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Abstract

Within this manuscript, we introduce an innovative subclass of multivalent harmonic func-
tions, encompassing higher-order derivatives within the confines of an open unit disk. Our
investigation extends to the analysis of coefficient bounds, growth estimates, starlikeness,
and convexity radii uniquely associated with this particular class. Furthermore, we scru-
tinize the property of closure under convolution operations for this subclass.
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1. Introduction

The exploration and analysis of complex-valued harmonic functions within the open
unit disk [E constitute the fundamental basis of this investigation, denoted as H. These
functions, expressed as f = u+1v, where u represents the analytic component and v denotes
its co-analytic counterpart, play an integral role in examining local univalent and sense-
preserving properties within . The critical condition ensuring such properties is the
inequality |0'(z)| < |u/(z)|, applicable to all z € E (see [4]).

A more focused examination is directed towards a specific subset of functions within
H, denoted as H,,. This subset encompasses functions of the form

o0 o0
f(z) =u(z)+0(z) =2"4+ > um™+ D vm2™ (1.1)
m=n+1 m=n+1

where 7 is a positive integer. These functions manifest harmonic behavior within the open
unit disk E. Further refinement leads to the definition of the subclass 8J(,, comprising
functions within 3, possessing the property of being sense-preserving and n-valent in E.
Functions in 8}, are denoted as n-valently harmonic functions in E. Notably, the class
8H; = SHY, consisting of sense-preserving and harmonic univalent functions. When v(2)
is identically zero, H; contracts to class A. Additionally, the subclasses 8} and X, are
introduced, representing functions within J, that are mapped onto starlike and convex
domains in [E, respectively.
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Al-Refai [3] delved into the subclass R, (p, ¢,7; &) for some v (v < nl[p+ (n—&)g+ (n—

H—&—1)(¢—p)/2]/(n— &Y and £ = 0,1,...,n, where n + 1 — { + 2p/(¢ —p) > O or
p =g =1 and z € E. This subclass consists of analytic functions

oo
u(z) = 2"+ Z Uz
m=n+1

Re {pu(é)(z) N qu(§+1)(z) N <q _p) u(£+2)(2)} -

such that

=€ 2n—&-1 2 2n—E§—2

The class of multivalent harmonic functions that will now be discussed is the main
subject of this paper:

Definition 1.1. The set RH,(p, q,7;&) is defined as the collection of functions f = u+v €
H,, that adhere to the following inequality:

u®(z) uED(2) q—p\ uétd(z)
Re{p g +q g +( 5 ) g - (1.2)
©) (&+1) - (£+2)
0@, o) (152)° (2)

n—¢€ n—€-1 2 on—E&—2

for some v (where v < nl[p+(n—&§)g+(n—&)(n—E§—1)(g—p)/2]/(n—E!) and £ = 0,1, ..., 7,
with conditions n+1—&+2p/(¢—p) >0orp=¢g=1and z € E.

Remark 1.2. In the case where n = 1 and & = 1, the class RH1(p,q,7;1) = RH(p, q,7)
is defined as follows:

Re |pw/'(2) + qz2u”(2) + (q;p) 20" (2) — 7} > ‘pn’(z) +qz0"(2) + <qu> 220" (2)

where 0 < v < p < ¢. This class has been investigated by Cakmak et al. (see [5]).
Moreover, for p = ¢, we obtain the class R, (p,p,7;€) = Ay(p,p,7;€) studied by Owa et
al [11], the class RH,(p,p,v;&) = GHy(p, p,7;&) studied by Oros et al. [10], the class
R1(1,A,0;0) = RY(A, 2-1) studied by Rosihan et al. [12], and the class RH; (1, A, 0;0) =
RH%(/\, 271) studied by Yasar et al. [14].

The primary objective of this comprehensive study is to systematically introduce a
distinctive category of harmonic multivalent functions, distinguished by a higher-degree
differential inequality, and thoroughly scrutinize the specific geometric properties inher-
ently embedded within this novel class. In the second section of this meticulously crafted
research, our focus shifts toward the derivation of rigorous coefficient bounds, meticulous
growth estimates, and the determination of indispensable conditions for coefficients to
rightfully belong to this distinguished class. Subsequently, the third section is intricately
dedicated to the meticulous calculation and acquisition of the radii of starlikeness and con-
vexity pertinent to this unique class of harmonic multivalent functions. Finally, the fourth
section delves into establishing the closure properties of this exceptional class under the
transformative actions of convex combinations and convolution operations meticulously
applied to its esteemed members.

2. Sharp coefficient estimates and growth theorems

In this section, we delve into delineating the intricate relationship existing between the
RH,(p,q,7:€) class and the R, (p, q,7;§) class. Furthermore, comprehensive efforts have
been dedicated to acquiring profound insights into coefficient bounds and distortion the-
orems, enriching the depth of our understanding in this significant context. The careful
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examination and elucidation of these interconnections contribute significantly to the over-
arching narrative of our study, providing a nuanced perspective on the interplay between
these essential mathematical classes.

Theorem 2.1. The harmonic mapping f = u+ v € RH,(p,q,7;€) if and only if F5 =
u+dop € Rn(%%%&) fO?” each § (|5| = 1) :

Proof. Assume that f =u+b € RH,(p,q,7;§). For every ¢ with |4| =1,

59(2)

ZW‘&

Rl o] 5 ) 2

u®(z) 4 60 (2) ulEtD (2) 4+ 50+ (2) q—p\ u€D(2) + o+ ()
n—§ T4 n—§-1 + 2 n—E—2

(€+1) (£+2)
REF 3 u>+(q—p>m+ @y_ﬁ

ZRe[p -7

u®(z2) uEtD(2) q—p\ uétd(z)
:Re[ 2n—¢ Ta 2n—§—1 +( 2 ) n—€—2 -7

5 <pt,(£)(z) +qn(£+1)(z) N (q_p) n(“?)(z))]

3

+ Re

=€ on—E-1 2 n—E—2

(5)( ) (£+1)( ) _ (£+2)( )
us/(z u z g—p\u z
n—& T4 n—E-1 +( 2 ) on—E-2 -7

(E)( ) (§+1)( ) _ (£+2)( )
v\~ (2 o z qgq—p\ Vv z
2n—¢ T4 n—€-1 T ( 2 ) 2n—&§—2

> Re

p

>0,z € E.

Hence, for each § with || = 1, we have §5 € Ry,(p, q,7;&). Conversely, consider z € E and
s =u+0v € Ry(p,q,7:€). In this case,

u®(z) uEH (z) qg—p\ ulét2(z)
Re [p 2;77_5 T4 27]_5_1 +( 2 ) zri_f_z -7

N Re{_é(pn(s)(z) +qn(£+1)(z) N (q_p) n(f“)(z))}

2= on—E€-1 2 n—E€-2

The judicious selection of § with |§| = 1 enables us to achieve

e {pu(ﬁ)(z) . qu(£+1)(z) N (q —p) ue(z) 7}

n—¢€ n—€-1 2 n—E€-2

>

n(&)(z)Jr t,(erl)(Z)Jr qg—p\ v&(2)
P T4 e 2 ) -2

Consequently, we have | € R, (p, ¢,7;€).
O

Theorem 2.2. Let f = u+v € RH,(p,q,v;&). Then, form > 2, the coefficients vy satisfy
the inequality

ml(m =&+ 1) [2p+ (g —p) (m =]’ '
whereo =nlp+qn =& +(n—&n—E&—1)(q—0p)/2]/(n—&)!. The result is sharp, and
equality is achieved for the function

|[vm| <

2(0— ) (m — &)! -

f(z):Zmrm!(m_§+1)[2p+(q—P)(m—f)}
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Proof. Suppose that f = u+v € RH,(p,q,7;§). With v(re’?) represented as a series,
0<p<1land®feR, weget

om0 o (T5E) m= ) gy o
1 2 0 (pei? p(&+D) (et _ 0(E+2) (peit
L (") (ee”) (12) (")

e T = S
(pei?)" 3 (pei?)" £-1 2 (pei®)" £-2
g 1/27r . [ u® (peié) +qu(f+1) <pei9> N (q_p> u(6+2) (Ww) e
27 Jo (peie)ﬁfé (peia)nfﬁfl 92 (peiG)W*£*2 v

IN

do

1 21

= — [ Re|lo—7+ i (m—&+1) [p + (q_p> (m — 5)] m!O!umpm”e"(m””] dé

2m Jo m=n+1 2 (m -

= 0=,

where o =nllp+q(n — &) + (n — &) (n— & —1)(¢ —p)/2]/(n — §)!. As p approaches 1 from
the left, we obtain the desired bound. [l

Theorem 2.3. Let f =u+b € RH,(p,q,7;§). Afterward, for m > 2, we get

- 4o—)(m—)!
i [tm] + [om] < m!(m—£+1)[;p+n(1q—p)(m—§)}’
ss 4(oc— —&)!
i Jlum| = lonl| < et Dot P
4o (m—e)!
fii. |um| < Sm—er DR —p @8]

where o = nlp+qn—&) + =& —&—1)(q—p)/2]/(n—&)!. Each result is precise,
= 4(o—7)(m—¢)!
ml(m—¢+1)[2p+(q—p) (m—¢)]

m

and every equality is satisfied for the function f(z) = 2"+ ™.

m=n+1

Proof. (i) Suppose f =u+1b € RH,(p,q,v;€). Then, from Theorem 2.1, §5 = u+ 0v €
Ry (p, q,7; &) for each § (|6| = 1). Hence, every § (|0| = 1), we derive

Re |p

u®(2) + 00 (2) N uEHD (2) + ot (2) N <q _p> u€+2) (2) + 02 (2) B

2n—¢ n—¢&—1 2 2n—E§—2
for z € E. On the other hand, there is an analytic function ®(z) =14 > 5 ¢mz™ in E

whose real part is positive, satisfying

u®(2) + 60 (2) uEt (2) 4+ spl+D(2)
Z—€ +a €1

P (2.2)

q—p\ u€D(2) + 02 ()
+ 2 2862

where o =nl[p+q(n — &) + (=& —&—1)(q —p)/2]/(n — §)!. Comparing coefficients
on both sides of (2.2), we obtain

= (0 =)%()+9

- m!
(m—¢+1) [p+ (qp) (m—é)} ——7 (Um + 0vm) = (0 = )Py for m > 7+ 1.
2 (m—&)!
Since the real part of the function ®(z) is positive, |¢m| < 2 for m > 1 and § (|0] = 1) is
arbitrary, it follows that the proof for statement (i) is concluded. Proofs (ii) and (iii) can

be obtained by using the proving techniques of (i). The function
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4(oc — —&)!
— N 4 Z ' (J 7) (m 5) Zn’
maey m(m =&+ 1) [2p+ (¢ — p) (m = &)]
demonstrates the sharpness of every inequality. O

Theorem 2.4. Let f =u+b € H,, with

oo

!
2 (et a-p)(m-9) B

then f € RHy(p, ¢, 73 )
Proof. Suppose that f = u+ v € H,. Then using (2.3),

e {pu@(z) +qu<€+l><z> N (q —p) uétd(z) ,y}

n—€ n—€-1 2 n—E—2

(‘um|+ ‘vm‘) §2(U_7)7 (23)

= Re{0—7+ i (m—¢&+1) {p+(q;p)(m—f)} (mm!g)!umzm_l}

m=n+1
m=n+1 _ !
m=2 .
00 |
> 3 (m-E+1) [p+ (q 2p) (m—é)} ﬁ!vm!
m=n+1 '
il B q—p ol o™
> m;ﬁl(m E+1) {er ( 5 ) (m E)} TR
0 (2) €D (2) q—p\ 02 (2)
- 2N—€ ta 261 T ( 2 ) 2162 |
Hence, f S :Rg{n(pa Q777£) -

The distortion theorem will now be presented using techniques introduced by Rosihan
et al.[12]

Theorem 2.5. Let f =u+b € RH,(p,q,7;§). Then,

n!‘z‘n—fﬂ o 00 ( )m|z’m+n E+1 ©
R P DY e s e PICETER
and
‘;(& ‘ RUE i i '
(=41 Hmtn—E+1)22y+ (6 —7)(m+n—E)
Equality is satisfied for the function
© 77|Z17f£+1 A B 0 Lmtn—E+1
ISt gy el Gl D ey sy 3 e ey ey

Proof. Consider f = u+b € RH,(p,q,7;§). Applying Theorem 2.1, §s € R, (p,q,7;§)
and for every d (|6] = 1), we get Re {F(z)} > 0, where

(&) (&+1) (§+2)
Ss
pEaE) 4 g3 €(1>+( ) e

=7

F(z) =
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This leads to the equation

p39(2) + 4238V (2 >+(q‘p> 25(E42) ()

2 (2.4)
=218 4 (0 — )2 F(2).
Multiplying both sides of 2.4 by - p, we get
2p (4+1) /
z§s Ss
= p(2 ') + (2557 () s
= 0 - )ERR)

Integrating the expression 2.5 from 0 to z yields

2p O 2+l y 2 { gl —+1 ooy [t }
5@+ 25T = g e ’y)/ot" F(t)dth (2.6)

1
Substituting ¢ = s7—¢+1 2z into 2.6 and simplifying, we get

2p © 2~(6+1) 2 { 2 —£+1 o7 §+1
2857 () + 278 zZ) = 2" + 2~ /an 41 z)ds 2.7

2
Multiplying both sides of 2.7 by zﬁfz, we get

22 (6 )l 2 { -1 -1 /1 P
zapgs(2) ] = Yz a-p + (o0 —7y)zer F(sn—e+12)ds (2.8
(770 - e =) o Flemeads (28)
Integrating the expression 2.8 from 0 to z and substituting s = P Ce ) z, we obtain
227776
57(2) (2:9)

T =+ )20+ (1—E)(g—p)]

1 rl 1 q—p
X {fy + (0’ — fy) ‘/0 /0 F(s n—&+1 c2p+(n—€)(a—p) Z) ds dc}'

However, since Re {F(2)} > 0, F(2) < 122, where < signifies the subordination [7]. Define

11 dsd o m
sac z
- // : — =1+ Z 1 9—p
00 1 — gn—¢&+1e2p+(m—8&)(a—p) » m=1 (]. + mm) (1 + Wm)

and

B(2) = 11_2 :1+n§22m.
Afterwards, from (2.9) we get
), 277 o— * B)(z
R a+1>[2p+<ns><qp>]{”“ ()}
- T ¢ 4o —y)z™ ¢
- (77 5 " +Z (m+n—¢+1)2p+ (g —p)(m+n—¢)

S0 = W+
> 4o =) 2™
+m;(m+n—g+1)[2p+(q—p)(m+77—f)]

il _
CET
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and

59)| = W@wa@r
2|7~ 5_|_Z 4(o —7)(

(m+n—E8+1)2p+ (¢ —p)(m+n—E)]

1) 2"

(

Especially, we have
S Ao =) [o[™7¢

"5 /(4 e
W (2)] + |0'(2)] < (n—ﬁ)!| | +mz::1(m+n—§+1)[2p+(q—p)(m+n—€)]

and
2|7¢ f: Ao =) (=)™ o™
- ) i (mtn—E+1D2p+ (¢ —p)(m+n—E)]

Assume T is the radial segment extending from 0 to z

W) = lv'(2)] =

i) = | [ Grde+ St < [ (W] + o/ 0)) e
T T
12
N e, S 4o — ) ¢ )
= O/<(n£)!T +“‘z=:1(m+77*€+1)[2p+(qu)(mﬂ?*f)] i
_ L6+ Ao =) [2|™ T
(=gt §+1) i +Z (m+n—E+1)22p+ (¢ —p)(n— &+ m)]
and
i) = [ (W)= [o'(®)]) [dt|

3
W +Z m—|—77 §+1)[2p+(q p)(m+n—¢

/
7 (=1L ¢
0/ — )=l )]> dr

(@

Bk €+ 4 Z )(—1)™ ! ’z|m+n—£+1
(n—&+1)! £+1) m+n £+1) 2p+ (¢ —p)(n — &+ m)]

O

3. Radius of 7-valent starlikeness and convexity in the class RJ(,(p, q,v; &)

In this section, our paramount focus revolves around furnishing comprehensive in-
sights into the determination of the radius of n-valent starlikeness and n-valent convexity
for the functions encapsulated within the distinguished class RH,(p,q,v;&). Through
rigorous analysis and calculation, we aim to provide a thorough understanding of the
radii associated with these essential characteristics within the mathematical framework of

RIHy (P, 4,7 €)-
The main conclusions are illustrated using the two lemmas that follow:

Lemma 3.1. ([1]) Suppose § € 3n. If the series 3°;7 1 m (|um| + |vm|) < 7, then f, then
it follows that f is n-valently starlike in the domain E.

Lemma 3.2. ([2]) Suppose f € Hn. If the series 57, 4 m? (Jum| + [vm|) < 7%, then §,
then it follows that f is n-valently convex in the domain E.

The following theorem examines the first outcome regarding the radius of starlikeness.
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Theorem 3.3. Let f € RH, (p,q,7;§) be a sense-preserving harmonic mapping defined in
E. Then, in the open disk |z| < p«, where

= inf
P m>n+1

<n2<m —2)i(m —&+1)[2p + (¢ —p)(m — f)])‘“l"
dm(o —7)(m = ¢)! ’

the function | is n-valently starlike.

Proof. Let § € RH,(p,q,7;§), and let p,0 < p < 1, be fixed. Then

fo(2) = p~"i(pz) = p~"u(pz) + p~"0(pz) € RH,(p,q,7;§)

and

o0 o0
fo(z) = 2"+ Z Unp™ 2™ + Z Ump™ 2™z € K.
m=n+1 m=n+1

As per Lemma 3.1, it is sufficient to demonstrate that

o0
Y m([um| +fom]) " <1
m=n+1

for p < px. According to Theorem 2.3 (i),

0 - > dm(o —v)(m — &)! .
D D o811 e o e T

(3.1)

Moreover considering that

o0 1
2
n=n E )
a1 m(m—1)

As is well known, the inequality (3.1) can be expressed as

S dm Oy

1
(m—&+1)[2p+ (¢ —p)(m —&)] m(m — 1)

m=n-+1 m=n+1

Thus, if

gnn < T =2lm = £+ 1) 2 + (g = p)(m = )
- Am(o —7)(m — ¢!

for all m > n+ 1, then

o0

Z m (|tm| + Jom|) "7 <
m=n+1

Therefore, we obtain

px = inf

m>n+1

<n2<m —2)l(m £+ 1) [2p + (g — p)(m - 5>]>min
im(o —7)(m - ©)! '

O

The succeeding theorem determines the convexity radius for the class RH,(p, q,7;§).
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Theorem 3.4. Assume that f € RH,(p,q,7:§) is a harmonic mapping in E that preserves
sense. For a given constant

= inf
pe m2n+1

(773(“1 —2)!(m—£4+1)[2p+ (¢ —p)(m — 5)])"‘1"
4m?(o —7)(m — &)!

it holds that § exhibits n-valent convezity within the domain |z| < pe.

Proof. Let f € RH,(p,q,7;€), and let p, 0 < p < 1, be fixed. Then

fo(2) = p™"i(pz) = p~"u(pz) + p~"0(pz) € RH,(p,q,7; )

and
o (e.0)
fo(z) = 2"+ Z Ump™ 2™ + Z vmp™ 2™, 2z € E.
m=n+1 m=n+1

Lemma 3.2 states that it is sufficient to demonstrate that

o0

Z m? (Jum] + [vm]) P77 < 772
m=n+1

for p < pe. According to Theorem 2.3 (i),

00 9 m— > 4m?(o — v)(m — &)! .
m:Zn—Hm (‘Um"i"UmDp ngmzzn—i_l m!(m_§+1) [2p+(q—p)(m_€)]p n (3.2)

Additionally, taking into account that

> 1
2 _ .3

=0 Yy,

m=n-+1 m(m o 1)

It is known that the inequality (3.2) can be expressed as

> 4m?(o0 — y)(m — &)! _ > 1

2 '(—+(1[zl( —)(—]”MS”SZ —1
maey M (m =&+ 1) 2p + (¢ — p)(m =€) maey m(m — 1)

Consequently, if

ey (= 2)m — €+ 1) [2p+ (g — p)(m — )
s 4m2(o — )(m — €)!

for all m > n + 1, then

[e.9]

> m? (Jum| + |vm|) P77 < 0P
m=n+1

As a result, we get

1

pe = inf (”3(m—2)!(m—€+1)[2p+(q—p)(m— )])“‘"‘
im2 (g~ 7)(m — €]
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4. Exploring closure properties of the class RJ(,(p,q,7;&)

The closure properties of the class R, (p, q,v; ) under convex combinations and con-
volutions are shown in this section.

Theorem 4.1. The class Ry (p, q,7;§) is closed under convexr combinations.
n
Proof. Let fi, = uy, + v, € RH,(p,q,7;§) for kK =1,2,...,n, and suppose ) ¢ = 1 with
k=1

0 < ¢ < 1. The convex combination of functions fx (k =1,2,...,n) can be_expressed as:

Zs%fk u(z) + o(z),

where .
= orui (2) and v(z Z RO (2
k=1

Both u and v are analytic within the open unit disk IE7 satlsfylng initial conditions u(0) =

v(0) = W/ (0) = v/(0) = ... = u”D(0) = 0D (0) = u(0) — 5! = v7(0) = 0 and
u®(z) u&t(z) q—p\ uétd(z)
Re {p o€ T e T ( 2 ) =

u®(z) u€+(z) q—p\ vt (2)
- Re{Zcpk< 2n—§ Ta 2n—&—1 +< 2 > 2n—§—2 -7
U(g z U(§+1) z — U(£+2) z
S Z% ) (%) (q p) (2)

2n—E€ Tq on—E&-1 2 on—E€-2
n—€ q n—€-1 + 2 on—E&—2

showing that § € RFH,(p, q,7;&). g

If a sequence {am}or of non-negative real numbers meets the following criteria, it is
said to be a convex null sequence: as m — o0, ay approaches 0, and the inequality

ap—a1 > a1 —az > a2 —a3 = ... 2 au-1 — apm = ... > 0

holds. In order to derive results for convolution, the forthcoming proofs rely on Lemma
4.2 and Lemma 4.3.

Lemma 4.2. (see [8]) When {am }5 is a convex null sequence, indicates that the function

ag s
- m
2 +_§Z:amz
m=1
is analytic, and the real part of ¢(z) is positive within the open unit disk E.

Lemma 4.3. (see [13]) Suppose the function ®(z) is analytic within the domain E, sat-
isfying ®(0) = 1 and Re{®(z)} > 1/2 throughout E. For any analytic function F' defined
in E, it follows that the function ® x F' maps to values within the convex hull of the image
of E under F.

F 1
Lemma 4.4. Let F € R, (p,q,7;§), then Re{ (:)} > 3
z

Proof. Consider F' belonging to the class Rn(p, ¢,7;§), defined as F(z) = 2"+3>0, 1 tmz"™.
Then, the inequality

Re{a+ i (m—§+1){p+(q;p>(m—§)}mn§£)!}>v (z € E),

m=n+1
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can be equivalently expressed as Re{®(z)} > % within the open unit disk E, where

1 > m! -
‘1>(Z)=1+4(U_,y)m;n+l(m£+1)[2v+(qp)(m 5)]( — it .

Consider a sequence {an o, defined by

4(c—7)(n+m—¢)!
m+m)!n+m—E+1)[2y+ (¢ —p) (m+n—¢)]
The fact that the sequence {am} o forms a convex null sequence is apparent. By making
use of Lemma 4.2, we can infer that the function

1 i 4(0c—7)(n+m—¢)! m
3 "L m+m)!n+m—E§+1) 27+ (¢ —p) (m+n—E)]

for m > 2.

ap=1and an_1 =

is analytic, and Re{q(z )} > 0 holds in E. Expressing

FE) g0 4(c—7)(n+m—¢) m
= ®(z2) * ( E_: (n+m)(n+m—E+1)[2y+ (g —p) (m+1n— &) >

F 1
and utilizing Lemma 4.3, we conclude that Re{ (i) } > 3 holds for z € E. O
z

Lemma 4.5. Let Fy, € Rn(p, q,7;§) for k =1,2. Then the convolution Fy * Fy belongs to
Ry(p, ¢,7:6).-
Proof. Let Fi(z) = 2"+ 307, 11 2™ and Fo(z) = 2" + 3707, 1 Vwmz™ and

F(z) = (F1* Fy)(z) = 2"+ i UV 2™,

m=n+1
Considering
FOr)  FY(2) F()
277*5 - 277*5 * 4 ’
FED e FEe) R
277_5_1 B 277_5—1 * 2P ’
FED()  F0) R
277*5*2 o 2;77*5*2 * 4 ’
we obtain
1 F© (2 FE+) (4 — FE+2) (5
p 777(5) +4q nfgf(l) + <q p) 757(2) -
o—" z z 2 bl 1)
4.1
_ 1 F9(2) N () L (1= FE2() , P2(2)
o—7 277—5 277—5—1 2 277—5—2 v 2N ’

Since Fy e Rn(p7%7'£)a

(E)(z) F(§+1)(z> . F(€+2)
1 qg—p\ F;" ()
Re {p & T4 g + < 5 > por s 7} >0 (z€E)

FQ(Z)

2N

} > 1 within the do-

( FO)(2) n qp(£+1)(z) n

Furthermore, by applying Lemma 4.4, we deduce that Re{

[\)

main E. Utilizing Lemma 4.3 on the expression in (4.1) yields Re( p=—/—¢ g

(%) F:i?,(f) — ’y) > 0 in E. Thus, F = Fy x Fy € R,(p, q,7;€).
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Utilizing Lemma 4.5, we demonstrate the closed nature of the set RI(,(p, ¢,7;§) when
subjected to convolutions among its constituents. The convolution operations are executed
following the methodologies and techniques introduced by Dorff [6].

Theorem 4.6. Suppose fi, € RHn(p,q,v;§) for k = 1,2. Then the convolution f1 * fo is
also in RHy,(p, q,7; ).
Proof. Suppose fr, = uy + 0, € RH,(p,q,7; &) (k=1,2) and f1 * f2 = ug xup + 07 * 3. To
prove that i *f2 € RI,(p, q,7; ), we need to demonstrate that F5 = uy *us +5(vy *xv2) €
Ry(p,q,7;€) for each § (|6| = 1). According to Lemma 4.5, one can conclude that the
set R, (p,q,7; &) remains closed under convolution. Hence, uy + dv;, € Ry(p,q,7;€) for
k =1,2. Both §; and §2 can be expressed as

§1 = (u1 — 01) * (ug — 502) and Fo = (U1 + Ul) * (uz + 502),
belong to R, (p, q,7;&). Since R, (p, q, ;&) is closed under convex combinations, the func-
tion .

s = 5(31 +82) = u1 * v2 + 6(by * b2)

belongs to R, (p, q,v;&). Hence, RH, (p, q,7;§) is closed under convolution. O

The Hadamard product of an analytic function v in E. and a harmonic function f = u+v
was defined by Goodloe [9] as follows:

f¥) = ux1h + 0% 1),

where v is an analytic function and f = u 4 v is a harmonic function in E.

1
Theorem 4.7. Assume f € RH,(p, q,7;§) and i € A, with the condition Re (wz(j)> > 3
for z € E. Then, the convolution f*i belongs to RIy(p,q,7;§)-

Proof. Assume f = u+b € RH,(p,q,7;§), then §s = u+ v € R, (p,q,7;§) for each §
(6] = 1). By Theorem 2.1, to show that f*i) € RH¢(p,q,7v;&), we need to demonstrate
that & = uxy+0(vx1) € Ry (p,q,7;§) for each 6 (|6 = 1). Express & as & = F5 *1), and

1 ( 6©)(z) N ET (2) N <q_p> ®E+2)(2) _7>

o—r n—§ q n—§-1 2 on—§-2
1 +2)
8 V), (a-p\ &) Y, b
p Zn 5 77 £-1 2 n—£-2 v n
1 ® €+, RGO )
Given Re (wz(j)> > 3 and Re{ Sj,, (g) + qgjn,g,(l) + ( 5 )Szn 5(2) ’y} > 0 in [E,
Lemma 4.3 establishes that & € R, (p, q,7;§). O
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