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Abstract − Multiple comparison methods are applied to control the type I error rate at the nominal 

level. In this study, we investigate the performance of multiple comparison methods after analysis of 

variance (ANOVA) is implemented under different conditions. We include Bonferroni, Holm, 

Hochberg, Hommel, Benjamini-Hochberg (BH), and Benjamini-Yekutieli (BY) correction methods. 

Monte-Carlo simulation study is applied to assess their performances under different patterns, 

including sample size and group number combinations. Wide inferences are drawn on considered 

methods, and suggestions are provided for selecting appropriate methods. Moreover, the methods are 

implemented on three different types of real-life data sets to emphasize the importance of these 

correction methods in the research. 

Keywords – ANOVA, Monte Carlo simulation, pairwise comparison, type I error rate, variance homogeneity 

1. Introduction 

Testing equality of means is a general process in many data applications. In this study, we compare multiple 

comparison methods after ANOVA concerning controlling the type I error rate (α) at its nominal level. There 

exist many multiple comparison tests in the literature [1]. We include Bonferroni [2], Holm [3], Hommel [4], 

Hochberg [5], Benjamini-Hochberg (BH) [6], and Benjamini-Yekutieli (BY) [7] comparison methods in this 

study. These methods adjust the estimated type I error rate using the number of hypotheses tested. The number 

of hypotheses is specified by the number of groups compared in ANOVA. For instance, the total number of 

hypotheses becomes 𝑘(𝑘 − 1) 2⁄  when the number of groups compared within ANOVA is 𝑘. Each pair in the 

comparison for testing the hypotheses is called a family. The type I error rate is called the family-wise error 

rate (FWER) since each family is compared separately [8]. 

Multiple comparison methods are used in various fields. Bender and Lange [9] discussed adjustment methods 

for multiple comparisons in medical and epidemiological studies. Westphal and Troendle [10] proposed 

multiple comparison methods based on resampling that control FWER. They noted that the methods could be 

applied specifically to gene expression data but more generally to multivariate and multigroup data. Blakesley 

et al. [11] proposed the Hommel and Hochberg methods for mildly correlated measures to increase power 

while controlling type I errors in neuropsychological data sets. Felix and Menezes [12] showed that BH 

correction provided the best type I error rate and the second strongest correction by varying the sample size, 

sample distribution, and degree of variability. Staffa and Zurakowski [13] suggested that surgeons use multiple 

comparison methods, including Bonferroni, Tukey, Scheffe, Holm, and Dunnett while planning clinical or 
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research studies. Their study discussed the results of each approach for controlling FWER on pediatric surgical 

research data. 

In a study conducted by Dimitriev et al. [14], the Bonferroni method was used to investigate the effects of 

stress on heart rate and heart rate variability (HRV) measurements. Participants were divided into three groups 

according to baseline HRV (<25th percentile, 25th -75th percentile, and >75th percentile). Stress-related 

changes were compared in HRV groups. Kharola et al. [15] criticized the work done by Dimitriev et al. [14] 

concerning using multiple comparison methods. They stated that the Holm method was more powerful than 

the Bonferroni method. In our simulation study, this design fits the one extreme pattern with three groups and 

a sample size between 50 and 100. The findings state that the Holm method has a type I error rate larger than 

its nominal level, while Bonferroni holds the nominal level. That is, the Holm method may find a difference 

when the difference is not real. 

Musicus et al. [16] assessed the effects of text-based alerts, health picture alerts, sugar picture alerts, and 

control on parents' beverage choices for their children in a virtual convenience store. They used the Holm 

method for multiple comparisons after ANOVA. In our simulation study, this study design approximately fits 

the equal N pattern with four groups and a large sample size. Our findings reveal that the Holm method has a 

type I error rate larger than its nominal level, while Bonferroni holds the nominal level. In other words, the 

Holm technique might detect a difference when no one exists. 

Generally, the researchers are unaware of choosing an appropriate method when performing multiple 

comparisons. However, this situation leads to misleading serious consequences. Therefore, the researchers 

should consider the number of groups, the sample size, and the pattern of sample sizes to reduce the risk of 

misleading consequences while conducting multiple comparison methods. No study compares multiple 

comparison tests' type I error rates in different scenarios, such as sample size, number of groups, and other 

sample size designs. Therefore, this study is essential to give recommendations for the applied researchers on 

selecting appropriate multiple comparison methods under various scenarios.  

This study compares multiple comparison methods' type I error rates at different sample sizes, sample size 

patterns (under equal N, progressive N, and one extreme scenario), and the number of groups after ANOVA. 

Therefore, a comprehensive Monte-Carlo simulation study is conducted to compare multiple comparison tests' 

type I error rates.  

This study has some limitations since ANOVA is conducted under certain assumptions. These assumptions of 

ANOVA are independence of observations within and between groups, normality (i.e., k samples are drawn 

randomly from a normal distribution), and variance homogeneity (i.e., k populations have identical variances). 

The sections of the paper are organized as follows: Section 2 introduces the multiple comparison methods in 

chronological order. Section 3 provides the Monte-Carlo simulation study and its results. Section 4 presented 

the implementation of the pairwise comparison methods following ANOVA in R. Finally, the paper concludes 

with a summary of the main findings and a discussion of the results of similar studies. 

2. Materials and Methods 

This section includes six multiple comparison methods commonly used in the literature.  

2.1. Bonferroni Correction 

Bonferroni correction is one of the most widely used approaches for multiple comparisons [2]. The Bonferroni 

multiple comparison test is conservative when the large sample size and the number of pairwise comparisons 

increases [3]. With a pre-specified significance level (α) and the number of hypotheses tested (m), the adjusted 

significance level is calculated as follows: 

𝛼′
(𝑖) =

𝛼

𝑚
 (2.1) 
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2.2. Holm Correction 

The less conservative Holm method is proposed after the Bonferroni correction [3]. Holm correction is more 

powerful than Bonferroni correction [17]. Holm method controls the false discovery rate (FDR). In the Holm 

method, the p-value for each hypothesis is arranged from least to greatest. For the 𝑖𝑡ℎ ordered hypotheses 𝐻(𝑖), 

the formula is given in (2.2) for the type I error rate: 

𝛼′
(𝑖) =

𝛼

𝑚 − 𝑖 + 1
 (2.2) 

In this part, we include an example to clarify Holm's correction. For instance, we have three groups to compare 

with ANOVA and obtain statistically significant results. After that, we apply multiple comparison methods to 

adjust estimated type I error rates. We obtain p-values of 0.002, 0.010, and 0.035 (given in order from smallest 

to largest) for hypotheses I-III, respectively. For the smallest p-value (0.002), we obtain the nominal type I 

error rate for the comparison as follows: 𝛼′
(𝑖) =

𝛼

𝑚−𝑖+1
=

0.05

3−1+1
≅ 0.0167. We compare the smallest p-value 

(0.002) with its nominal rate (0.0167). The hypotheses are rejected since the p-value of 0.002 is smaller than 

0.0167. The following steps are similar to the other hypotheses and 𝛼′’s are estimated as 0.0167, 0.025, and 

0.05, respectively. 

2.3. Hochberg Correction  

Like the Holm method, Hochberg correction uses the same formula to calculate the associated significance 

levels [5]. Hochberg's multiple comparison method, controlling FDR, is more powerful than the Holm method 

[18]. Both multiple comparison methods compare ordinal p-values with the same set of critical values. The 

algorithm of the method is the same as within the Holm method, except that the p-values are ordered from 

largest to smallest [18]. Thus, the Hochberg method rejects a hypothesis that results in all hypotheses being 

rejected (2.2). 

2.4. Hommel Correction 

Simes revised the Bonferroni method and proposed a new multiple comparison method by combining all m 

hypotheses [19]. However, Hommel extended this new method to test each hypothesis (Hommel 1988) since 

Simes method cannot be used to evaluate each hypothesis alone. The decisions for the individual hypotheses 

can be performed in the following simpler way: 𝑗 = max {𝑖 ∈ {1, 2, … , 𝑚} ∶  𝑝(𝑚−𝑖+𝑘) >
𝑘𝑎

𝑖
 for 𝑘 ∈

{1, 2, … , 𝑖} }. If the maximum value does not exist, reject all 𝐻𝑖 (𝑖 ∈ {1, 2, … , 𝑚}), otherwise, reject all 𝐻𝑖 with 

𝑝𝑖 ≤ 𝛼 𝑗⁄ . It is not easy to calculate adjusted p-values with the Hommel method. It can be easily calculated 

with the pair comp function in the oneway tests 𝑅 package.  

2.5. Benjamini-Hochberg (BH) Correction 

Benjamini and Hochberg [6] developed a method called BH (known as false discovery rate, FDR) to control 

FDR. It is often preferred when the number of hypotheses is large. BH multiple comparison method is preferred 

since it is simpler than other methods. First, m hypotheses are arranged in order from largest to smallest 

according to their p-values (𝑖 ∈ {1, 2, … , 𝑚}). The q value is the upper bound of FDR (e.g., q = 0.05). BH 

critical value of each p-value is calculated using the 
𝑖

𝑚
𝑞 formula. 𝑝𝑖 is the p-value related to the 𝐻𝑖 hypotheses, 

and k is the largest I: 

𝑘 = max {𝑝𝑖 ≤
𝑖

𝑚
𝑞} (2.4) 

The p values are compared with the critical BH value. The largest p-value that is less than the critical BH value 

is found. All p-values under this largest value are considered statistically significant.  
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2.6. Benjamini and Yekutieli (BY) Correction 

Benjamini and Yekutieli proposed a more conservative multiple comparison method than BH to control FDR 

[7]. BY method is similar to the BH method. However, the way of finding k is different from the BH method. 

𝑘 = max {𝑖: 𝑝(𝑖) ≤
𝑖

𝑚
𝑞̃, 𝑞̃ =

𝑞

∑
1
𝑖

𝑚
𝑖=1

} (2.5) 

where the q value is an upper bound of FDR. Unlike other multiple comparison methods, the BY correction 

method considers the dependency of hypotheses. The difference between BH and BY is the dependency 

structure. Benjamini and Yekutieli proved that the estimator is valid under some forms of the dependency 

structure. 

3. Results 

This study compares the type-I error rates of six correction methods with the Monte Carlo simulation study. 

Moreover, add the results obtained without correction to emphasize the importance of multiple comparison 

methods. 

3.1. Simulation Design  

Monte Carlo simulation is applied to show the performances of these tests for scenarios where normality and 

homogeneity of variance assumptions are met. The algorithm of the simulation study is planned as follows. 

i. Random samples are generated from a normal distribution with a mean of 0 and a standard deviation of 1 as 

much as the number of groups. 

ii. The number of groups is set to 3 - 4 (small), 5 - 6 (medium), and 7 - 10 (large). 

iii. The sample sizes for each group are 10, 20, 30, 40, 50, and 100. 

iv. The sample size patterns are specified as equal N, progressive N, and one extreme scenario is given in Table 

1. 

All steps are repeated 10,000 runs, and type I errors are calculated. After calculating the type I error for each 

pairwise comparison, we combine the type I error rates as given in Equation 6.  

𝛼̂𝑛 = 1 − ∏(1 − 𝛼̂𝑖,𝑛)

ℎ

𝑖=1

      (3.1) 

where ℎ = (𝑘
2

) and k is the number of groups. 

3.2. Simulation Results 

This study compares the performances of multiple comparison tests concerning sample size designs of equal, 

progressive, and one-extreme cases. The results are presented in Tables 2-4. We outline the results according 

to the number of groups for selecting the appropriate methods for practical use. 

When k is small: The type I error of the Holm method is closest to the nominal level when the sample size is 

equal and smaller than 40 under the equal N scenario. For instance, the type I error rates of the Holm method 

vary between 0.049-0.051 when k = 3. In the same scenario, the type I error rates of the Bonferroni method 

range from 0.045 to 0.048, while those of the Hommel method range from 0.051 to 0.054. On the other hand, 

the Bonferroni method holds the nominal level of type I error when the number of observations exceeds 40. 

For example, the type I error rates of the Bonferroni method vary between 0.049-0.050 when k = 3. Under 
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progressive N and one extreme scenario, the Bonferroni method holds the nominal level of type I error rate in 

all observation numbers. 

When k is medium: Results obtained under equal N, progressive N, and one extreme scenario show similar 

patterns. Type I error of the Hommel method holds the nominal level when the number of observations is equal 

and lower than 30. The type I error rate of the Bonferroni method is very close to the nominal level when the 

number of observations exceeds 30.  

When k is large: Under equal N, progressive N, and one extreme scenario, Bonferroni, Holm, Hommel, and 

Hochberg methods hold the nominal level of type I error rate regardless of the number of observations. 

When the multiple comparison methods are not applied, the type Ⅰ error rates increase excessively as the 

number of groups and comparisons increase. For example, when the number of groups is 9, and the number of 

observations in each group is 10 under the equal N scenario, multiple comparison methods give results ranging 

from 0.018 to 0.078. In the same scenario, the type I error reaches 0.834 without any corrections. 

Table 1. Simulation study the sample size patterns 

 Progressive N Equal N One extreme 
k=3 8 10 8 

 10 10 8 
 12 10 14 

Average N 10 10 10 
k=4 7 10 8 

 9 10 8 
 11 10 8 
 13 10 16 

Average N 10 10 10 
k=5 6 10 8 

 8 10 8 
 10 10 8 
 12 10 8 
 14 10 18 

Average N 10 10 10 
k=6 5 10 8 

 7 10 8 
 9 10 8 
 11 10 8 
 13 10 8 
 15 10 20 

Average N 10 10 10 
k=7 7 10 8 

 8 10 8 
 9 10 8 
 10 10 8 
 11 10 8 
 12 10 8 
 13 10 22 

Average N 10 10 10 
k=8 6 10 8 

 7 10 8 
 8 10 8 
 9 10 8 
 11 10 8 
 12 10 8 
 13 10 8 
 14 10 24 

Average N 10 10 10 
k=9 6 10 8 

 7 10 8 
 8 10 8 
 9 10 8 
 10 10 8 
 11 10 8 
 12 10 8 
 13 10 8 
 14 10 26 

Average N 10 10 10 
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Table 1. (Continued) Simulation study sample size patterns 

 Progressive N Equal N One extreme 
k=10 5 10 8 

 6 10 8 
 7 10 8 
 8 10 8 
 9 10 8 
 11 10 8 
 12 10 8 
 13 10 8 
 14 10 8 
 15 10 28 

Average N 10 10 10 

Table 2. Type I error for equal 

Group Method 𝜶̂𝟏𝟎 𝜶̂𝟐𝟎 𝜶̂𝟑𝟎 𝜶̂𝟒𝟎 𝜶̂𝟓𝟎 𝜶̂𝟏𝟎𝟎 

3 

Bonferroni 0.048 0.045 0.047 0.047 0.049 0.050 
Holm 0.051 0.049 0.051 0.050 0.053 0.055 

Hommel 0.054 0.051 0.054 0.052 0.057 0.057 

Hochberg 0.053 0.050 0.052 0.051 0.055 0.055 

BH 0.060 0.058 0.059 0.057 0.062 0.065 

BY 0.031 0.030 0.031 0.031 0.030 0.035 

None 0.141 0.140 0.140 0.135 0.142 0.143 

4 

Bonferroni 0.046 0.047 0.048 0.050 0.051 0.054 
Holm 0.048 0.049 0.051 0.053 0.054 0.057 

Hommel 0.051 0.051 0.053 0.054 0.056 0.059 

Hochberg 0.048 0.050 0.051 0.053 0.055 0.057 

BH 0.064 0.065 0.068 0.069 0.070 0.075 

BY 0.024 0.025 0.024 0.026 0.028 0.030 

None 0.261 0.263 0.266 0.256 0.267 0.274 

5 

Bonferroni 0.047 0.042 0.047 0.051 0.051 0.054 
Holm 0.049 0.043 0.048 0.052 0.053 0.056 

Hommel 0.050 0.045 0.050 0.054 0.055 0.057 

Hochberg 0.049 0.044 0.049 0.053 0.054 0.056 

BH 0.069 0.066 0.074 0.076 0.076 0.080 

BY 0.020 0.017 0.020 0.024 0.024 0.027 

None 0.388 0.393 0.401 0.392 0.397 0.408 

6 

Bonferroni 0.045 0.044 0.047 0.051 0.053 0.052 
Holm 0.046 0.045 0.048 0.053 0.054 0.054 

Hommel 0.047 0.046 0.049 0.055 0.055 0.055 

Hochberg 0.046 0.045 0.048 0.053 0.054 0.054 

BH 0.071 0.071 0.077 0.089 0.086 0.088 

BY 0.019 0.017 0.018 0.024 0.025 0.024 

None 0.529 0.531 0.541 0.532 0.536 0.548 

7 

Bonferroni 0.045 0.044 0.046 0.051 0.051 0.050 
Holm 0.046 0.046 0.047 0.053 0.052 0.051 

Hommel 0.047 0.047 0.047 0.053 0.054 0.052 

Hochberg 0.046 0.046 0.047 0.053 0.052 0.051 

BH 0.073 0.079 0.079 0.087 0.089 0.086 

BY 0.016 0.017 0.018 0.023 0.023 0.020 

None 0.646 0.651 0.663 0.656 0.652 0.664 

8 

Bonferroni 0.043 0.044 0.049 0.053 0.048 0.051 
Holm 0.044 0.044 0.049 0.054 0.050 0.051 

Hommel 0.045 0.045 0.050 0.054 0.050 0.052 

Hochberg 0.044 0.044 0.049 0.054 0.050 0.051 

BH 0.077 0.079 0.086 0.090 0.087 0.087 

BY 0.016 0.016 0.017 0.019 0.019 0.019 

None 0.756 0.758 0.768 0.760 0.760 0.770 

9 

Bonferroni 0.043 0.048 0.049 0.054 0.050 0.052 
Holm 0.044 0.048 0.050 0.056 0.051 0.053 

Hommel 0.044 0.049 0.050 0.056 0.051 0.053 

Hochberg 0.044 0.048 0.050 0.056 0.051 0.053 

BH 0.078 0.085 0.091 0.096 0.090 0.096 

BY 0.018 0.016 0.016 0.020 0.018 0.019 

None 0.834 0.839 0.844 0.841 0.841 0.847 

10 

Bonferroni 0.042 0.045 0.046 0.050 0.052 0.052 
Holm 0.042 0.046 0.046 0.051 0.053 0.052 

Hommel 0.042 0.046 0.047 0.052 0.053 0.053 

Hochberg 0.042 0.046 0.046 0.051 0.053 0.052 

BH 0.077 0.084 0.092 0.097 0.102 0.096 

BY 0.013 0.016 0.016 0.016 0.017 0.017 

None 0.893 0.899 0.904 0.900 0.899 0.904 
Boldfaced values indicate the closest type I error rates to the nominal ones. 
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Table 3. Type I error for progressive 

Group Method 𝛼̂10 𝛼̂20 𝛼̂30 𝛼̂40 𝛼̂50 𝛼̂100 

3 

Bonferroni 0.049 0.047 0.049 0.048 0.052 0.049 

Holm 0.053 0.051 0.053 0.052 0.056 0.054 

Hommel 0.056 0.053 0.056 0.056 0.057 0.057 

Hochberg 0.055 0.052 0.055 0.054 0.056 0.055 

BH 0.061 0.059 0.062 0.061 0.063 0.063 

BY 0.030 0.030 0.035 0.030 0.036 0.034 

None 0.140 0.140 0.143 0.144 0.146 0.150 

4 

Bonferroni 0.046 0.052 0.049 0.048 0.049 0.050 

Holm 0.050 0.055 0.052 0.051 0.051 0.052 

Hommel 0.052 0.057 0.054 0.052 0.054 0.053 

Hochberg 0.051 0.056 0.052 0.051 0.052 0.052 

BH 0.066 0.069 0.068 0.068 0.068 0.069 

BY 0.024 0.026 0.026 0.027 0.028 0.027 

None 0.267 0.266 0.269 0.266 0.260 0.263 

5 

Bonferroni 0.045 0.043 0.046 0.049 0.048 0.050 

Holm 0.046 0.045 0.048 0.051 0.049 0.052 

Hommel 0.048 0.046 0.050 0.052 0.050 0.054 

Hochberg 0.047 0.045 0.049 0.051 0.049 0.052 

BH 0.069 0.070 0.071 0.075 0.069 0.079 

BY 0.020 0.018 0.022 0.023 0.022 0.024 

None 0.394 0.389 0.396 0.409 0.391 0.405 

6 

Bonferroni 0.050 0.047 0.047 0.052 0.052 0.047 

Holm 0.051 0.049 0.049 0.054 0.053 0.048 

Hommel 0.052 0.050 0.050 0.056 0.054 0.050 

Hochberg 0.051 0.049 0.049 0.054 0.053 0.048 

BH 0.083 0.077 0.080 0.090 0.081 0.081 

BY 0.020 0.021 0.020 0.023 0.024 0.019 

None 0.536 0.533 0.544 0.544 0.536 0.547 

7 

Bonferroni 0.050 0.050 0.053 0.051 0.052 0.052 

Holm 0.051 0.050 0.054 0.052 0.053 0.054 

Hommel 0.052 0.051 0.055 0.053 0.054 0.055 

Hochberg 0.051 0.050 0.054 0.052 0.053 0.054 

BH 0.081 0.087 0.095 0.083 0.087 0.088 

BY 0.020 0.017 0.023 0.018 0.018 0.022 

None 0.656 0.662 0.666 0.668 0.672 0.658 

8 

Bonferroni 0.042 0.046 0.049 0.053 0.050 0.047 

Holm 0.043 0.047 0.050 0.054 0.051 0.048 

Hommel 0.043 0.048 0.050 0.055 0.052 0.049 

Hochberg 0.043 0.047 0.050 0.054 0.051 0.048 

BH 0.074 0.082 0.088 0.093 0.089 0.086 

BY 0.014 0.020 0.019 0.021 0.017 0.019 

None 0.755 0.757 0.765 0.769 0.769 0.771 

9 

Bonferroni 0.049 0.048 0.052 0.054 0.052 0.052 

Holm 0.050 0.049 0.053 0.055 0.052 0.053 

Hommel 0.051 0.050 0.053 0.056 0.053 0.053 

Hochberg 0.050 0.049 0.053 0.055 0.053 0.053 

BH 0.089 0.094 0.094 0.097 0.098 0.100 

BY 0.016 0.016 0.020 0.022 0.020 0.020 

None 0.838 0.848 0.846 0.844 0.840 0.845 

10 

Bonferroni 0.045 0.046 0.053 0.052 0.054 0.054 

Holm 0.045 0.046 0.054 0.052 0.055 0.055 

Hommel 0.046 0.047 0.054 0.053 0.055 0.055 

Hochberg 0.046 0.046 0.054 0.052 0.055 0.055 

BH 0.080 0.091 0.103 0.102 0.104 0.104 

BY 0.013 0.015 0.019 0.017 0.022 0.020 

None 0.898 0.904 0.901 0.902 0.904 0.902 
Boldfaced values indicate the closest type I error rates to the nominal ones. 
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Table 4. Type I error for one extreme 
Group Method 𝛼̂10 𝛼̂20 𝛼̂30 𝛼̂40 𝛼̂50 𝛼̂100 

3 

Bonferroni 0.050 0.046 0.049 0.053 0.050 0.050 

Holm 0.053 0.050 0.053 0.056 0.053 0.054 

Hommel 0.056 0.052 0.056 0.059 0.056 0.057 

Hochberg 0.055 0.051 0.055 0.057 0.054 0.056 

BH 0.062 0.057 0.061 0.065 0.061 0.063 

BY 0.033 0.029 0.033 0.032 0.032 0.032 

None 0.137 0.137 0.142 0.142 0.144 0.147 

4 

Bonferroni 0.047 0.049 0.050 0.050 0.051 0.049 

Holm 0.050 0.053 0.052 0.054 0.053 0.052 

Hommel 0.053 0.054 0.054 0.057 0.055 0.054 

Hochberg 0.051 0.053 0.053 0.054 0.053 0.052 

BH 0.066 0.069 0.069 0.071 0.069 0.068 

BY 0.026 0.028 0.026 0.027 0.028 0.027 

None 0.261 0.266 0.262 0.271 0.263 0.262 

5 

Bonferroni 0.044 0.046 0.049 0.052 0.052 0.050 

Holm 0.046 0.048 0.051 0.053 0.055 0.052 

Hommel 0.047 0.049 0.052 0.055 0.056 0.053 

Hochberg 0.046 0.048 0.051 0.053 0.055 0.052 

BH 0.068 0.071 0.074 0.080 0.075 0.077 

BY 0.021 0.020 0.024 0.023 0.025 0.024 

None 0.396 0.397 0.393 0.413 0.404 0.406 

6 

Bonferroni 0.046 0.045 0.051 0.051 0.053 0.052 

Holm 0.047 0.047 0.053 0.053 0.054 0.054 

Hommel 0.048 0.048 0.055 0.054 0.056 0.055 

Hochberg 0.047 0.047 0.053 0.053 0.054 0.054 

BH 0.073 0.076 0.082 0.086 0.088 0.085 

BY 0.021 0.022 0.024 0.020 0.025 0.022 

None 0.531 0.531 0.539 0.539 0.539 0.542 

7 

Bonferroni 0.054 0.049 0.048 0.053 0.050 0.051 

Holm 0.055 0.050 0.049 0.054 0.052 0.052 

Hommel 0.056 0.051 0.051 0.055 0.053 0.053 

Hochberg 0.055 0.050 0.050 0.054 0.052 0.052 

BH 0.088 0.083 0.087 0.091 0.091 0.091 

BY 0.024 0.019 0.020 0.019 0.021 0.021 

None 0.657 0.654 0.662 0.667 0.665 0.659 

8 

Bonferroni 0.049 0.049 0.051 0.049 0.053 0.051 

Holm 0.051 0.050 0.052 0.050 0.054 0.051 

Hommel 0.052 0.051 0.052 0.051 0.055 0.052 

Hochberg 0.051 0.050 0.052 0.050 0.054 0.051 

BH 0.088 0.095 0.095 0.095 0.093 0.091 

BY 0.017 0.019 0.022 0.019 0.021 0.018 

None 0.763 0.763 0.767 0.771 0.766 0.767 

9 

Bonferroni 0.045 0.047 0.051 0.049 0.056 0.053 

Holm 0.045 0.048 0.052 0.049 0.057 0.054 

Hommel 0.046 0.048 0.053 0.050 0.058 0.055 

Hochberg 0.045 0.048 0.052 0.049 0.057 0.054 

BH 0.080 0.091 0.093 0.097 0.106 0.105 

BY 0.017 0.015 0.019 0.018 0.024 0.020 

None 0.845 0.848 0.836 0.852 0.847 0.847 

10 

Bonferroni 0.044 0.047 0.052 0.049 0.053 0.047 

Holm 0.044 0.048 0.053 0.050 0.054 0.048 

Hommel 0.045 0.049 0.053 0.051 0.054 0.049 

Hochberg 0.044 0.048 0.053 0.050 0.054 0.048 

BH 0.082 0.090 0.097 0.098 0.102 0.098 

BY 0.013 0.015 0.018 0.017 0.020 0.017 

None 0.897 0.904 0.902 0.905 0.903 0.901 
Boldfaced values indicate the closest type I error rates to the nominal ones. 
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3.3. Demonstration of the Pairwise Comparison Methods 

This section demonstrates how to apply multiple comparison methods to three real data applications. ANOVA 

and multiple comparison methods are conducted on cholesterol data using aov test and pair comp functions, 

respectively, available in the oneway tests R package [20]. The associated p-values of all multiple comparison 

methods are placed in Table 5. 

3.3.1. Cholesterol Data 

In this part, we work with the cholesterol data set collected by Westfall, available in a multcomp 𝑅 package 

[21]. A clinical study assesses the effect of three formulations of the same drug on reducing cholesterol. The 

formulations are 20 mg at once (1 time), 10 mg twice a day (2 times), and 5 mg four times a day (4 times). In 

addition, two competing drugs are used as control groups (drug D and drug E). The study aims to find which 

formulations, if any, are efficacious and how these formulations compare with the existing drugs. This data set 

has 50 observations (10 observations for each treatment). The descriptive statistics (mean ± standard deviation) 

are 5.78±2.88, 9.22±3.48, 12.37±2.92, 15.36±3.45, and 20.95±3.35 for the groups, 1time, 2time, 4times, 

drugD, and drugE, respectively. 

In this part, we apply ANOVA for the comparison of the groups. Before ANOVA, we assess the normality of 

the reduced amount in cholesterol values for five treatment groups. All groups satisfy the assumption of 

normality (e.g., Shapiro-Wilk normality test: all p-values=0.4541 –  0.9696). Moreover, Levene’s 

homogeneity test suggests that the variances of the five treatment methods are homogeneous (p-value = 

0.9875).  

library(oneway tests)  

model <- aov.test(response ~ trt, data = cholesterol) 

   One-Way Analysis of Variance (alpha = 0.05)  

 -------------------------------------------------------------  

   data: response and trt  

   statistic: 32.43283  

   num df: 4  

   denom df: 45  

   p-value: 9.818516e-13 

   Result: The difference is statistically significant.  

 ------------------------------------------------------------- 

Since the p-value obtained as a result of ANOVA is smaller than 0.05, there is a statistically significant 

difference between the treatment groups (F =  32.43283, df𝑛𝑢𝑚 = 4, df𝑑𝑒𝑛𝑜𝑚 = 45, p − value =

 9.818516 × 10−13). After obtaining statistically significant results in ANOVA, we need to investigate the 

groups which create the difference. In this part, we make pairwise comparisons with the Hommel method since 

our simulation results suggest that the Hommel method holds a nominal level of type I error rate when the 

number of groups is 5. The number of observations in each group is 10. 

paircomp(model, adjust.method = "hommel") 

   Hommel Correction (alpha = 0.05)  

 -----------------------------------------------------  

       Level (a)  Level (b)    p.value          No difference 

 1      1time     2times   5.139629e-02      Not reject 

 2      1time     4times   4.664132e-04      Reject 

 3      1time     drugD   2.066193e-05       Reject 

 4      1time     drugE   2.444640e-08       Reject 

 5     2times    4times   5.139629e-02      Not reject 

 6     2times     drugD   4.343976e-03      Reject 

 7     2times     drugE   3.951905e-06       Reject 

 8     4times     drugD   5.139629e-02      Not reject 

 9     4times     drugE   6.398084e-05       Reject 

 10   drugD     drugE   6.950361e-03       Reject 

 ----------------------------------------------------- 
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According to the result obtained adjusting with the Hommel method, statistical differences in cholesterol 

reduction between all other pairs are significant, except for three pairs: 1time-2times, 2times-4 times, and 

4times-drugD. 

3.3.2. Diet and Weight Loss Data 

In this part, we work with the diet data set in the WRS2 R package [22]. Weight loss is studied for three 

different types of diets. There are 24 observations in diet group A, 25 in diet group B, and 27 in diet group C, 

with a total of 76 observations. The descriptive statistics (mean ± standard deviation) are 3.30±2.24, 3.27±2.46, 

and 5.15±2.40 for the diet types A, B, and C, respectively. 

In this section, we perform ANOVA for the comparison of diet groups. Before ANOVA, we check the 

normality of the weight loss in diet values for three different diet groups. The normality assumption is met for 

all groups (e.g., Shapiro-Wilk normality test: all p-values = 0.0774 –  0.8721). Further, Levene’s homogeneity 

test states that the variances of the three temperature methods are homogeneous (p-value = 0.6122).  

Since the p-value obtained as a result of ANOVA is smaller than 0.05, there is a statistically significant 

difference between the diet groups (F =  5.383104, df𝑛𝑢𝑚 = 2, df𝑑𝑒𝑛𝑜𝑚 = 73, and p − value =

 0.006595853). After obtaining statistically significant results in ANOVA, we need to investigate the groups 

which create the difference. In this part, we make pairwise comparisons with the Bonferroni method since our 

simulation results suggest that the Bonferroni method holds a nominal level of type I error rate when the 

number of groups is three. The sample size pattern is progressive N. The result obtained adjusting with 

Bonferroni method points out that, diet type C leads to statistically greater weight loss than the others 

3.3.3. Pottery Data 

In this part, we work with the pottery data set in the carData R package [23]. The data give the chemical 

composition of ancient pottery found at three sites in Great Britain: AshleyRails, IsleThorns, and 

Llanedyrn. There are 5 observations in the AshleyRails group, 5 in the IsleThorns group, and 14 in the 

Llanedyrn group, totaling 24 observations. The descriptive statistics (mean ± standard deviation) are 

17.32±1.66, 18.18±1.77, and 12.56±1.38 for AshleyRails, IsleThorns, and Llanedyrn sites, respectively. The 

Caldicot site was not included in this part since there were two ancient potteries. 

In this section, we perform ANOVA for the comparison of site groups. Before ANOVA, we check the 

normality of the Aluminum values for three different groups. The normality assumption is met for all groups 

(e.g., Shapiro-Wilk normality test: all p-values = 0.780 –  0.967). Furthermore, Levene’s homogeneity test 

states that the variances of three sites are homogeneous (p-value = 0.950).  

Since the p-value obtained as a result of ANOVA is less than 0.05, there is a statistically significant difference 

between the three sites (F =  34.52644, df𝑛𝑢𝑚 = 2, df𝑑𝑒𝑛𝑜𝑚 = 21, p − value =  2.296561 × 10−7). 

After obtaining a statistically significant result in ANOVA, we need to investigate the sites making the 

difference. In this section, we make pairwise comparisons with the Bonferroni method since our simulation 

results illustrate that the Bonferroni method holds a nominal type I error rate in extreme cases where the number 

of groups is three. The sample size design is one extreme. 

The results obtained by correcting with the Bonferroni method show that the Llanedyrn group leads to 

statistically smaller aluminum than the AshleyRails and IsleThorns sites.  

In comparisons of two or more groups, multiple comparison tests are employed to investigate the difference if 

there is a statistically significant difference among the groups. At this point, multiple comparison tests are 

performed to control Type Ⅰ error rates. Although studies are published in the literature to control type I error 

rates, it is important to choose an appropriate multiple comparison test under different conditions. Therefore, 

it will be important to provide researchers with an overview of multiple comparison tests under various 

scenarios.  
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Table 5. The p-values of all multiple comparison methods on cholesterol, diet, and pottery data sets 

Data sets Level (a) Level (b) Bonferroni Holm Hommel Hochberg BH BY None 

C
h

o
le

st
er

o
l 

1time 2times 0.269 0.081 0.051 0.051 0.034 0.098 0.027 

1time 4times 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

1time drugD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

1time drugE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

2times 4times 0.419 0.084 0.051 0.051 0.047 0.136 0.042 

2times drugD 0.009 0.005 0.004 0.005 0.002 0.005 0.001 

2times drugE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

4times drugD 0.514 0.084 0.051 0.051 0.051 0.151 0.051 

4times drugE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

drugD drugE 0.017 0.007 0.007 0.007 0.002 0.007 0.002 

D
ie

t 

A B 1.000 0.962 0.962 0.962 0.962 1.000 0.962 

A C 0.020 0.020 0.013 0.015 0.011 0.021 0.007 

B C 0.022 0.020 0.015 0.015 0.011 0.021 0.007 

P
o

tt
er

y
 AshleyRails IsleThorns 1.000 0.451 0.451 0.451 0.451 0.827 0.451 

AshleyRails Llanedyrn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

IsleThorns Llanedyrn 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

All p-values are rounded to three decimals. Associated p-values of suggested methods are written in bold. 

4. Discussion  

In this paper, we compare the type Ⅰ error rates of Bonferroni, Holm, Hommel, Hochberg, BH (FDR), and BY 

multiple comparison methods under different conditions with Monte Carlo simulation and three real data 

applications. Blakesley et al. [11] introduced the Hommel and Hochberg techniques tailored for moderately 

correlated measures to enhance statistical power while maintaining control over type I errors within 

neuropsychological datasets. Felix and Menezes [12] showed that BH correction provides a smaller type I error 

rate by varying the sample size and sample distribution. Staffa and Zurakowski [13] proposed that surgeons 

use multiple comparison methods, including Bonferroni, Tukey, Scheffe, Holm, and Dunnett. They provide 

guidance on strategies for how to handle multiplicity and multiple significance testing in surgical research 

studies. Kharola et al. [15] criticized the work done by Dimitriev et al. [14] concerning using multiple 

comparison methods. They stated that the Holm method was more powerful than the Bonferroni method. 

5. Conclusion 

The criteria for selecting multiple comparison tests in the literature are not clearly defined, leaving uncertainty 

about the appropriateness of their application in various scenarios. Furthermore, selecting these multiple 

comparison methods without considering factors like group sizes, sample sizes and sample size designs could 

produce misleading results. For 3-4 groups, we recommend Bonferroni correction when the number of 

observations is equal and greater than 50 and Holm correction when the number of observations is less than 

50 under the equal N scenario. We recommend the Bonferroni method under progressive N and one extreme 

scenario regardless of the number of observations. For 5-6 groups, we suggest the Bonferroni method when 

the number of observations is equal and more than 40 and the Hommel correction when the number of 

observations is less than 40 under all sample size patterns. For 7 or more groups, we propose Bonferroni, Holm, 

Hommel, and Hochberg methods under all sample size patterns regardless of the number of observations. In 

future studies, simulation studies are planned on which post-hoc test should be used under non-normality 

and/or heterogeneity. 
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