relates the Euclidean distance
to the Archimedean polyhedral distance between the points in R3:

Proposition 2.1. Let | be the line through the points Py = (x1,y1,21) and P =
(z2,y2, 22) in the analytical 3-dimensional space and dg denote the Euclidean met-
ric. If 1 has direction vector (p,q,r), then

dap(A, B) = p(AB)de(A, B)

where
max{|p|, |q|, 7] ,u (|p| + |q| + |7])}

/P2 + @2 + 12 )

1(AB) =
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Proof. Equation of I gives us 1 —xa = Ap, y1 — Y2 = A\q, 21 — 22 = Ar, A € R\ {0}.
Thus,

and dg(A, B) = |A| /p? + ¢% + r? which implies the required result. O

The above lemma says that d 4 p-distance along any line is some positive constant
multiple of Euclidean distance along same line. Thus, one can immediately state
the following corollaries:

Corollary 2.1. If P,, P, and X are any three collinear points in R3, then
dE(Pl,X) = dE(PQ,X) Zf and only ifdAp(Pl,X) = dAP(PQ,X) .

Corollary 2.2. If P;, P, and X are any three distinct collinear points in the real
3-dimensional space, then

dap(X,P1) | dap(X,P) = dp(X,P)) | dp(X, Ps) .

That is, the ratios of the Euclidean and d 4 p—distances along a line are the same.

3. SOME RELATIONS ABOUT THE ARCHIMEDEAN POLYHEDRAL DISTANCE AND
POLYHEDRA

The polyhedral metric gives a family of metrics and unit spheres in 3-dimensional
analytical space furnished by Archimedean polyhedral metric which are some poly-
hedra. Of course, polyhedra varies depending on choice of u. Some results of re-
lations between metrics and polyhedra are already known from previous studies.
Here, we especially give three new relations between polyhedra and metrics by using
Archimedean polyhedral metric. Now, according to choice of u, we give five cases
for Archimedean polyhedral metric.

Case 1. Let u > 1. So AP—metric is u times taxicab metric. In particular,
if u = 1, then AP—metric is taxicab metric. In this case the unit sphere is the
octahedron.

1
Case 2. Set u € (0, 3) . Hence, AP—metric is the maximum metric. So the
unit sphere is the hexahedron.

1
Case 3. Let u = =. Then Archimedean polyhedral metric gives a new result.

In this case, the unit sphere is cuboctahedron. So we called cuboctahedron metric
which is defined by

1
dap(Pr, Pp)=max{ler — z2f, ly1 = gol, |21 — 2], 5 (Jon — 22 +[yr = yol +[21 — 22))}-
(see Figure 2a).
11
Case 4. Let u € (3, 2). Then Archimedean polyhedral metric gives a new

result. In particular, if = v/2 — 1, then the unit sphere is truncated cube. So we
called truncated cube metric which is defined by
dap(Pr, P2)

—max{le = 2], |1 — vl |21 = 22, (V21) (J21 = w2l + g1 — gl + |21 — 22])}.
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11 1
For u € <§, 5) case, the unit sphere is like truncated cube. When u — 5 and
u — —, the unit sphere looks like cuboctahedron and cube, respectively. But for

all values of u, unit sphere has 8-triangular faces and 6-octagonal faces (see Figure
2b).

1
Case 5. Let u € (5, 1). Then Archimedean polyhedral metric gives a new

result. In particular, if w = =, then the unit sphere is truncated octahedron. So we

called truncated octahedron metric which is defined by

2
dap(P1, Py)=max{|z1 — x|, |y1 — y2|, |21 — 22/, 3 (Jzr — 22|+ |y1 — 2| + |21 — 22]) }-

1
For u € <§, 1) case, the unit sphere is like truncated octahedron. When v — 1

and u — 2 the unit sphere looks like octahedron and cuboctahedron, respectively.

But for all values of w, unit sphere has 6-square faces and 8-hexagonal faces (see
Figure 2c).

Figure 2a Cuboctahedron Figure 2b Truncated cube Figure 2¢ Truncated octahedron

One can observe that the Archimedean metric has two parts, one is
max{|z1 — x2|,|y1 — Y2/, |21 — 22|} and the otheris u (|1 — x2| + |y1 — y2| + |21 — 22]) .
In fact, max{|z1 — z2|,|y1 — y2|, |21 — 22|} and w (|x1 — 22| + |y1 — ya2| + |21 — 22|)
indicate the hexahedron and the octahedron, respectively. Thus sphere of Archimedean
polyhedral metric is intersection of hexahedron and octahedron. The cases which
defined above are explicated by this way.

One can take dap(O,P) = r. then gets max{|x1 — z2|,|y1 — Y2, |21 — 22|}=r
and u (|x1 — 22| + |y1 — y2| + |21 — 22|) = r. That is, these are the cube with ver-
tices such that all permutations of (Fr, Fr, Fr) and the octahedron with vertices

r

such that all permutations of ( F—,0,0 ), respectively. The faces of the cube are on

the planes with equations |z| = r, |y| = r and |z| = r, and the faces of octahedron
r

are on the planes with equations |z| + |y| + |z| = —. The intersection of the faces of

the cube and the octahedron are found by solving the systems of linear equations

T 'S T
{|x|+|y|+|z|:— {|m|+|y|+|z|=— {|x|+y|+|z|:—
u ) u I} u

|z =r lyl =r |2l =
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r
For example, we handle the system of equations { :x: +lyl el = u . Since
x| =r
|z|=r, it is obtained that |y| + |z| = L 7. The solution is the taxicab circles
u

1
with the center (Fr,0,0) and radius T ron planes |z| = r. If u € [2, 1} , then
u
the circle is completely on face of the cube. Thus intersection consist of squares

11
and hexagons. If u € <3, 2) , then the circle is not completely on face of the cube.

Therefore intersection consist of triangles and octagons. If w = —, then intersection

consist of squares and triangles. Figure 3a,3b,3c illustrate these cases.

YR KV

Figure 3a Figure 3b Figure 3c 3

Now, we can give some new results:

The truncated cube, or truncated hexahedron, is an Archimedean solid. It has
14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices (See [16]).

The cuboctahedron is an archimedean solid with eight triangular faces and six
square faces. It has 12 identical vertices, with two triangles and two squares meeting
at each, and 24 identical edges, each separating a triangle from a square (See [15]).

The truncated octahedron is an archimedean solid which has 14 faces (8 regular
hexagonal and 6 square), 36 edges, and 24 vertices. Since each of its faces has point
symmetry the truncated octahedron is a zonohedron (See [17]).

The following corollaries are direct consequences of Proposition 2.1, Corollary
2.1 and Corollary 2.2

Corollary 3.1. The equations of cuboctahedron, truncated cube and truncated oc-
tahedron with center C = (xo, Yo, 20) and radius v are

1

max |$—$0|7|y—y0|7|2—20|a§(|=’U—$o|+|y—yo\+|2—zo|) =T

max { |z — wol |y = vol 12 = 20, (V2= 1) (o = wol +ly = ol +|z = 20D} =
2

max |x—x0|,|y—y0|,|z—zo|,§(|x—xo|+|y—y0\+|z—zo|) = r

,respectively. The the cuboctahedron, truncated cube and the truncated octahedron
have 14- regqular faces with vertices such that all permutations of the three axis com-
ponents and all possible + /- sign changes of each axis component of (1"7 T, (\@ — 1) 1") ,
(r,r,0) and (r/2,7,0), respectively (See Figure 4a,4b,4c).
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Figure 4a Figure 4b Figure 4c

Lemma 3.1. Let | be the line through the points P, = (x1,y121) and Py =
(z2,Yy2, 22) in the analytical 3—dimensional space and dg, drc, dco and dro de-
note the Euclidean metric, the truncated metric, the cuboctahedron metric and the
truncated metric respectively. If 1 has direction vector (p,q,r), then

1
max 4 |p|,1ql,|"|,5 (p| +1q| +|T
doo PPy = mdleblalirl g (el +lal #1D} - gy

/p2+q2+7-2
max {|pl, |ql, |r|, (V2 —1) (Ip] +lq| +|7])}
/p2_~_q2+,r2
2
max 4 |p|,lql,|r|, 5 Up| +1q| +|T
dro (P Py) = {Ipl,lal,Irl. 3 (Ipl +q| I\)}dE(PhPQ).

/p2 +q2 +7’2

Corollary 3.2. If P,, P, and X are any three collinear points in R3, then

drc (P, P>) dg (P1, P»)

dg (P1,X) = dg (P, X) if and only if doo (P1,X) = dco (P2, X)
dE (Pl,X) = dE (PQ,X) ’Lf and only ’ideC (P1,X) ZdTC (PQ,X)
dE (Pl,X> = dE(PQ,X) zfcmd only ’LdeO (Pl,X):dTO <P2,X>.

Corollary 3.3. If Pi, P> and X are any distinct collinear points in R3, then
dg (P, X) _doo (P, X) _ drc (P, X) _ dro (P, X)
dp (P2, X)  dco (Pe, X)  dro(Pe, X)  dro (Pe, X))

That is, the ratios of the Euclidean, the cuboctahedron, the truncated cube and
the truncated octahedron distances along a line are the same.
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