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1. Introduction

Totally geodesic submanifolds constitute the most fundamental class of submanifolds in Riemannian
geometry. Professor Bang-yen Chen and professor Tadashi Nagano developed the so-called (M+,M−)-method
for the study of totally geodesic submanifolds of Riemannian symmetric spaces [7, 9, 11, 12]. Klein studied
totally geodesic submanifolds in complex quadrics, quaternionic 2-plane Grassmannians as well as exceptional
Riemannian symmetric spaces of rank 2 [41, 42, 43, 44].

Chen and Nagano proved that a simply connected, irreducible Riemannian symmetric space admits a
totally geodesic hypersurface if and only if it is of constant curvature. Tojo [73, 74] proved that a naturally
reductive homogeneous space of dimension n = 3, 4, 5 or a normal homogeneous space admits a totally
geodesic hypersurface if and only if it is of constant curvature. Tsukada [77] generalized Tojo’s result on
naturally reductive homogeneous spaces to arbitrary dimension n > 2. Nikolayevsky [62] showed that a simply
connected homogeneous Riemannian space M which admits a totally geodesic hypersurface is isometric to
either

• the Riemannian product M =M1(c)×M2 of a space M1(c) of constant curvature c and a homogeneous
Riemannian space M2,

• the warped product Em1 ×f M2 of the Euclidean space Em1 and a homogeneous Riemannian space
M2 = G2/H2. The warping function f is given by f(gH2) = χ(g), where χ : G→ (R,+) is a nontrivial
Lie group homomorphism satisfying χ(H2) = 1,

• the twisted product E1 ×f M2 of the the Euclidean line E1 and homogeneous Riemannian space M2.

Let us turn our attention to 1-dimensional totally geodesic submanifolds, i.e., geodesics, in homogeneous
Riemannian spaces. In homogeneous Riemannian spaces, we may restrict our attention to geodesics starting
at the origin. Riemannian symmetric spaces, more generally naturally reductive homogeneous spaces have a
particularly nice property (geodesic orbit property) that those geodesics are homogeneous. More precisely every
geodesic starting at the origin of a naturally reductive homogeneous space is the orbit of the origin under
the action of the one-parameter subgroup of the largest group of isometries. Kowalski and Vanhecke [51]
introduced the notion of Riemannian g. o. space in 1983 (see also Kostant [46] and Vinberg [82]).

A reductive homogeneous Riemannian space M = G/K is said to be a Riemannian g. o. space if it satisfies
the geodesic orbit property. Kowalski and Vanhecke classified Riemannian g. o. spaces of dimension up to 6.
In particular, Riemannian g. o. spaces of dimension n ≤ 4 are naturally reductive [51]. Kajzer [40] proved that
a Lie group endowed with a left-invariant metric admits at least one homogeneous geodesic. Kowalski and
Szenthe extended this result to all homogeneous Riemannian manifolds [49].
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There are three model spaces in 2-dimensional geometry:

Model space Isotropy Property

S2 SO2 constant positive curvature
E2 SO2 flat
H2 SO2 constant negative curvature

There are eight model spaces in 3-dimensional geometry. The list of 3-dimensional model spaces was
obtained by Thurston [72]:

Model space Isotropy Property

S3, E3, H3 SO3 Riemannian space form
S2 × E1, H2 × E1 SO2 Riemannian symmetric

Nil3, S̃L2R SO2 naturally reductive
Sol3 trivial Riemannian 4-symmetric

Except Sol3, all the 3-dimensional model spaces are Riemannian g. o. spaces. The homogeneous geodesics of
Sol3 were determined by Marinosci [59].

According to Filipkiewicz [27], there are 19 kinds of model spaces in 4-dimensional geometry. Recently
submanifold geometry of 4-dimensional geometry has received attention of differential geometers. See a
survey [58]. Among the list of Filipkiewicz, there are 14 naturally reductive homogeneous spaces. Thus other
spaces; Sol40, Sol41, Sol4m,n (including Sol3 ×R), Nil4 and F4 are not Riemannian g. o. spaces. In this article we
classify homogeneous geodesics in these model spaces. Note that homogeneous geodesics in F4 are classified
in [48] and our previous work [26], we study homogeneous geodesics in Sol40, Sol41, Sol4m,n (including Sol3 ×R),
and Nil4 in this article.

Next, professor Chen made great progress on submanifold geometry of Kähler manifolds, especially in
complex space forms. A unit speed curve γ(s) in a Riemannian manifold (M, g) is said to be a Riemannian
circle if there exits a positive constant k and a unit vector field E2 along γ(s) satisfying

∇γ̇ γ̇ = k E2, ∇γ̇E2 = −k γ̇.

In other words, γ is a Frenet curve of osculating order 2 with positive constant first curvature κ1 = k. Note that
geodesics are regarded as a a Frenet curve of osculating order 1. When the ambient space (M, g) is an almost
Hermitian manifold, then the complex torsion τ12 of a Riemannian circle γ(s) is defined by

τ12(s) = g(γ̇(s), JE2).

A Riemannian circle in an almost Hermitian manifold is said to be holomorphic if its complex torsion is constant.
Here we pick up Chen’s research on circles in homogeneous Riemannian spaces, especially complex space

forms [8, 10].
All the geodesics of a naturally reductive homogeneous space are homogeneous. However, Riemannian

circles of a naturally reductive homogeneous space are not necessarily homogeneous. Mashimo and Tojo
proved that every circle of a homogeneous Riemannian space M is homogeneous if and only if M is either
a Euclidean space or a Riemannian symmetric space of rank one.

Chen [8] proved that a finite type isometric immersion f :M → En of a compact irreducible homogeneous
Riemannian space M into Euclidean n-space carries every homogeneous curve in M to a curve of finite type in
En.

In [10], Chen and Maeda studied circles in the complex projective n-space CPn(4) through the first standard
imbedding:

CPn(4) ↪→ Sn(n+2)−1(2(n+ 1)/n) ⊂ En(n+2).

For instance, the image of a circle in CPn(4) with complex torsion τ12 under the first standard imbedding is of
1-type, 2-type or 3-type in En(n+2) according as τ12 = ±1, τ12 = 0 or τ12 ̸= ±1, 0.

The study of holomorphic circles in a Kähler manifold with complex torsion ±1 has another motivation. To
explain this, here we recall the notion of J-trajectory as well as that of Kähler magnetic trajectory [4].

Let (M, g, J) be an almost Hermitian manifold. Then a regular curve γ(t) in M is said to be a J-trajectory if it
satisfies

∇γ̇ γ̇ = qJγ̇.
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Here q is a constant called the charge. When (M, g, J) is an almost Kähler manifold, then a J-trajectory is called
a Kähler magnetic trajectory since it is a magnetic trajectory with respect to the Kähler magnetic field g(J, ·).

Let us consider a unit speed Kähler magnetic trajectory γ(s) in a Kähler manifold (M, g, J), then γ(s) is a
Riemannian circle of constant first curvature |q| and complex torsion ±1. Indeed, we can take E2 = εJγ̇, where
ε = ±1 and τ = −ε.

The model spaces Sol40 and Sol41 admit a compatible complex structure. The resulting homogeneous
Hermitian surfaces are globally conformal Kähler. The globally conformal Kähler surfaces Sol40 and Sol41 are
universal coverings of Inoue surfaces (see [68, 75]). It should be mentioned that Chen and Piccinni [13] studied
foliations of locally conformal Kähler manifolds (LCK manifolds).

On the other hand, Sol4m,n does not admit a compatible complex structure. The model space Nil4 does not
admit a compatible complex structure, but has compatible symplectic structure. As a result, Nil4 admits a
compatible almost Kähler structure.

The second purpose of this article is to determine homogeneous J-trajectories in the model spaces Sol40, Sol41
and Nil4.

2. Riemannian geodesic orbit spaces

2.1. Homogeneous geodesics

Let M = G/K be a homogeneous Riemannian space. A curve γ(s) starting at the origin o ∈M is said to be
homogeneous with respect to the coset space representation G/K if it is represented as

γ(s) = expg(sX) · o

for some X ∈ g, where g is the Lie algebra of G. When γ(s) is a geodesic, then the vector X is called a geodesic
vector.

Definition 2.1. A homogeneous Riemannian space M = G/K is called a space with homogeneous geodesics or a
Riemannian g.o. space if every geodesic γ(s) ofM is an orbit of a one-parameter subgroup of the largest connected
group of isometries.

As is well known, every homogeneous Riemannian space M = G/K admits a Lie subspace m, that is, a linear
subspace m of g satisfying

[k,m] ⊂ m, g = k+m. (2.1)

Here k is the Lie algebra of the isotropy subgroup K (called the isotropy algebra).
The decomposition (2.1) is called a reductive decomposition of g. For a vector X ∈ g, we denote by Xk and Xm,

the k-component and m-component of X , respectiveley, i.e.,

X = Xk +Xm, Xk ∈ k, Xm ∈ m.

A homogeneous Riemannian space M = G/K with a fixed Lie subspace m is called a reductive homogeneous
Riemannian space. Hereafter we only consider reductive homogeneous Riemannian spaces. Denote by π : G→
G/K, the projection. Take the differential map π∗e at the identity e ∈ G. Then π∗e|m : m → ToM is a linear
isomorphism. We identify ToM with m and regard it as a linear subspace of g through the inverse mapping
of π∗e|m.

Example 2.1 (The space of inner products). Let us denote by M̃(Rn) the set of all inner products on Rn. Next,
let

Sym+
nR = {F ∈ GLnR | detF > 0}.

be the set of all positive definite symmetric matrices of degree n. As is well known, M̃(Rn) is identified with
Sym+

nR. The identification is given by

Sym+
nR ∋ F 7−→ F := F0(F, ·) ∈ M̃(Rn),

where F0 is the Euclidean inner product of Rn. The inner product F is defined by

F(x,y) = F0(Fx,y), x,y ∈ Rn.
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The general linear group GLnR acts on M̃(Rn) via the action

GLnR× M̃(Rn) → M̃(Rn); (A · F)(x,y) = F(A−1x, A−1y).

The isotropy subgroup at the Euclidean inner product F0 is On. Hence we get

M̃(Rn) = Sym+
nR = GLnR/On.

The tangent space TF0
M̃(R) is identified with the linear space m = SymnR of symmetric matrices. The isotropy

algebra is on. Hence we get a reductive decomposition glnR = on ⊕m. Thus M̃(R) = GLnR/On is a reductive
homogeneous space. Moreover we have [m,m] ⊂ k. Note that exp : SymnR → Sym+

nR is surjective. The inner
product

⟨X,Y ⟩ = tr(XY ), X, Y ∈ m

is Ad(On)-invariant. The reductive homogeneous Riemannian space GLnR/On is a Riemannian symmetric
space. Hence GLnR/On is a Riemannian g. o. space.

Next, we introduce a tensor Um : m×m → m by

2⟨Um(X,Y ), Z⟩ = −⟨X, [Y,Z]m⟩+ ⟨Y, [Z,X]m⟩, X, Y, Z ∈ m.

A homogeneous Riemannian space is said to be naturally reductive if there exists a reductive decomposition g =
k+m with vanishing Um. As we will explain later, naturally reductive homogeneous spaces are Riemannian
g. o. spaces (see Corollary 2.1).

Let G be a compact semi-simple Lie group, then the Killing form B is negative definite on g. Thus for any
positive constant c, −cB induces a bi-invariant Riemannian metric on G. A homogeneous Riemannian space
M = G/K with compact semi-simpleG is said to be normal if itsG-invariant Riemannian metric is derived from
a bi-invariant Riemannian metric of G. It is well known that every normal homogeneous space is naturally
reductive. Moreover (irreducible) Riemannian symmetric spaces are naturally reductive.

2.2. The homogeneous geodesic equation

Let M = G/K be a reductive homogeneous Riemannian space with Lie subspace m. Take vectors X , Z ∈ g
and set ϕt = exp(tX) and ψs = exp(sZ). The Killing vector field X♯ derived from X is defined by

X♯
p =

d

dt

∣∣∣∣
t=0

expg(tX) · p, p ∈M.

At any point x ∈M , we have [52, p. 193]:

Z♯ϕt(p)
= ϕt∗(ϕ−1

t ◦ψs◦ϕt)(p)

(
Z − t[X,Z] + o(t2)

)♯
p
, X♯

ψs(p)
= ψs∗(ψ−1

s ◦ϕt◦ψs)(p)

(
X − t[Z,X] + o(t2)

)♯
p
. (2.2)

From the Koszul formula we have

2g(∇X♯X♯, Z♯) = 2X♯g(X♯, Z♯)− Z♯g(X♯, X♯) + 2g([Z♯, X♯], X♯).

From (2.2), we get

X♯
p g(X

♯, Z♯) = gp(X
♯, [X♯, Z♯]), Z♯p g(X

♯, X♯) = 2gp(X
♯, [Z♯, Z♯]).

Hence, we deduce that

gp(∇X♯X♯, Z♯) = −gp(X♯, [X,Z]♯) = −⟨Xm, [X,Z]m⟩ = −⟨[X,Z]m, Xm⟩. (2.3)

This equation implies the following useful criterion ([52, Proposition 2.1], [5, Theorem 5.2], see also [46, 82]).
Here we give a proof for completeness and later use.

Proposition 2.1. LetM = G/K be a reductive homogeneous Riemannian space equipped with a reductive decomposition
g = k+m. Take a vector X = Xk +Xm ∈ g. Then

γ(s) = expg(sX) · o

is a geodesic if and only if one of the following conditions are fulfilled:
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1. [Xk, Xm] + Um(Xm, Xm) = 0.

2. ⟨[Xk, Xm], Z⟩ = ⟨Xm, [Xm, Z]m⟩ for any Z ∈ m.

3. ⟨[X,Z]m, Xm⟩ = 0 for any Z ∈ m.

Proof. The equation (2.3) implies that the geodesic equation is equivalent to (3).
The tensor Um satisfies

⟨Um(Xm, Xm), Zm⟩ = −⟨Xm, [Xm, Zm]m⟩.

Next, we get

⟨[X,Z]m, Xm⟩ =⟨Xm, [Xk +Xm, Zk + Zm]m⟩ = ⟨Xm, [Xk, Zm] + [Xm, Zk] + [Xm, Zm]m⟩
=⟨Xm, [Xk, Zm] + [Xm, Zk]⟩+ ⟨Xm, [Xm, Zm]m⟩
=⟨Xm, [Xk, Zm] + [Xm, Zk]⟩ − ⟨Um(Xm, Xm), Zm⟩.

The G-invariance of the metric g implies the Ad(K)-invariance of the inner product ⟨·, ·⟩ of g, we have

⟨Xm, [Xk, Zm] + [Xm, Zk]⟩ = ⟨Xm, [Xk, Zm]⟩+ ⟨Xm, [Xm, Zk]⟩ = ⟨[Xm, Xk], Zm⟩.

Hence we get
gp(∇X♯X♯, Z♯) = −⟨[X,Z]m, Xm⟩ = ⟨[Xk, Xm] + Um(Xm, Xm), Zm⟩.

This equation implies that γ(s) is a geodesic if and only if X satisfies (1).
Finally, for any Z ∈ m, we have

−⟨[X,Z]m, Xm⟩ = ⟨[Xk, Xm]⟩ − ⟨Xm, [Xm, Z]m⟩.

Thus we show the equivalence of the geodesic equation and (2).

Corollary 2.1. Let M = G/K be a naturally reductive homogeneous space with naturally reductive decomposition g =
k⊕m. Then any geodesic γ starting at the origin o with initial tangent vector X ∈ m is expressed as γ(s) = exp(sX) · o.

Kowalski and Szenthe [49] proved the following fundamental fact.

Theorem 2.1. Every homogeneous Riemannian space has at least one homogeneous geodesic passing through a given
point.

For more information on Riemannian g. o. spaces, we refer to [5, 29].

2.3. Naturally reductive homogeneous metrics on non-compact Lie groups

Here we exhibit typical examples of naturally reductive homogeneous spaces.
Let G be a connected non-compact semi-simple Lie group with Lie algebra g, then there exists an involutive

automorphism θ of g satisfying the condition that the symmetric bilinear form

Bθ(X,Y ) := −B(X, θY ), X, Y ∈ g

is positive definite. Such an involutive automorphism is unique up to G-conjugation and is called the Cartan
involution. Since the eigenvalues of θ are 1 and −1, one obtains an eigenspace decomposition:

g = k⊕ p, k = {X ∈ g | θX = X}, p = {X ∈ g | θX = −X}.

This decomposition is called the Cartan decomposition. One can see that

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

The eigenspace k is a Lie subalgebra of g. Let K be the connected Lie subgroup of G with Lie algebra k. We
consider the action of the product Lie group G×K on G by

(G×K)×G→ G; (a, k)b = abk−1.

This action is transitive. The isotropy subgroup at the identity e is

∆K = {(k, k) | k ∈ K}
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with Lie algebra
∆k = {(V, V ) | V ∈ k}.

The Lie group G is expressed by G = (G×K)/∆K as a reductive homogeneous space with reductive
decomposition

g× k = ∆k⊕m,

where the Lie subspace m is given by

m = {(Y +W,−W ) | Y ∈ p, W ∈ k}.

Every (X,V ) = (Xk +Xp, V ) ∈ g× k is decomposed as

(X,V ) =

(
1

2
(Xk + V ),

1

2
(Xk + V )

)
+

(
Xp +

1

2
(Xk + V )− V,−1

2
(Xk + V ) + V

)
.

Thus the ∆k-part and m-part of (X,V ) are

(X,V )∆k =

(
1

2
(Xk + V ),

1

2
(Xk + V )

)
,

(X,V )m =

(
Xp +

1

2
(Xk + V )− V,−1

2
(Xk + V ) + V

)
.

Proposition 2.2. Let G be a non-compact semi-simple Lie group with maximal compact subgroup K and Cartan
involution θ. Represent G as a reductive homogeneous space G = (G×K)/∆K with Lie subspace m = {(Y +
W,−W ) | Y ∈ p,W ∈ k}. With respect to the (G×K)-invariant Riemannian metric g induced from Bθ × Bθ, every
geodesic γ(s) starting at the origin o = e ∈ G with initial velocity X = Xk +Xm ∈ g is represented by

γ(s) = expG{s(−Xk +Xp)} · expK{2s(Xk)}. (2.4)

It should be remarked that

expG×K(sX) = expG{s(−Xk +Xp)} · expK{2s(Xk)}

holds. Hence all the geodesics starting at the origin of (G×K)/∆K are homogeneous. Indeed, (G×K)/∆K is
naturally reductive (and hence it is a Riemannian g. o. space).

More generally the following result is known ([14, 28, 32, 85]):

Theorem 2.2. Let G be a non-compact semi-simple Lie group with maximal compact subgroup K and Cartan involution
θ. Introduce an inner product

⟨X,Y ⟩(c) := −cB(Xk, Xk) + B(Xp, Xp)

on g. Here c > 0 is a constant. Let us regard G as a reductive homogeneous Riemannian space (G×K)/∆K with Lie
subspace

m = {(−cXk +Xp,−(1 + c)Xk) |Xk ∈ k, Xp ∈ p } (2.5)
and the (G×K)-invariant Riemannian metric g(c) induced from ⟨·, ·⟩(c). Then G = (G×K)/∆K is naturally reductive
and every geodesic starting at the origin with o = e ∈ G with initial velocity X = Xk +Xm ∈ g is represented by

expG×K(sX) = expG{s(−cXk +Xp)} · expK{s(1 + c)(Xk)}. (2.6)

2.4. Naturally reductive homogeneous metrics on compact Lie groups

Let G be a compact semi-simple Lie group. Take a non-compact real form G′ of the complexification of GC

and set K = G ∩G′. The Lie algebra g′ of G′ has a Cartan involution θ and admits the corresponding Cartan
decomposition g′ = k⊕ p′. Then we have the decomposition

g = k⊕ p, p =
√
−1p′.

Then we can introduce an inner product

⟨X,Y ⟩(c) := cB(Xk, Xk)− B(Xp, Xp),

where c > 0 is a constant. The Riemannian metric g(c) induced from ⟨·, ·⟩(c) is invariant under the action
of G×K on G. Thus we obtain a reductive homogeneous Riemannian space ((G×K)/∆K, g(c)) with Lie
subspace (2.5). The resulting homogeneous Riemannian space is naturally reductive. Every geodesic starting
at the origin with o = e ∈ G with initial velocity X = Xk +Xm ∈ g is represented by (2.6).
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2.5. Low dimensional naturally reductive homogeneous spaces

Kowalski and Vanhecke [52] proved that every n-dimensional Riemannian g. o. space of dimension n < 5 is
naturally reductive.

The 3-dimensional naturally reductive homogeneous spaces are classified by Tricerri and Vanhecke.

Theorem 2.3 ([76]). A 3-dimensional simply connected naturally reductive homogeneous space is a Riemannian
symmetric space or one of the following spaces:

• The Heisenberg group Nil3 = (Nil3 ⋊ SO2)/SO2.
• The Berger 3-sphere (SU2 ×U1)/U1.
• The universal covering S̃L2R of the homogeneous space SL2R = (SL2R× SO2)/SO2.

In this list, the naturally reductive homogeneous structures on the Berger 3-sphere and SL2R are those
exhibited in Section 2.4 and Section 2.3, respectively.

All the 3-dimensional model spaces except the model space Sol3 are Riemannian g. o. spaces. Here we give
the list of homogeneous geodesics in Sol3 (see Marinosci [59]). The model space Sol3 is the Cartesian 3-space
R3(x, y, z) equipped with metric

g = e−2zdx2 + e2zdy2 + dz2.

The model space Sol3 is identified with the linear Lie group
 ez 0 x

0 e−z y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The Lie algebra of Sol3 is given by

sol3 =


 w 0 u

0 −w v
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

The metric g is left invariant. We can take a left invariant orthonormal frame field:

e1 =
1√
2

(
−ez ∂

∂x
+ e−z

∂

∂y

)
, e2 =

1√
2

(
ez

∂

∂x
+ e−z

∂

∂y

)
, e3 =

∂

∂z
.

This frame field satisfies the commutation relations.

[e1, e2] = 0, [e2, e3] = e1, [e3, e1] = −e2.

The full isometry group of Sol3 is Sol3 ⋊D4. The action of the dihedral group D4 with 8 elements on Sol3 is
described as:

(x, y, z) 7−→ (y,−x,−z), (x, y, z) 7−→ (−x, y, z),

(x, y, z) 7−→ (−x,−y, z), (x, y, z) 7−→ (−y, x,−z), (x, y, z) 7−→ (y, x,−z),

(x, y, z) 7−→ (y, x, z), (x, y, z) 7−→ (x,−y, z).

Hence, the action of Sol3 ⋊D4 is described as

(x, y, z) 7−→ (±ecx+ a,±e−cy + b, z + c)

or
(x, y, z) 7−→ (±ecy + a,±e−cx+ b, z + c).

The identity component of the full isometry group is Sol3. Thus we regard Sol3 as a reductive homogeneous
space Sol3/{e}.

Proposition 2.3 ([59]). Any unit speed homogeneous geodesic starting at the origin of Sol3 has the form:

exp(se1), exp(se2), or exp(se3).
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Proof. The symmetric tensor U = Usol3 is computed as

U(e1, e2) = −e3, U(e1, e3) =
1

2
e2, U(e2, e3) =

1

2
e1.

For a unit vector X = X1e1 +X2e2 +X3e3 ∈ sol3, U(X,X) = 0 holds if and only if

X = ±e1, ±e2, or ± e3.

The 4-dimensional naturally reductive homogeneous spaces are classified by Kowalski and Vanhecke.

Theorem 2.4 ([51]). A 4-dimensional simply connected naturally reductive homogeneous space is a Riemannian
symmetric space or the direct product N ×R, where N is a 3-dimensional simply connected naturally reductive
homogeneous space.

All the simply connected naturally reductive homogeneous spaces (with respect to the coset space
representation of the largest isometry group) are model spaces of 4-dimensional geometry.

Theorem 2.5. All the 4-dimensional simply connected naturally reductive homogeneous spaces are one of the following
model spaces:

Model space Isotropy Property

E4, S4, H4 SO4 Riemannian space form
CP2, CH2 U2 Complex space form

S3 ×R, H3 ×R SO4 Riemannian symmetric
S2 × E2, S2 × S2, H2 × E2, H2 × S2, H2 ×H2 SO2 × SO2 Riemannian symmetric

Nil3 × E1, S̃L2R× E1, SO2 naturally reductive

and the product manifold {(SU2 ×U1)/U1} × E1 of the Berger 3-sphere (SU2 ×U1)/U1 equipped with naturally
reductive metric and Euclidean line E1.

This list provides all the simply connected 4-dimensional Riemannian g. o. spaces.

2.6. Two-step homogeneous geodesics

As a generalization of homogeneous geodesics, the notion of 2-step homogeneous geodesic was introduced
(see [3]).

Definition 2.2. A geodesic γ(s) starting at the origin o of a reductive homogeneous Riemannian space
M = G/K is said to be a 2-step homogeneous geodesic if it has the form

γ(s) = {expG(sX) expG(sY )} · o

for some X , Y ∈ g.

Let M = G/K be a reductive homogeneous Riemannian space with reductive decomposition g = k⊕m. Let
us assume that the Lie subspace m admits a splitting m = m1 ⊕m2 satisfying

[k,m1] ⊂ m1, [k,m2] ⊂ m2, [m1,m1] ⊂ k⊕m2, [m2,m2] ⊂ k, [m1,m2] ⊂ m1 (2.7)

and there exits a nonzero constant c such that

⟨[X,Y ]m2
, Z⟩ − c ⟨X, [Z, Y ]⟩ = 0, X, Y ∈ m1, Z ∈ m2. (2.8)

Under these assumptions, Dohira proved the following result.

Proposition 2.4. Every geodesic γ(s) staring at the origin o with initial vector X = X1 +X2 ∈ m1 ⊕m2 is represented
as

γ(s) = {expg{s(X1 − cX2)} expg{s(1 + c)X2}} · o
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Let us recall the naturally reductive homogeneous space (G×K)/∆K exhibited in Section 2.3. The Lie
subspace m is decomposed as m = m1 ⊕m2;

m1 = {(Y, 0) | Y ∈ p}, m2 = {(W,−W ) |W ∈ k}.

One can see that the splitting m = m1 ⊕m2 satisfies (2.7). Next,

(Bθ × Bθ)

∣∣∣∣
m×m

((X + V,−V ), (Y +W,−W )) =Bθ(X + V, Y +W ) + Bθ(V,W )

=2B(V,W )− B(X,Y ).

This shows that the (G×K)-invariant Riemannian metric induced from (Bθ × Bθ)|g×k satisfies (2.8) with
c = 1. Hence we can apply Dohira’s result (Proposition 2.4) to (G×K)/∆K. Then we retrieve Proposition
2.2. Although Dohira [19] does not mention, the 2-step geodesic is rewritten as

expG{s(−Xk +Xp)} · expK{2s(Xk)} = expG×K(sX).

Namely those geodesics are homogeneous ones.

3. Complex structures

3.1. Almost Käher and GCK-manifolds

Let (M, g, J) be an almost Hermitian manifold. If its almost complex structure J is integrable, then (M, g, J)
is said to be a Hermitian manifold.

The fundamental 2-form of (M, g, J) is a non-degenerate 2-form defined by

Ω(X,Y ) = g(X, JY ).

An almost Hermitian manifold (M, g, J) is said to be an almost Kähler manifold if its fundamental 2-form is
closed. Note that the fundamental 2-form of an almost Kähler manifold is symplectic. A Hermitian manifold
with closed fundamental 2-form is called a Kähler manifold. An almost Kähler manifold is said to be strict if its
almost complex structure is non-integrable.

An almost Hermitian manifold (M, g, J) is said to be a locally conformal Kähler manifold (LCK-manifold, in
short) if there exists an open covering {Uα}α∈Λ together with a family of smooth functions σα : Uα → R such
that (Uα, e

−σαg|Uα
, J |Uα

) is Kähler for all α ∈ Λ. In case Uα =M , a locally conformal Kähler manifold M is
called a globally conformal Kähler manifold (GCK-manifold, in short). On an LCK-manifoldM , ω = dσα is globally
defined and called the Lee form. The Lee form is characterized by the equation dΩ = ω ∧Ω. The vector field B
metrically dual to ω is called the Lee field. On the other hand A := JB is is called the anti-Lee field. An LCK
manifold is called a Vaisman manifold if B is parallel. On a Vaisman manifold M , the distribution spanned by A
and B is integrable. The foliation determined by this distribution is called the canonical foliation.

Chen and Piccinni [13] studied the following three kinds of foliations on arbitrary (non-Käher) LCK
manifolds:

• The foliation F defined by the Pfaff equation ω = 0.
• The foliation F⊥ generated by B.
• The foliation D⊥.

The third foliation D⊥ is defined in the following manner:
Let N be a leaf of F . Then at any point p of N , we denote by DN ;p the maximal J-invariant linear subspace of

TpN . Then we obtain a distribution DN on N by the correspondence p 7−→ DN ;p. Next by taking the orthogonal
complement (DN

p )⊥ of DN
p , we obtain an integrable distribution D⊥

N .

3.2. Hermitian model spaces

The 4-dimensional model spaces which admit compatible complex structure are classified as the following
list due to Wall [83, 84]:
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Complex space form Hermitian symmetric Kähler Globally conformal Kähler

CP 2, CH2, E4 S2 × S2, S2 × E2, S2 ×H2 F4 S3 × E1, Nil3 × E1, S̃L2R× E1

E2 ×H2, H2 ×H2 Sol40, Sol41

In this list the fundamental 2-forms of GCK-model spaces are not symplectic. On the other hand, as we will see
later the model space Nil4 admits compatible strictly almost Kähler structures.

Ovando [65] studied invariant complex structures on solvable Lie groups. She classified invariant complex
structures and invariant symplectic structures on 4-dimensional Lie groups [66]. As a result, Ovando obtained
the classification of left invariant Kähler structures on 4-dimensional Lie groups. Snow [70] also classified
invariant complex structures on 4-dimensional solvable Lie groups.

Model space Notation in [2] Notation in [6] Notation in [56] Notation in [70]

Sol4m,n r4,µ,−1−µ g−1,−1−β
4.5 U1[1, 1, 1]

Sol40 r
4,− 1

2 ,−
1
2

g
− 1

2 ,−
1
2

4.5 U1[1, 1, 1], λ = µ = 1

Sol41 d4 g−1
4.8 ⊕ g1 U3I0 H1

Nil4 n4 g4.1 U1[3] S4

Remark 3.1. Şukiloviç [71] gave a classification of left invariant metrics on 4-dimensional solvable Lie groups
in terms of curvatures.

3.3. Curve theory in almost Hermitian manifolds

Definition 3.1. If γ is a curve in a Riemannian manifold M , parametrized by arc length s, we say that γ is a
Frenet curve of osculating order r if there exist orthonormal vector fields E1, E2, · · · , Er along γ such that

γ̇ = E1, ∇g
γ̇E1 = κ1E2, ∇g

γ̇eE2 = −κ1E1 + κ2E3, · · · , (3.1)

∇g
γ̇Er−1 = −κr−2Er−2 + κr−1Er, ∇g

γ̇Er = −κr−1Er−1,

where κ1, κ2, · · · , κr−1 are positive C∞ functions of s. The function κj is called the j-th curvature of γ.

A geodesic is regarded as a Frenet curve of osculating order 1. A Riemannian circle (also called a geodesic
circle) is defined as a Frenet curve of osculating order 2 with constant κ1. Note that Riemannian circles are not
necessarily closed.

A helix of order r is a Frenet curve of osculating order r, such that all the curvatures κ1, κ2, · · · , κr−1 are
constant.

For Frenet curves in almost Hermitian manifolds, we recall the following notion:

Definition 3.2. Let γ(s) be a Frenet curve of osculating order r > 0 in an almost Hermitian manifold (M,J, g).
The complex torsions τij (1 ≤ i < j ≤ r) are smooth functions along γ defined by τij = g(Ei, JEj). A helix of
order r in (M,J, g) is said to be a holomorphic helix of order r if all complex torsions are constant. In particular
holomorphic helices of order 2 are called holomorphic circles.

3.4. J-trajectories

Let (M, g, J) be an almost Hermitian manifold. Then a regular curve γ(s) is said to be a J-trajectory of charge
q if it satisfies

∇γ̇ γ̇ = qJγ̇,

where q is a constant. On can see that every J-trajectory has constant speed. A J-trajectory is said to be normal
if it is unit speed.

In case q = 0, J-trajectories are nothing but geodesics. Moreover when (M, g, J) is an almost Kähler manifold,
then J-trajectories are Kähler magnetic trajectories with respect to the Kähler magnetic field −Ω. Thus the notion
of J-trajectory is a slight extension of Kähler magnetic trajectory on arbitrary almost Hermitian manifolds.

The second origin of the notion of J-trajectory is the geometry of holomorphically planar curves. Let
(M,J,D) be an almost complex manifold equipped with an almost complex connection D, i.e., DJ = 0. Then a
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smooth curve γ(t) in M is said to be a holomorphically planar curve (h-planar curve in short) if it remains, under
parallel translation along the curve, in the distribution generated by the vectors γ̇ and Jγ̇. Namely γ satisfies

Dγ̇ γ̇ = a(t)γ̇(t) + b(t)Jγ̇(t)

for some functions a(t) and b(t) defined along γ. This notion was introduced by Otsuki and Tashiro [64] in 1954.
When (M,J,D) is a Kähler manifold and D is the Levi-Civita connection ∇, obviously J-trajectories (Kähler
magnetic trajectories) are holomorphically planar.

When M is a Kähler manifold, then Kähler magnetic trajectories have particular properties. Indeed every
Kähler magnetic trajectory of charge q ̸= 0 is a Riemannian circle of curvature |q|.

Now let M = G/K be a homogeneous Riemannian space equipped with a G-invariant orthogonal almost
complex structure J .

By the proof of Proposition 2.1, one can confirm that a homogeneous curve γ(s) = expg(sX) · o is a J-
trajectory if and only if X satisfies

[Xk, Xm] + Um(Xm, Xm) = qJXm. (3.2)

Now let γ(s) be a normal J-trajectory of charge q in an almost Hermitian manifold M = (M,J, g). First we
observe that the first curvature κ1 is constant |q| by comparing the J-trajectory equation and the Frenet formula
(3.1). The Frenet formula implies that the first normal vector field E2 is given by E2 = ±Jγ̇. Let ε = q/|q|, then
we have E2 = ε Jγ̇ and κ1 = εq > 0.

If a Frenet curve γ in an almost Hermitian manifold (M,J, g) is a J-trajectory, then

τ12 = g(E1, JE2) = −ε.

If M is a Kähler manifold, then every J-trajectory is a holomorphic circle.

4. The space of left invariant metrics on Lie groups

Let M̃(g) be the set of all inner products on the Lie algebra g of a Lie group G. Then the group Aut(g) of Lie
algebra automorphisms acts on M̃(g) by

(a · F)(X,Y ) = F(a−1X, a−1Y ), a ∈ Aut(g), F ∈ M̃(g). (4.1)

Proposition 4.1. Let g and g′ be left invariant Riemannian metrics on a simply connected Lie group G. Denote by ⟨·, ·⟩
and ⟨·, ·⟩′, the inner products on g induced from g and g′, respectively. Then,

1. If a Lie group automorphism α ∈ Aut(G) is an isometry from (G, g) to (G, g′), then its differential α∗e : (g, ⟨·, ·⟩) →
(g, ⟨·, ·⟩′) is an isometric Lie algebra isomorphism. Namely, α∗e is a Lie algebra automorphism and satisfies

⟨α∗eX,α∗eY ⟩′ = ⟨X,Y ⟩

for all X , Y ∈ g.

2. If a ∈ Aut(g) is a linear isometry from (g, ⟨·, ·⟩) to (g, ⟨·, ·⟩′), then there exits a isometry α : (G, g) → (G, g′) such
that α∗e = a.

If two inner products lie in the same Aut(g)-orbit, then they induce isometric left invariant metrics on the
corresponding simply connected Lie group G.

This proposition says that to classify the left invariant metrics on a simply connected Lie group G up to
automorphism, it suffices to classify the inner products on g up to automorphism. It should be remarked that
the classification up to automorphism is finer in general than that up to isometry, since (G, g) and (G, g′) will be
isometric if and only if they are isometric by an isometry fixing the identity. However, such an isometry need
not be an automorphism of G, in general. Alekseevskii [1] proved that if the Lie algebra g has only real roots,
two left invariant metrics on G are isometric if and only if they are isometric by an automorphism of G (see
also Gordon and Wilson [30, Corollary 5.3]).

When g is nilpotent, Wilson [86] proved the following fact (see also [53, Proposition 1.3]).

Proposition 4.2. Let g be a nilpotent Lie algebra with corresponding connected Lie group G. If α : (G, g) → (G, g′) is
an isometry fixing the identity, then α is a Lie group automorphism.
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Now let us discuss about the moduli space of left invariant metrics.
Take two inner products F and F′ ∈ M̃(g), we introduce an equivalence relation ∼= by

F ∼= F′ ⇐⇒ ∃a ∈ Aut(g); F′ = a · F.

The quotient set M(g)/∼= is denoted by
M(g) := Aut(g)\M̃(g)

and referred as to the moduli space of left invariant metrics. In case, dimG = n, by taking a basis {e1, e2, . . . , en} of
g, we identify g with Rn via {e1, e2, . . . , en}. Then, we have an identification

M̃(g) ∼= GLnR/On.

Denote by {ϑ1, ϑ2, . . . , ϑn} the dual basis of {e1, e2, . . . , en}. Then the inner product F corresponding to F =
(Fij) ∈ Sym+

nR is expressed as

F =

n∑
i,j=1

Fijϑ
i ⊗ ϑj .

The automorphism group Aut(g) is regarded as a subgroup of GLnR. The automorphism group Aut(g) acts on
SymnR by

Aut(g)× SymnR → SymnR; a · F = t(a−1)Fa−1.

Then
((a · F )x|y) = (a · F)(x,y).

Thus the action of Aut(g) acts on SymnR is equivariant to the action of Aut(g) on M̃(g).
Here we recall the classification procedure of left invariant metrics. Any invertible matrixA ∈ GLnR defines a

left invariant metric onG by declaring the column vectors to be an orthonormal basis for g. Two matricesA1 and
A2 ∈ GLnR define the same metric if and only if A1 = A2U for some U ∈ On. This retrieves the identification
M̃ = GLnR/On Hence we obtain the double coset space representation:

M(g) = Aut(g)\GLnR/On.

To carry out the classification, first we need to calculate the automorphism group Aut(g) ⊂ GLnR relative to
the prescribed basis {e1, e2, . . . , en}. Next we look for simpler form of the representatives in M. As is well
known, GLnR has a Lie group splitting GLnR = T−

nR ·On, called the polar decomposition (or Gram-Schmidt
decomposition). Here T−

nR is the subgroup of lower triangular matrices of positive diagonal entries. For a matrix
A ∈ GLnR, we decompose it as A = TU according to the polar decomposition. Then, we may use the lower
triangular part T as a representative of [A] ∈ GLnR/On. Take a lower triangular matrix T with positive diagonal
entries as a representative of a coset [T ] ∈ GLnR/On. We look for some A ∈ Aut(g) such that A · T has a simple
form.

Here we give the procedure for determining M(nil3) of the Heisenberg algebra.

Example 4.1 (The moduli space of Heisenberg group [31, 45, 53, 69]). The Heisenberg algebra is a 3-dimensional
2-step nilpotent Lie algebra generated by the commutation relation [e1, e2] = e3. The Heisenberg algebra is
realized as 

 0 u w
0 0 v
0 0 0

 ∣∣∣∣∣∣ u, v, w ∈ R

 .

The corresponding simply connected Lie group (Heisenberg group) is realized as the linear Lie group
 1 x z + (xy)/2

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R

 .

The basis {e1, e2, e3} is extended to left invariant vector fields:

e1 =
∂

∂x
− y

2

∂

∂z
, e2 =

∂

∂y
+
x

2

∂

∂z
, e3 =

∂

∂z
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with dual coframe field
ϑ1 = dx, ϑ2 = dy, ϑ3 = dz +

1

2
(ydx− xdy).

The Heisenberg group equipped with the left invariant metric

g = (ϑ1)2 + (ϑ2)2 + (ϑ3)2 = dx2 + dy2 + {dz + 1

2
(ydx− xdy)}2

is denoted by Nil3. The Lie algebra of Nil3 is denoted by nil3. The automorphism group of the Heisenberg
algebra is given by

Aut(nil3) =


 c11 c12 0

c21 c22 0
c31 c32 c11c22 − c12c21

 ∣∣∣∣∣∣ c11, c22 ̸= 0, c11c22 − c12c21 ̸= 0


relative to {e1, e2, e3}. Take A ∈ GL3R and decomposed it as A = TU according to the polar decomposition.
Here T is a lower triangular matrix of positive diagonal entries. Then, the coset [A] ∈ GLnR/On is rewritten as
[A] = [TU ] = [T ]. By using T = (tij), we set

C =
1

t11t22

 t22 0 0
−t21 t11 0
0 0 1

 ∈ Aut(nil3).

Then we have

CT =

 1 0 0
0 1 0
0 0 t33/(t11t22)


Put λ := t33/(t11t22) > 0, then we have

M(nil3) =

Aut(nil3) ·

 1 0 0
0 1 0
0 0 λ

 ∣∣∣∣∣∣ λ > 0

 .

Thus left invariant metrics on the Heisenberg group are isometric to

dx2 + dy2 + λ−2{dz + 1

2
(ydx− xdy)}2

for some λ > 0. Note that Ha and Lee [31] chose the representativeAut(nil3) ·

 λ 0 0
0 λ 0
0 0 1

 ∣∣∣∣∣∣ λ > 0

 .

Let us study the equivalence relation (homothetic)

F ∼ F′ ⇐⇒ ∃a ∈ Aut(g) and c > 0; F′ = c a · F.

The quotient set M(g)/∼ is denoted by PM(g) (PM in the notation of [45]).
Next we set

R× ·Aut(g) := {c Id ◦ a | a ∈ Aut(g)}.

Then the quotient space PM(g) is rewritten as

PM(g) := R× ·Aut(g)\M̃ = R× ·Aut(g)\GLnR/On.

and referred as to the scale invariant moduli space of left invariant metrics.
For a matrix a ∈ GLnR, its double coset [[a]] is

[[a]] = R× ·Aut(g) · a ·On.
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Take the origin F0 ∈ GLnR/On, then the correspondence

R× ·Aut(g)\GLnR/On → PM(g) = R× ·Aut(g)\M̃(g); [[a]] 7−→ [a · F0]

is bijective.
A subset U of GLnR is said to be a system of representatives of PM(g) if

PM = {[a · F0] |A ∈ U}

holds (see [33, p. 177]).

Lemma 4.1. Let g be an n-dimensional Lie algebra. Then U ⊂ GLnR is a system of representatives of PM(g) if and only
if for each A ∈ GLnR, there exists a matrix P ∈ U such that P ∈ [[A]].

For more information on moduli spaces of left invariant metrics, see [34, 45, 54].

5. Homogeneous geodesics of Sol40

5.1. The model space Sol40
The underlying manifold of the model space Sol40 is the Cartesian 4-space R4(x, y, z, t) with group operation:

(x1, y1, z1, t1) · (x2, y2, z2, t2) = (x1 + et1x2, y1 + et1y2, z1 + e−2t1z2, t1 + t2).

The inverse element of (x, y, z, t) is given by (x, y, z, t)−1 = (−e−tx,−e−ty,−e2tz,−t).
The underlying manifold M of Sol40 is realized as the following linear Lie group

M =

 (x, y, z, t) :=

 et 0 0 x
0 et 0 y
0 0 e−2t z
0 0 0 1


∣∣∣∣∣∣∣ x, y, z, t ∈ R

 .

Note that M is isomorphic to the solvable Lie group G6(1) in [27, p. 98]. The Lie group M has no lattices [55].
The Lie algebra m of M is given explicitly by

m =


 s 0 0 u

0 s 0 v
0 0 −2s w
0 0 0 1


∣∣∣∣∣∣∣ u, v, w, s ∈ R


and is spanned by the basis {e1, e2, e3, e4} given by

e1 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , e2 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

e3 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e4 =

 1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0

 .

The left invariant vector fields determined by e1, e2, e3 and e4 are

e1 = et
∂

∂x
, e2 = et

∂

∂y
, e3 = e−2t ∂

∂z
, e4 =

∂

∂t
.

These vector fields satisfy the commutation relations:

[e1, e2] = [e1, e3] = [e2, e3] = 0, [e4, e1] = e1, [e4, e2] = e2, [e4, e3] = −2e3. (5.1)

These relations imply that m is solvable.
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5.2.

The automorphism group of m is computed by Van Thuong:

Aut(m) ∼=


 a11 a12 0 a14

a21 a22 0 a24
0 0 a33 a34
0 0 0 1

 ∈ GL4R

∣∣∣∣∣∣∣ a33 ̸= 0, a11a22 − a12a21 ̸= 0

 .

By virtue of this result, he obtained the following fact ([80, Theorem 4.1]):

Lemma 5.1. Every left invariant Riemannian metric on M is isometric to the one defined by an orthonormal basis
{e1, e2, b13e1 + e3, b44e4}, where b44 > 0 and b13 ≥ 0. The metric has the expression:

e−2t(dx2 + dy2) + e4t(1− 2b13 + b213)dz
2 − 2b13e

tdxdz +
1

b244
dt2.

We concentrate on the left invariant Riemannian metric g determined by the condition {e1, e2, e3, e4} is
orthonormal and given by

g = e−2t(dx2 + dy2) + e4tdz2 + dt2.

The homogenous Riemannian space (M, g) is denoted by Sol40. The metric g has particular property. See the
remark below.

Moreover (M, g) admits a pair of orthogonal complex structures {J+, J−};

J+e1 = e2, J+e2 = −e1, J+e3 = e4, J+e4 = −e3,

J−e1 = e2, J−e2 = −e1, J−e3 = −e4, J−e4 = e3,

The Kähler forms
Ω±(X,Y ) = g(X,J±Y )

satisfies
dΩ± = ω± ∧Ω±, ω± = 2dt.

Hence (Sol40, g, J+) and (Sol40, g, J−) are globally conformal Kähler with common Lee form

ω := ω+ = ω− = 2dt,

common Lee field
B := B+ = B− = 2e4

and the anti-Lee fields
A+ = −2e3, A− = 2e3.

Remark 5.1. In our previous work [21] we chose the complex structure J := −J− which is compatible to the
geometric structure (see [84]). The resulting Hermitian surface (Sol40, g, J) is a globally conformal Kähler surface
with Lee form −2dt. The Lee field is −2e4. The anti-Lee field is 2e3. Moreover the Hermitian metric coincides
with Tricerri metric [75]. The globally conformal Kähler surface (Sol40, g, J) is the universal covering of the Inoue
surface of type S0 [38].

5.3. Levi-Civita connection

The Levi-Civita connection ∇ is described as

∇e1e1 = e4, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = −e1,
∇e2e1 = 0, ∇e2e2 = e4, ∇e2e3 = 0, ∇e2e4 = −e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −2e4, ∇e3e4 = 2e3,
∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0.

Hence, we get
R(e1, e2)e2 = −e1, R(e1, e3)e3 = 2e1, R(e1, e4)e4 = −e1,

R(e2, e3)e3 = 2e2, R(e2, e4)e4 = −e2, R(e3, e4)e4 = −4e3.
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Introducing an endomorphism field P by

PX = g(X, e4)e4 =
1

4
ω±(X)B±.

Then the Riemannian curvature is expressed by the following formula due to D’haene [15]:

R(X,Y )Z = 2(X ∧ Y )Z − 3((PX ∧ Y )Z + (X ∧ PY )Z)

− 1

2
( g(J+Y,Z)J+X − g(Z, J+X)J+Y + 2g(X, J+Y )J+Z )

− 1

2
( g(J−Y,Z)J−X − g(Z, J−X)J−Y + 2g(X, J−Y )JZ ),

where
(X ∧ Y )Z = g(Y, Z)X − g(Z,X)Y.

5.4. Reductive decomposition

The full isometry group Iso(Sol40) of Sol40 is given by Sol40 ⋊ (O2 × Z/2Z) and has countably infinite distinct
lattices [55].

The identity component G of the full isometry group Iso(Sol40) is

G =


 et cos θ −et sin θ 0 x

et sin θ et cos θ 0 y
0 0 e−2t z
0 0 0 1


∣∣∣∣∣∣∣ x, y, z,∈ R, eiθ ∈ S1

 ∼= Sol40 ⋊ SO(2).

The isotropy subgroup at the origin o = (0, 0, 0, 0) is

K =


 cos θ − sin θ 0 0

sin θ cos θ 0 0
0 0 1 0
0 0 0 1


∣∣∣∣∣∣∣ eiθ ∈ S1

 ∼= SO(2).

The Lie algebra of G is given by

g =


 u4 −u5 0 u1

u5 u4 0 u2
0 0 −2u4 u3
0 0 0 1


∣∣∣∣∣∣∣ u1, u2, u3, u4, u5 ∈ R,

 .

Obviously m ⊂ g and m is a Lie subalgebra of g. The Lie algebra g is spanned by e1, e2, e3, e4 and

e5 =

 0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .

The commutation relations of g are described as

[e1, e2] = [e1, e3] = [e2, e3] = 0,

[e4, e1] = e1, [e4, e2] = e2, [e4, e3] = −2e3,

[e5, e1] = e2, [e5, e2] = −e1.

The isotropy algebra k is spanned by e5. The tangent space of Sol40 at the origin is identified with the Lie
subalgebra

m =


 u4 0 0 u1

0 u4 0 u2
0 0 −2u4 u3
0 0 0 1


∣∣∣∣∣∣∣ u1, u2, u3, u4 ∈ R,

 ∼= sol40.
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One can confirm that G/K is a reductive homogeneous Riemannian space.
Then Um is computed as

Um(e1, e1) = e4, Um(e1, e2) = 0, Um(e1, e3) = 0, Um(e1, e4) = −1

2
e1,

Um(e2, e2) = e4, Um(e2, e3) = 0, Um(e2, e4) = −1

2
e2,

Um(e3, e3) = −2e4, Um(e3, e4) = e3, Um(e4, e4) = 0.

Remark 5.2 (Ad(SO(2))-invariant metrics). D’haene [15] proved that any inner product invariant under
Ad(SO(2))-action is  λ 0 0 0

0 λ 0 0
0 0 λ µ
0 0 µ λ

 , λ > |µ|.

up to automorphisms. The metric has the expression:

λ(e−2t(dx2 + dy2) + e4tdz2 + dt2) + 2µe2t dzdt.

5.5. Homogeneous geodesics

The unit speed homogeneous geodesics in Sol40 are classified as follows:

Proposition 5.1. The only unit speed homogeneous geodesics of Sol40 starting at the origin are:

γ1(s) = expm(sX) · o, X = X1e1 +X2e2 ±
1√
3
e3, (X1)2 + (X2)2 =

2

3
or

γ2(s) = expm(se4) · o = (0, 0, 0, 0, s).

The homogeneous geodesics γ1(s) and γ2(s) are mutually orthogonal.

Proof. Let us investigate the criterion [Xm, Xk] = Um(Xm, Xm). Take a tangent vector

X = X1e1 +X2e2 +X3e3 +X4e4 +X5e5 ∈ g,

then we obtain
[Xm, Xk] = [X1e1 +X2e2 +X3e3 +X4e4, X

5e5] = X2X5e1 −X1X5e2

and
Um(Xm, Xm) = −(X1X4)e1 − (X2X4)e2 + 2X3X4e3 + {(X1)2 + (X2)2 − 2(X3)2}e4.

Thus we obtain the system:

−X1X4 −X2X5 = 0, X1X5 −X2X4 = 0, X3X4 = 0, (X1)2 + (X2)2 − 2(X3)2 = 0.

From this system, the vector X has the form

X = X1e1 +X2e2 ±
√

(X1)2 + (X2)2
√
2

e3 ̸= 0, (5.2)

or
X = X4e4 +X5e5, (X4)2 + (X5)2 > 0 (5.3)

In the former case, we may assume that X is a unit vector. Then X is rewritten as:

X = X1e1 +X2e2 ±
1√
3
e3, (X1)2 + (X2)2 =

2

3
.

In the latter case, since [e4, e5] = 0, we have

expg(s(X
4e4 +X5e5)) · o = expm(s(X

4e4)) · {exp(s(X5e5))k · o} = exp(s(X4e4))m · o.

Thus, under the arc length parametrization, the geodesic is parametrized as
exp(se4)m · o = (0, 0, 0, s).

This result means that Sol40 is far from naturally reductive homogeneous spaces.
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5.6. Homogeneous J-trajectories

Let us study homogeneous J-trajectories γ(s) = exp(sX) · o of Sol40 with respect to the complex structure
J = −J−. For the tangent vector X = X1e1 +X2e2X

3e3 +X4e4 +X5e5 ∈ g, γ(s) = expg(sX) · o is a J-trajectory
with charge q ̸= 0 if and only if

−X1X4 −X2X5 = qX2, −X2X4 +X1X5 = −qX1, 2X3X4 = −qX4, (X1)2 + (X2)2 − 2(X3)2 = qX3.

When X5 = 0, we deduce that X has the form.

X = −q
2
e3 +X4e4.

This result retrieves [21, Theorem 2]. If we choose the arc length parameter s, then q2 + 4(X4)2 = 4. Moreover
expg(sX) · o has positive constant first curvature |q| and vanishing second curvature.

Next we consider the vector X with X5 ̸= 0. Then X has one of the following forms:

X1e1 +X2e2 +X3e3 − qe5, X3e3 +X5e5, −q
2
e3 +X4e4 +X5e5.

In the second case we have

expg(sX) · o = expm(s(X
3e3)) expk(s(X

5e5)) · o = expm(s(X
3e3)).

In the third case

expg(sX) · o = expm(s(−
q
2e3 +X4e4)) expk(s(X

5e5)) · o = expm(s(−
q
2e3 +X4e4)).

Hence we obtain the following classification which generalizes [21, Theorem 2].

Theorem 5.1. The homogeneous J-trajectories expg(sX) have one of the following form:

expm

(
s
(
−q
2
e3 +X4e4

))
,

expm
(
s
(
X1e1 +X2e2 +X3e3 − qe5

))
,

expm(s(X
3e3)).

We may replace J by J+ or J−. The classification of homogeneous J+-trajectories and J−-trajectories are
quite analogus to the above classification, so we omit those here.
Remark 5.3. Some minimal submanifolds in Sol40 are investigated in [22].

6. Homogeneous geodesics of Sol41

6.1. The model space Sol41
According to Wall [83, 84], the underlying manifold of the model space Sol41 is realized as the following closed

group: (x, y, u, v) =

1 v u
0 y x
0 0 1

 ∣∣∣∣∣∣ x, y, u, v ∈ R, y > 0


of the affine transformation group GL2C⋉C2 of complex Euclidean plane C2.

The group operation is given explicitly by

(x1, y1, u1, v1) · (x2, y2, u2, v2) = (x1 + y1x2, y1y2, u1 + u2 + v1x2, v1y2 + v2).

The inverse element of (x, y, u, v) is

(x, y, u, v)−1 = (−x/y, 1/y,−u+ xv/y,−v/y).

The Lie group Sol41 acts on the region

C×H = {(w, z) ∈ C2 | Im z > 0}

123 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Homogeneous Geodesics of 4-dimensional Solvable Lie Groups

of C2 via the affine action [84, p. 124]:1 a4 a3
0 a2 a1
0 0 1

wz
1

 =

w + a4z + a3
a2z + a1

1

 .

This action is transitive with trivial isotropy. Hence Sol41 is identified with C×H. In fact, the formula1 v u
0 y x
0 0 1

 0√
−1
1

 =

u+
√
−1v

x+
√
−1y

1


shows that the orbit of (0,

√
−1) ∈ C×H coincides with the whole C×H.

The nilradical of Sol41 is the Heisenberg group

Nil3 =

(x, 1, u, v) =

1 v u
0 1 x
0 0 1

 ∣∣∣∣∣∣ x, u, v ∈ R

 .

One can see that 1 v u
0 y x
0 0 1

 =

1 v/y u
0 1 x
0 0 1

1 0 0
0 y 0
0 0 1

 .

This shows that Sol41 = Nil3 ⋊R+. As explained in [27, p. 101], the underlying manifold of the model space Sol41
is the connected simply connected solvable Lie group G8 in the classification [27] by Filipkiewicz.

The center Z = Z(Sol41) is

Z =

(0, 1, u, 0) =

1 0 u
0 1 0
0 0 1

 ∣∣∣∣∣∣ x, u, v ∈ R

 .

The quotient group Sol41/Z is isomorphic to the 3-dimensional solvable Lie group Sol3.

6.2. The Lie algebra sol41

The Lie algebra sol41 of Sol41 is given by
0 t4 t3
0 t2 t1
0 0 0

 ∣∣∣∣∣∣ t1, t2, t3, t4 ∈ R

 .

Let us take the basis

e1 =

0 0 0
0 0 1
0 0 0

 , e2 =

0 0 0
0 1 0
0 0 0

 , e3 =

0 0 1
0 0 0
0 0 0

 , e4 =

0 1 0
0 0 0
0 0 0

 .

Then the commutation relations are

[e1, e2] = −e1, [e1, e4] = −e3, [e2, e4] = −e4.

Remark 6.1. The Lie algebra sol41 is isomorphic to the following Lie algebras: d4 in [2], g−1
4.8 ⊕ g1 in [6], U3I0 in

[56] and s4 in [33].

The exponential map exp : sol41 → Sol41 is surjective and given explicitly by

exp

s
0 t4 t3
0 t2 t1
0 0 0

 =

1 t4(e
st2 − 1)/t2 t4t1(e

st2 − 1− t2s)/t
2
2 + t3s

0 est2 t1(e
st2 − 1)/t2

0 0 1

 . (6.1)
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The left Maurer-Cartan form of Sol41 is ϑ1 e1 + ϑ2 e2 + ϑ3 e3 + ϑ4 e4, where

ϑ1 =
dx

y
, ϑ2 =

dy

y
, ϑ3 = du− v

y
dx, ϑ4 = dv − v

y
dy.

This formula shows that the left translated vector fields of e1, e2, e3 and e4 are given by

e1 = y
∂

∂x
+ v

∂

∂u
, e2 = y

∂

∂y
+ v

∂

∂v
, e3 =

∂

∂u
, e4 =

∂

∂v
.

Remark 6.2. Tricerri [75] chose e3 = −∂u and e4 = −∂v.

For topological studies on Sol41 and its compact quotients, we refer to [35, 39, 81] and references therein.

6.3. Tricerri metric

Let us introduce a left invariant Riemannian metric g so that {e1, e2, e3, e4} is orthonormal with respect to it.
Then g is computed as

g =
(1 + v2)

y2
(dx2 + dy2)− 2v

y
(dxdu+ dydv) + du2 + dv2.

This metric is nothing but the so-called Tricerri metric on C×H [75].

6.4. The Levi-Civita connection

The Levi-Civita connection ∇ is described as

∇e1e1 = e2, ∇e1e2 = −e1, ∇e1e3 = 1
2e4, ∇e1e4 = − 1

2e3

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = 0

∇e3e1 = 1
2e4, ∇e3e2 = 0, ∇e3e3 = 0, ∇e3e4 = − 1

2e1

∇e4e1 = 1
2e3, ∇e4e2 = e4, ∇e4e3 = − 1

2e1, ∇e4e4 = −e2.

The Riemannian curvature is given by

R(e1, e2)e2 = −e1, R(e2, e3)e4 = −1

2
e1 R(e1, e3)e3 =

1

4
e1,

R(e1, e4)e4 =
1

4
e1, R(e2, e4)e4 = −e2, R(e1, e4)e3 = −1

2
e2,

R(e3, e4)e4 =
1

4
e3, R(e1, e4)e2 = −1

2
e3.

The sectional curvatures Kij = K(ei ∧ ej) of a tangent plane spanned by ei and ej are given by

K12 = K24 = −1, K13 = K14 = K34 =
1

4
, K23 = 0.

The scalar curvature is − 5
2 .

The full isometry group Iso(Sol41) of Sol41 is Sol41 ⋊D4. In particular, the identity component Iso◦(Sol
4
1) of

Iso(Sol41) is Sol41. For the crystallographic group of Sol41, see [78].
Thus we represent Sol41 by Sol41 = Sol41/{Id} as a reductive homogeneous space with trivial isotropy algebra

and Lie subspace m = sol41.
The symmetric tensor Um is given by

Um(e1, e1) = e2, Um(e1, e2) = −1

2
e1, Um(e1, e3) =

1

2
e4, Um(e1, e4) = 0,

Um(e2, e2) = 0, Um(e2, e3) = 0, Um(e2, e4) =
1

2
e4,

Um(e3, e3) = 0, Um(e3, e4) = −1

2
e1, Um(e4, e4) = −e2.
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6.5. Homogeneous geodesics

Homogeneous geodesics starting at the origin are classified as follows (This corrects [23, Corollary 6.7]):

Proposition 6.1. The unit speed homogeneous geodesics starting at the origin are given by

γ(s) = exp (s (±be1 + ae2 ∓ ae3 + be4)) , a2 + b2 =
1

2
, b ̸= 0.

or
γ(s) = exp(s(ae2 + be4)), a2 + b2 = 1 (6.2)

In particular exp(se2) = (0, es, 0, 0) and exp(se4) = (0, 1, 0, s) are homogeneous geodesics.

Proof. For a vector X = X1e1 +X2e2 +X3e3 +X4e4 ∈ sol41, γ(s) = exp(sX) is a homogeneous geodesic if and
only if Um(X,X) = 0. The vector Um(X,X) is computed as

Um(X,X) = −(X1X2 +X3X4)e1 + ((X1)2 − (X4)2)e2 + (X1X3 +X2X4)e4.

Hence X has the form
X = ±X4e1 +X2e2 ∓X2e3 +X4e4, X4 ̸= 0

or
X = X2e2 +X3e3.

If we assume that exp(sX) is unit speed, then in the former case, we have

X = ±X4e1 +X2e2 ∓X2e3 +X4e4, (X2)2 + (X4)2 =
1

2
, X4 ̸= 0.

In the latter case
X = X2e2 +X3e3, (X2)2 + (X3)2 = 1.

Take a unit vector X = ae2 + be4, then Y = −be2 + ae4 is orthogonal to X and both the homogeneous curves
exp(sX) and exp(sY ) are geodesics.

Corollary 6.1. There exits a pair of mutually orthogonal homogeneous geodesics starting at the origin.

Homogeneous J-trajectories are classified in our previous work [23, Corollary 6.6]

Proposition 6.2. The unit speed homogenous J-trajectories of charge q in Sol41 are represented as exp(sX) with
X = −qe1 + ae2 + be3 for some constants a and b satisfying q2 + a2 + b2 = 1.

6.6. Problem

In [17], Codazzi hypersurfaces and totally umbilical hypersurfaces in Sol40 are classified. Here we propose
the following problem:

Problem 1. Classify Codazzi hypersurfaces and totally umbilical hypersurfaces in Sol41.

Some minimal submanifolds in Sol41 are investigated in [24].

7. Homogeneous geodesics of Sol4m,n

7.1. The model space Sol4m,n
Take a positive integer m, n, consider the cubic equation:

f(λ) = λ3 −mλ2 + nλ− 1 = 0.

We assume that this cubic equation has three distinct positive roots {eα, eβ , eγ} so that α > β > γ. Then we have
α+ β + γ = 0 and

m = eα + eβ + e−(α+β), n = eα+β + e−α + e−β .
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We introduce a representation

Tm,n : R(t) → GL3R; Tm,n(t) =

 eαt 0 0
0 eβt 0
0 0 eγt

 .

Then the semi-direct product R×Tm,n
R3(x, y, z) is realized as the linear Lie group


eαt 0 0 x
0 eβt 0 y
0 0 e−(α+β)t z
0 0 0 1


∣∣∣∣∣∣∣∣ x, y, z, t ∈ R

 .

The semi-direct products R×Tm,n
R3(x, y, z) and R×Tm′,n′ R3(x, y, z) are isomorphic each other if and only if

two matrices  α 0 0
0 β 0
0 0 −(α+ β)

 ,

 α′ 0 0
0 β′ 0
0 0 −(α′ + β′)


are proportional. There are infinitely many isomorphism classes.

Remark 7.1. We assume that the cubic equation has three distinct positive roots. If we permit the case of two
equal roots which occurs when m2n2 + 18mn = 4(m3 + n3) + 27. One can see that this condition is equivalent
to α = β = 1. As pointed out by Wall [83], the semi-direct product R×Tm,n R3(x, y, z) with α = β = 1 coincides
with the underlying Lie group of Sol40.

7.2.

The Lie algebra of R×Tm,n
R3(x, y, z) is given explicitly by

 αs 0 0 u
0 βs 0 v
0 0 −(α+ β)s w
0 0 0 1


∣∣∣∣∣∣∣ u, v, w, s ∈ R


and is spanned by the basis {e1, e2, e3, e4} given by

e1 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , e2 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

e3 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e4 =

 α 0 0 0
0 β 0 0
0 0 −(α+ β) 0
0 0 0 0

 .

The non-trivial commutation relations are

[e4, e1] = α e1, [e4, e2] = β e2, [e4, e3] = −(α+ β)e3. (7.1)

These relations imply that the Lie algebra of R×Tm,n R3(x, y, z) is solvable.

7.3. Levi-Civita connection

We take the left invariant Riemannian metric

g = e−2αtdx2 + e−2βtdy2 + e2(α+β)tdz2 + dt2.

The homogeneous Riemannian space (R×Tm,n
R3(x, y, z), g) is denoted by Sol4m,n. We may regard Sol4m,n = Sol40

when α = β = 1.
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In case m = n, we obtain β = 0 and the metric is

g = e−2αtdx2 + dy2 + e2αtdz2 + dt2.

Hence Sol4n,n is regarded as Sol3 × E1. Note that if β = 0, then

m = n = 1 + 2 coshα > 3.

The Levi-Civita connection ∇ is described as

∇e1e1 = αe4, ∇e1e2 = 0, ∇e1e3 = 0, ∇e1e4 = −αe1,
∇e2e1 = 0, ∇e2e2 = βe4, ∇e2e3 = 0, ∇e2e4 = −βe2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −(α+ β)e4, ∇e3e4 = (α+ β)e3,
∇e4e1 = 0, ∇e4e2 = 0, ∇e4e3 = 0, ∇e4e4 = 0.

7.4. Reductive decomposition

When m ̸= n, the full isometry group of Sol4m,n is Sol4m,n ⋊ (Z/2Z)3 (see [55, Theorem 3.5]). When m = n,
we know that the maximal compact subgroup of Sol3 ×R is D4 × Z/2Z ([79, Lemma 4.4]). Moreover the full
isometry group of Sol4n,n is (Sol3 ×R)⋊ (D4 × Z/2Z) ([36, §7.3], [55, Theorem 3.4]).

For the crystallographic group of Sol4m,n, we refer to Van Thuong’s Thesis [78] as well as Yoo’s article [87].
Kowalksi and Tricerri proved the following characterization.

Theorem 7.1 ([50]). Each complete, simply connected and irreducible Riemannian 4-manifold admitting a homogeneous
Riemannian structure of type T2 are the model space F4 or Sol4m,n with α ̸= 0, β ̸= 0 and α+ β ̸= 0.

The identity component of the full isometry group Iso(Sol4m,n) is Sol4m,n. Thus we regard Sol4m,n as a reductive
homogeneous Riemannian space Sol4m,n/{e} with Lie subspace m = solm,n. The tensor Um is computed as

Um(e1, e1) = αe4, Um(e1, e2) = 0, Um(e1, e3) = 0, Um(e1, e4) = −α
2
e1,

Um(e2, e2) = βe4, Um(e2, e3) = 0, Um(e2, e4) = −β
2
e2,

Um(e3, e3) = −(α+ β)e4, Um(e3, e4) =
α+ β

2
e3, Um(e4, e4) = 0.

Note that Nil4/{e} is a generalized affine symmetric space of infinite order ([47, p. 153]).

7.5. Homogeneous geodesics

The unit speed homogeneous geodesics in Sol4m,n are classified as follows:

Proposition 7.1. The unit speed homogeneous geodesics in Sol4m,n starting at the origin e are described as follows:

1. When α ̸= 0, β ̸= 0 and α+ β ̸= 0,

exp(s(X1e1 +X2e2 +X3e3)), (X1)2 + (X2)2 + (X3)2 = 1, α(X1)2 + β(X2)2 − (α+ β)(X3)2 = 0

or exp(se4).

2. When m = n,
exp(s(ae1 ±

√
1− 2a2e2 ± ae3)), 1− 2a2 ≥ 0.

Proof. Take a tangent vector
X = X1e1 +X2e2 +X3e3 +X4e4 ∈ solm,n,

we have

Um(Xm, Xm) = −α(X1X4)e1 − β(X2X4)e2 + (α+ β)X3X4e3 + {α(X1)2 + β(X2)2 − (α+ β)(X3)2}e4.
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1. Under the assumption α ̸= 0, β ̸= 0, and α+ β ̸= 0, we get the system

X1X4 = 0, X2X4 = 0, X3X4 = 0, α(X1)2 + β(X2)2 − (α+ β)(X3)2 = 0.

Thus X has the form

X = X1e1 +X2e2 +X3e3, α(X1)2 + β(X2)2 − (α+ β)(X3)2 = 0

or X = X4e4.

If exp(sX) is arc length parametrized, the former case is rewritten as

X = X1e1 +X2e2 +X3e3, (X1)2 + (X2)2 + (X3)2 = 1, α(X1)2 + β(X2)2 − (α+ β)(X3)2 = 0.

In the latter case, exp(sX) = exp(se4).

2. When α = 1 and β = 0, we get
(X1)2 − (X3)2 = 0

If exp(sX) is arc length parametrized, then

X = ae1 ±
√

1− 2a2e2 ± ae3, 1− 2a2 ≥ 0.

Remark 7.2. Matsushita [61] considered the following left invariant almost complex structures on Sol4m,n:

J+e1 = e2, J+e2 = −e1, J+e3 = e4, J+e4 = −e3,

J−e1 = e2, J−e2 = −e1, J−e3 = −e4, J−e4 = e3.

He confirmed that both the almost complex structures are non-integrable. In addition he also confirmed that
both the almost Hermitian structures (g, J+) and (g, J−) are not almost Kähler.

8. Homogeneous geodesics in Nil4

8.1. The model space Nil4

Let us consider the representation

ρ(t) = exp

t
 0 1 0

0 0 1
0 0 0

 =

 1 t t2/2
0 1 t
0 0 1


of (R(t),+) over R3(x, y, z). Then the semi-direct product R×ρ R3 is the Cartesin 4-space R4(x, y, z, t) with
multiplication:

(x1, y1, z1, t1)(x2, y2, z2, t2) = (x1 + x2 + t1y2 + t21z2/2, y1 + y2 + t1z2, z1 + z2, t1 + t2).

The semi-direct product R×ρ R3 is realized as the linear Lie group
 1 t t2/2 x

0 1 t y
0 0 1 z
0 0 0 1


∣∣∣∣∣∣∣ x, y, z, t ∈ R


with Lie algebra 

 0 s 0 u
0 0 s v
0 0 0 w
0 0 0 0


∣∣∣∣∣∣∣ u, v, w, s ∈ R

 .
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The left Maurer-Cartan form of R×ρ R3 is given by

ϑ1e1 + ϑ2e2 + ϑ3e3 + ϑ4e4,

where

ϑ1 = dx− tdy +
t2

2
dz, ϑ2 = dy − tdz, ϑ3 = dz, ϑ4 = dt,

e1 =

 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , e2 =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , e3 =

 0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , e4 =

 0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

The Lie algebra is spanned by {e1, e2, e3, e4}. The non-trivial commutation relations are

[e4, e2] = e1, [e4, e3] = e2.

The center is spanned by e1. By left translation, we obtain left invariant vector fields:

e1 =
∂

∂x
, e2 = t

∂

∂x
+

∂

∂y
, e3 =

t2

2

∂

∂x
+ t

∂

∂y
+

∂

∂z
, e4 =

∂

∂t
.

Remark 8.1. D’haene [16] chose

e1 =
∂

∂t
, e2 =

∂

∂x
, e3 = t

∂

∂x
+

∂

∂y
, e4 =

t2

2

∂

∂x
+ t

∂

∂y
+

∂

∂z
.

The non-trivial commutation relations are

[e1, e3] = e2, [e1, e4] = e3.

On the other hand, Wall [83] chose the basis so that

[e4, e1] = e2, [e4, e2] = e3.

Here we mention the following fundamental result.

Proposition 8.1 ([57, 67]). Let n be a 4-dimensional nilpotent Lie algebra. Then n is isomorphic to one of the following
Lie algebras:

1. Abelian Lie algebra R4.

2. The direct sum nil3 ⊕R, where nil3 is the 3-dimensional Heisenberg algebra.

3. The Lie algebra nil4.

8.2. The space of left invariant metrics

Lauret [53] and Van Thuong [80] studied the space of left invariant metrics on Nil4. The automorphism group
of nil4 is described as ([53, p. 151],[80]. See also [33, p. 180]):

Aut(nil4) ∼=


 a33(a44)

2 a23a44 a13 a14
0 a33a44 a23 a24
0 0 a33 a34
0 0 0 a44

 ∈ GL4R

∣∣∣∣∣∣∣ a33, a44 ̸= 0

 .

The maximal compact subgroup of Aut(nil4) is ([79, Lemma 4.2]):
 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 ,

 −1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

 1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

 −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ∼= (Z/2Z)2.

The left invariant metrics on Nil4 are classified (up to Aut(Nil4)) by Lauret [53] and Van Thuong [80]. The
moduli space M(nil4) has three parameters.

Van Thuong’s expression is the following one ([80, Theorem 3.1]):
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Proposition 8.2. Any left invariant metric on Nil4 is determined by the condition that

{b11e1, b12e1 + b22e2, e3, e4}, b11, b22 > 0, b12 ≥ 0.

is orthonormal with respect to it. Hence any left invariant metric is isometric to

{(b11)2 + (b12)
2}(ϑ1)2 + (b22)

2(ϑ2)2 + b12b22{ϑ1 ⊗ ϑ2 + ϑ2 ⊗ ϑ2}+ (ϑ3)2 + (ϑ4)2.

for some b11, b12 and b22.

On the other hand, Lauret’s representation [53] is the following one.

Proposition 8.3. The moduli space M(nil4) of Nil4 is expressed as
 1 0 0 0

0 1 0 0
0 0 a b
0 0 b c

 · F0

∣∣∣∣∣∣∣ ac− b2 > 0

 .

Here F0 is the inner product
F0 = (ϑ1)2 + (ϑ2)2 + (ϑ3)2 + (ϑ4)2.

Thus every left invariant metric on Nil4 is isometric to

ga,b,c := (ϑ1)2 + (ϑ2)2 +
b2 + c2

(ac− b2)2
(ϑ3)2 +

a2 + b2

(ac− b2)2
(ϑ4)2 − b(a+ c)

(ac− b2)2
{ϑ3 ⊗ ϑ4 + ϑ4 ⊗ ϑ3}

for some a, b and c.

Hashinaga [33, Lemma 3.4] described the moduli space of left invariant metrics up to automorphims and
homotheties (scalings):

Proposition 8.4. The subset 
 1 µ 0 0

0 1 0 0
0 0 λ 0
0 0 0 1


∣∣∣∣∣∣∣ λ > 0, µ ∈ R

 ⊂ GL4R

is a system of representatives of PM(nil4). The left invariant metrics corresponding to the above representatives are
expressed as

(ϑ1)2 + (1 + µ2)(ϑ2)2 − µ(ϑ1 ⊗ ϑ2 + ϑ2 ⊗ ϑ1) + λ−2(ϑ3)2 + (ϑ4)2

for some λ > 0 and µ ∈ R.

Remark 8.2. D’haene [16] proposed to study the 4-parameter family {gτ1,τ2,τ3,α} of left invariant metrics with
orthonormal basis: {

e1,
e2√
τ2
,
e3 − αe1√
τ3 − α2

,
e4√
τ1

}
, τ1, τ2, τ3 > 0, α ̸= ±

√
τ3.

8.3. Levi-Civita connection

In this article, we choose a left invariant Riemannian metric

g = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3 + ϑ4 ⊗ ϑ4 (8.1)

which is invariant under Nil4 ⋊ (Z/2Z)2. Then we obtain

dϑ1 = dy ∧ dz − tdz ∧ dt = ϑ2 ∧ ϑ3 − ϑ2 ∧ ϑ4, dϑ2 = dx ∧ dt = ϑ1 ∧ ϑ4, dϑ3 = dϑ4 = 0.

By using the first structure equations, we obtain the following table of Levi-Civita connections:

∇e1e2 =
1

2
e4, ∇e1e4 = −1

2
e2,
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∇e2e1 =
1

2
e4, ∇e2e3 =

1

2
e4, ∇e2e4 = −1

2
(e1 + e3),

∇e3e2 =
1

2
e4, ∇e3e4 = −1

2
e2,

∇e4e1 = −1

2
e2, ∇e4e2 =

1

2
(e1 − e3), ∇e4e3 =

1

2
e2.

The Riemannian curvature R is described as

R(e1, e2)e1 = −1

4
e2, R(e1, e2)e2 =

1

4
(e1 + e3), R(e1, e2)e3 = −1

4
e2, R(e1, e2)e4 = 0,

R(e1, e3)e1 = R(e1, e3)e2 = R(e1, e3)e3 = R(e1, e3)e4 = 0,

R(e1, e4)e1 = −1

4
e4, R(e1, e4)e2 = 0, R(e1, e4)e3 =

1

4
e4, R(e1, e4)e4 =

1

4
(e1 − e3),

R(e2, e3)e1 =
1

4
e2, R(e2, e3)e2 = −1

4
(e1 + e3), R(e2, e3)e3 =

1

4
e2, R(e2, e3)e4 = 0,

R(e2, e4)e1 = 0, R(e2, e4)e2 =
1

2
e4, R(e2, e4)e3 = 0, R(e2, e4)e4 = −1

2
e2,

R(e3, e4)e1 =
1

4
e4, R(e3, e4)e2 = 0, R(e3, e4)e3 =

3

4
e4, R(e3, e4)e4 = −1

4
e1 −

3

4
e3.

The sectional curvatures are given by

K12 =
1

4
, K13 = 0, K14 =

1

4
, K23 =

1

4
, K24 = −1

2
, K34 = −3

4
.

The Ricci tensor field is given by

Ric =

 1/2 0 0 0
0 0 0 0
0 0 −1/2 0
0 0 0 −1.

 .

8.4. Left invariant symplectic forms

Take a left invariant 2-form

Ω = Ω12 ϑ
1 ∧ ϑ2 +Ω13 ϑ

1 ∧ ϑ3 +Ω14 ϑ
1 ∧ ϑ4 +Ω23 ϑ

2 ∧ ϑ3 +Ω24 ϑ
2 ∧ ϑ4 +Ω34 ϑ

3 ∧ ϑ4,

The exterior differentials of the basis of 2-forms are given by

d(ϑ1 ∧ ϑ2) = dx ∧ dz ∧ dt− t dy ∧ dz ∧ dt, d(ϑ1 ∧ ϑ3) = −dy ∧ dz ∧ dt

and d(ϑi ∧ ϑj) = 0 for other i, j ∈ {1, 2, 3, 4} with i < j. Hence the space of all left invariant closed 2-forms is
given by

{Ω = Ω14 ϑ
1 ∧ ϑ4 +Ω23 ϑ

2 ∧ ϑ3 +Ω24 ϑ
2 ∧ ϑ4 +Ω34 ϑ

3 ∧ ϑ4 |Ω14, Ω23, Ω24, Ω34 ∈ R}.
Ovando proved that there exists a 4-parameter family of left invariant symplectic forms on Nil4.

Proposition 8.5 ([66]). Left invariant symplectic forms on Nil4 have the form

Ω = Ω14 ϑ
1 ∧ ϑ4 +Ω23 ϑ

2 ∧ ϑ3 +Ω24 ϑ
2 ∧ ϑ4 +Ω34 ϑ

3 ∧ ϑ4, Ω14, Ω23, Ω24, Ω34 ∈ R

satisfying Ω14 ̸= 0 and Ω23 ̸= 0.

Proof. A left invariant closed 2-form Ω is non-degenerate if and only if Ω14Ω23 ̸= 0.

By using Ω and the metric g, we obtain a 4-parameter family of left invariant almost complex structures
defined by

g(X,JY ) = Ω(X,Y ), X, Y ∈ nil4.

As Wall proved, there is no left invariant complex structures on Nil4.
In this article, we only consider the following symplectic forms:

Ω+ = ϑ1 ∧ ϑ4 + ϑ2 ∧ ϑ3, Ω− = ϑ1 ∧ ϑ4 − ϑ2 ∧ ϑ3.

The corresponding almost complex structures are

J+e1 = e4, J+e2 = −e3, J+e3 = e2, J+e4 = −e1,

J−e1 = e4, J−e2 = e3, J−e3 = −e2, J−e4 = −e1.
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8.5. The reductive decomposition of Nil4

The full isometry group of (Nil4, g) is Nil4 ⋊ (Z/2Z)3. The action of Z/2Z on Nil4 is described as:

(x, y, z, t) 7−→ (−x,−y,−z, t), (x, y, z, t) 7−→ (x,−y, z,−t).

The identity component of Iso(Nil4, g) is Nil4. We regard Nil4 as a reductive homogeneous Riemannian space
Nil4/{e} with Lie subspace m = nil4. Then the tensor Um is given by

Um(e1, e2) =
1

2
e4, Um(e1, e4) = −1

2
e2, Um(e2, e3) =

1

2
e4, Um(e2, e4) = −1

2
e3.

8.6. Homogeneous geodesics

Homogeneous geodesics starting at the origin are classified as follows:

Theorem 8.1. The unit speed homogeneous geodesics of Nil4 starting at the origin are given by

γ(s) = exp (s (ae3 + be4)) , a2 + b2 = 1,

γ(s) = exp (s (ae1 + be3)) , a2 + b2 = 1,

or
γ(s) = exp (s (ae1 + be2 − ae3)) , 2a2 + b2 = 1.

Proof. For a vector X = X1e1 +X2e2 +X3e3 +X4e4 ∈ nil4, γ(s) = exp(sX) is a homogeneous geodesic if and
only if Um(X,X) = 0. The vector Um(X,X) is computed as

Um(X,X) = −X1X4e2 −X2X4e3 + (X1X2 +X2X3)e4.

Hence X has the form
X = X3e3 +X4e4

X = X1e1 +X3e3

or
X = X1e1 +X2e2 −X1e3.

8.7. Homogeneous J-trajectories

Let us investigate homogeneous Kähler magnetic trajectories in Nil4 with respect to Ω±.

Theorem 8.2. The only homogenous Kähler magnetic trajectories in Nil4 with respect to Ω± are homogeneous geodesics.

8.8. Problems

Problem 2. Determine Kähler magnetic trajectories in Nil4.

Problem 3. Study minimal surfaces in Nil4 invariant under J±.

Problem 4. Study minimal surfaces in Nil4 which are Ω±-Lagrangian.

Consider the left invariant distribution D spanned by e1, e2 and e3. Then D is integrable. The integral
hypersurface of D through (x0, y0, z0, t0) is the hypersurface

M(1, 2, 3; t0) = {(x, y, z, t0) ∈ Nil4}.

We can take e4 as a unit normal vetor field to M(1, 2, 3; t0). Then the shape operator derived from e4 is given by 0 1/2 0
1/2 0 1/2
0 1/2 0

 .

Hence N is non-totally geodesic minimal hypersurface. One can check that M(1, 2, 3; t0) is a parallel
hypersurface. In [18], the authors claimed that the only Codazzi hypersurfaces are integral hypersurfaces of D.
In particular Nil4 has no totally geodesic hypersurfaces.
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Problem 5. Classify totally umbilical hypersurfaces in Nil4.

Remark 8.3 (H3 × E1). According to Wall, the model space H3 × E1 equipped with the product metric does not
have compatible complex structure. If we relax the compatibility condition (invariance under SO+

1,2 ×R), we
have some options:

• Let us identify H3 with the solvable part S of the Iwasawa decomposition SL2C = S · SU2 of SL2C. Then
the Poincaré metric is a left invariant metric on H3 = S. There exists a left invariant Kenmotsu structure on
H3 = S. By extending the Kenmotsu structure to the Riemannian product H3 × E1 = S × E1, one obtains a
globally conformal Kähler structure. Some minimal submanifolds in H3 × E1 are investigated in [37, 25].

• Oguro and Sekigawa [63] gave a strictly almost Kähler structure on H3 × E1. Kähler magnetic trajectories
in H3 × E1 are investigated in [20].
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