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SEMI-SLANT LIGHTLIKE SUBMERSIONS

Ramazan SARI
Department of Mathematics, Amasya University, Amasya, TÜRKİYE

Abstract. In this paper, we intend to study semi-slant lightlike submersions

from indefinite Kaehler manifolds onto lightlike manifolds. After giving defi-
nitions and basic properties, we obtain conditions for a lightlike submersion to

be a semi-slant lightlike submersion. We indicate some relevant examples. Fi-

nally, we investigate the geometric properties of foliations that appeared with
a semi-slant lightlike submersion.

1. Introduction

Studying differentiable maps defined between manifolds are one of the methods
used to compare geometric structures. One of these maps is submersion, in which
the rank of the transformation is equal to the dimension of the target manifold.
Moreover, if this map is isometric, it is called Riemannian submersion.

Riemannian submersions were first defined by O’ Neill and Gray independently
of each other [15], [7]. This definition was extended to manifolds with different dif-
ferentiable structures. After some important developments in complex and contact
geometry, the Riemannian submersions have become interesting. The differential
geometry of manifolds with special structures have been examined by using different
kind of Riemannian submersions [1, 6, 8–10,17,23,24,26].

On the other hand, a major shortcoming of the semi-Riemannian manifold is
that there are no suitable types of functions from one manifold to the next to
satisfy its geometrical properties.This flaw was fixed by O’ Neill in 1983 [16]. As
the generalizations of Riemannian submersions, O’ Neill introduced the notion of
semi-Riemannian submersions. A well known fact is that for a defined Riemannian
submersion between two Riemannian manifolds, the fibers are always Riemannian
but the fibers of semi-Riemannian manifolds on a semi-Riemann submersions may
not be semi-Riemannian manifold.
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The another importance of such maps is their applications in mathematics [24], in
theoretical physics (supergravity and superstring theories [13,14],Yang-Mills theory
[3, 27] and Kaluza-Klein theory [4, 11] ) and robotic theory [2].

On the other hand, although there have been many publications on the geom-
etry of Riemannian submersions, there have been very few on semi-Riemannian
submersions and lightlike submersions. First, Şahin investigated submersions be-
tween lightlike manifolds and semi-Riemannian manifolds [21,22]. Here, he obtained
O’Neill’s tensors defined on Riemannian submersions for lightlike submersions and
showed the differences between the two maps for these tensors. Moreover, he stud-
ied lightlike harmonic map.

In [5], Duggal investigated harmonic maps between two semi-Riemannian man-
ifolds. He showed that these maps behave differently. Moreover, he obtained that
harmonic maps between two semi-Riemannian manifolds must be subject to some
restricted classes of semi-Riemannian manifolds. Thus, harmonic maps from a semi-
Riemannian manifold into a lightlike manifold were studied only when the target
manifold is a Riemannian hypersurface of a lightlike manifold.

In [25], Şahin and Gündüzalp investigated lightlike submersions from a semi-
Riemannian manifold onto lightlike manifold. After this definition, different struc-
ture in Riemannian submersion theory began to be examined for lightlike submer-
sion as well. Firstly, Sachdeva et all. introduced slant lightlike submersions [19].
Later, Prasad et all. studied slant lightlike submersion for indefinite nearly Kaehler
manifold [18]. They established the existence theorems for slant lightlike submer-
sions and investigated geometry of foliations. Kaushal et all. introduced pointwise
slant lightlike submersions [12]. Shukla et all. studied screen slant lightlike sub-
mersions [20].

Under the motivations and the light of these studies, we defined semi-slant light-
like submersion from indefinite Kaehler manifold onto lightlike manifold. We aim
is to present some general properties of this type of submersions and after that to
obtain major results on the geometry of them. In Section 2 we review some the stan-
dard facts on semi-Riemann submersions and lightlike submersions. After giving
the definition of semi-slant lightlike submersions from indefinite Kaehler manifold
into lightlike manifold in Section 3 we indicate related examples. In section 4 we
study of minimality, integrability and totally geodesic conditions of distributions.

2. Preliminaries

In this section, we introduce lightlike submersions. We define lightlike submer-
sions and O’Neill’s tensors for lightlike submersions.

Let (M, gM ) and (B, gB) be a semi-Riemannian manifold and an r-lightlike man-
ifold, respectively. Therefore, we have a submersion ψ :M → B. Moreover, ψ−1(q)
is a submanifold of M , where dimψ−1 = dimM − dimB. Then, for q ∈ B, ψ−1(q)
is said to be fiber.
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Thus, the kernel of ψ∗ at the point p is defined by

kerψ∗ = {X ∈ TpM : ψ∗(X) = 0}.
On the other hand, we denote

(kerψ∗)
⊥ = {Y ∈ TpM : gM (X,Y ) = 0,∀X ∈ kerψ∗}.

Since TpM is a semi-Riemannian manifold, (kerψ∗)
⊥ cannot be a supplement to

kerψ∗.
Assume △ = kerψ∗ ∩ (kerψ∗)

⊥ ̸= {0}. Therefore, we have different four cases
of submersions:

Case1: Then consider 0 < dim△ < min{dim(kerψ∗),dim(kerψ∗)
⊥}.

Thus △ is the radical subspace of TpM.
On the other hand, kerψ∗ is a reel lightlike vector space.Then, there is supple-

mentary non degenerate sub-space to △. Let S(kerψ∗) be a supplementary non
degenerate sub space to △ in kerψ∗. Thus we given by

kerψ∗ = △⊥S(kerψ∗).

By a similar method, we see that

(kerψ∗)
⊥ = △⊥S(kerψ∗)

⊥,

where S(kerψ∗)
⊥ is a supplementary sub-space of△ in (kerψ∗)

⊥. However S(kerψ∗)
is non-degenerate in TpM , we have

TpM = S(kerψ∗)⊥S(kerψ∗)
⊥

where S(kerψ∗)
⊥ is the supplementary sub-space of S(kerψ∗) in TpM. On the other

hand S(kerψ∗) and S(kerψ∗)
⊥ are non degenerate, we deduce,

(S(kerψ∗))
⊥ = S(kerψ∗)

⊥⊥(S(kerψ∗)
⊥)⊥.

In that case, for all α, β ∈ {1, ..., t} and i, j ∈ {1, ..., r}, we get

gM (ξi, ξj) = gM (Ni, Nj) = 0, gM (ξi, Nj) = δij

gM (Wα, ξj) = gM (Wα, Nj) = 0, gM (Wα,Wβ) = ϵαδαβ ,

where {ξi} is base of △, {Ni} are null vector fields of (S(kerψ∗)
⊥)⊥, {Wα} are

bases of S(kerψ∗)
⊥. We can construct the set of vector fields {Ni} for ltr(kerψ∗),

therefore, we arrive

tr(kerψ∗) = ltr(kerψ∗)⊥S(kerψ∗)
⊥.

We emphasize that kerψ∗ and ltr(kerψ∗) are not orthogonal. Therefore, we show
that H =tr(kerψ∗) the horizontal space and V =kerψ∗ the vertical space of TpM
as is usual in the theory of Riemannian submersions. Hence we have,

TpM = Vp ⊕Hp.

We note that H and V are not orthogonal.
Now, we can give the definition of a lightlike submersion.
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Definition 1. [25], Let ψ : (M, gM ) → (B, gB) be a submersion, where M and B
are a semi-Riemannian manifold and an r-lightlike manifold, respectively. There-
fore, ψ is said to be an r-lightlike submersion if,

(i) dim△ = dim{kerψ∗∩(kerψ∗)
⊥} = r, 0 < r < min{dim(kerψ∗),dim(kerψ∗)

⊥}.
(ii) gM (X,Y ) = gB(ψ∗X,ψ∗Y ) for all X,Y ∈ Γ(H).

Case2: dim△ = dimkerψ∗ < dim(kerψ∗)
⊥.

Therefore,H =S(kerψ∗)
⊥⊥ltr(kerψ∗) and V =△. Then, ψ is said to be an isotropic

submersion.
Case3: dim△ = dim(kerψ∗)

⊥ < dimkerψ∗.
ThereforeH =ltr(kerψ∗) and V =S(kerψ∗)⊥△. Then, ψ is said to be a co-isotropic
submersion.

Case4: dim△ = dim(kerψ∗)
⊥ = dimkerψ∗.

Therefore H =ltr(kerψ∗) and V =△. Then, ψ is said to be a totally lightlike
submersion.

Now, we follow the lemma that we will use in the definition of semi-slant lightlike
submersion.

Lemma 1. [19], Let ψ : (M,J, gM ) → (B, gB) be a r-lightlike submersion from
an indefinite Kaehler manifold to an r-lightlike manifold. Let J△ be a distribution
on M such that △ ∩ J△ = 0. Then any distribution complementary to J△ ⊕
J(ltr(kerψ∗)) in S(kerψ∗) is Riemannian.

On the other hand, O’Neill was defined tensors T and A for Riemannian sub-
mersions [15]. Şahin and Gündüzalp are characterized tensors T and A for lightlike
submersions as follows:

TEF = h∇
M

vEvF + v∇
M

vEhF (1)

and

AEF = h∇
M

hEhF + v∇
M

hEvF, (2)

for all E,F ∈ Γ(TM), where h and v are the horizontal and vertical projections.
Therefore from (1) and (2), we have

∇
M

U V = TUV + v∇
M

U V (3)

∇
M

U X = TUX + h∇
M

U X (4)

∇
M

XU = v∇
M

XU +AXU (5)

∇
M

XY = AXY + h∇
M

XY, (6)

for all U, V ∈ Γ(kerψ∗) and X,Y ∈ Γ(tr(kerψ∗)), [25].
Now, let’s remember the definition of indefinite Kaehler manifold. A 2m-dimensional

differentiable manifold M = (M,J, gM ) is said to be indefinite Kaehler manifold if
there exist a semi-Riemannian metric gM and a complex structure J ,
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J2 = −I, gM (JE, JF ) = gM (E,F ) (7)

and

(∇EJ)F = 0, (8)

for any E,F ∈ Γ(TM).

3. Semi-Slant Lightlike Submersions

Firstly, let’s define the semi-slant lightlike submersions and give examples.

Definition 2. Let (M,J, gM ) and (B, gB) be an indefinite Kaehler manifold and
r-lightlike manifold, respectively. Let ψ : (M,J, gM ) → (B, gB) be an r-lightlike
submersion. Therefore, ψ is called a semi-slant lightlike submersion if there exist
on M two non-degenere orthogonal distributions D1 and D2 such that

(i) J△ is a distribution in kerψ∗ such that △∩ J△ = 0;
(ii)

S(kerψ∗) = (J△⊕ J(ltr(kerψ∗))⊥D1⊥D2;

(iii) D1 is an invariant distribution, under J , that is JD1 = D1;
(iv) D2 is slant distribution with angle θ(X), such that for all x ∈ M and

X ∈ (D2)x.

Moreover, the angle θ is saidto be the semi-slant angle of the lightlike submersion.
In particular, if D1 = 0, therefore M is a slant lightlike submersion.

Hence we get,

TM = V ⊕H
= {△⊥(J△⊕ J(ltrkerψ∗))⊥D1⊥D2} ⊕ {ψ(D2)⊥µ⊥ltr(kerψ∗)},

where µ is the orthogonal sub-bundle complementary to ψ(D2) in S(kerψ∗).

Example 1. Every slant lightlike submersion from indefinite Kaehler manifold onto
r-lightlike manifold is semi-slant lightlike manifold with D1 = 0.

Example 2. Let (R12
0,2,10, g1, J) and (R7

1,0,6, g2) be an indefinite Kaehler mani-

fold and lightlike manifold, g1 = −(dx1)
2 − (dx2)

2 +
12∑
i=3

(dxi)
2 is semi-Riemannian

metric and g2 =
7∑

j=2

(dyj)
2 is a degenerate metric, where xi, i = 1, ...12 and

yj , j = 1, ...7 are the canonical coordinates on R12 and R7 respectively. If we set
J(x1, x2, ..., x11, x12) = (−x2, x1, ...,−x12, x11) then J2 = −I and J is complex
structure on R12. We define the following map

ψ : R12 → R7

(x1, ..., x12) → (x1 + x4, x2, x3,
x5 + x7√

2
,
x6 + x8√

2
, sinαx9 − cosαx11, x12).
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On the other hand, kernel of ψ∗ is

kerψ∗ = Sp{V1 = − ∂

∂x1
+

∂

∂x4
, V2 =

∂

∂x2
, V3 =

∂

∂x3
, V4 =

∂

∂x5
− ∂

∂x7
,

V5 =
∂

∂x6
− ∂

∂x8
, V6 = − cosα

∂

∂x9
− sinα

∂

∂x11
, V7 =

∂

∂x10
}.

Then, we arrive

(kerψ∗)
⊥ = Sp{Z1 = − ∂

∂x1
+

∂

∂x4
, Z2 =

∂

∂x5
+

∂

∂x7
, Z3 =

∂

∂x6
+

∂

∂x8

Z4 = sinα
∂

∂x9
− cosα

∂

∂x11
, Z5 =

∂

∂x12
}.

On the other hand, we have kerψ∗∩(kerψ∗)
⊥ = Sp{V1}.Moreover, we get ltr(kerψ∗) =

Sp{N = 1
2 (

∂
∂x1

+ ∂
∂x4

)}. Then the horizontal and vertical spaces are given by

H = {N,Z2, Z3, Z4, Z5},V = Sp{V1, V2, V3, V4, V5, V6, V7},

Also by direct computations we obtain, g1(N,N) = g2(ψ∗N,ψ∗N), and g1(Zi, Zi) =
g2(ψ∗Zi, ψ∗Zi) for all i = 2, ..., 5. Hence ψ is a 1-lightlike submersion. On the other
hand, we have JV4 = −V5, JV5 = V4. Thus it follows that D1 = Sp{V4, V5} and
D2 = Sp{V6, V7} are a invariant and slant distribution with slant angle θ = α,
respectively. Moreover JV1 = V2 + V3, JN = 1

2 (−V2 + V3) such that J△ and

J(ltr(kerψ∗)) are distributions on R12
2 . Thus ψ is a semi slant lightlike submersion.

Example 3. Let (R12
0,2,10, g1, J) and (R6

2,0,4, g2) be an indefinite Kaehler mani-

fold and lightlike manifold, g1 = −(dx1)
2 − (dx2)

2 +
12∑
i=3

(dxi)
2 is semi-Riemannian

metric and g2 =
6∑

j=3

(dyj)
2 is a degenerate metric, where xi, i = 1, ...12 and

yj , j = 1, ...6 are the canonical coordinates on R12 and R6 respectively. If we set
J(x1, x2, ..., x11, x12) = (−x2, x1, ...,−x12, x11) then J2 = −I and J is complex
structure on R12. We define the following map

ψ : R12 → R7

(x1, ..., x12) → (x1 + x5, x2 + x6,
x3 − x7√

2
,
x4 − x8√

2
,
x9 − x12√

2
, x11).

On the other hand, kernel of ψ∗ is

kerψ∗ = Sp{V1 = ∂
∂x1

− ∂
∂x5

, V2 = ∂
∂x2

− ∂
∂x6

, V3 = ∂
∂x3

+ ∂
∂x7

, V4 = ∂
∂x4

+ ∂
∂x8

,

V5 = ∂
∂x9

+ ∂
∂x12

, V6 = ∂
∂x10

}.

Then, we arrive

(kerψ∗)
⊥ = Sp{Z1 =

∂

∂x1
− ∂

∂x5
, Z2 =

∂

∂x2
− ∂

∂x6
, Z3 =

∂

∂x3
− ∂

∂x7
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Z4 =
∂

∂x4
− ∂

∂x8
, Z5 =

∂

∂x9
− ∂

∂x12
, Z6 =

∂

∂x11
}.

On the other hand, we have kerψ∗ ∩ (kerψ∗)
⊥ = Sp{V1, V2}. Moreover, we get

ltr(kerψ∗) = Sp{N1 = 1
2 (

∂
∂x1

+ ∂
∂x5

), N2 = 1
2 (

∂
∂x2

+ ∂
∂x6

)}. Then the horizontal and
vertical spaces are given by

H = {N1, N2, Z3, Z4, Z5, Z6},V = Sp{V1, V2, V3, V4, V5, V6},

Also by direct computations we obtain, g1(Nj , Nj) = g2(ψ∗Nj , ψ∗Nj), and g1(Zi, Zi) =
g2(ψ∗Zi, ψ∗Zi) for all i = 3, ..., 6. Hence ψ is a 2-lightlike submersion. On the other
hand, we have JV3 = −V4, JV4 = V3. Thus it follows that D1 = Sp{V3, V4} and
D2 = Sp{V5, V6} are a invariant and slant distribution with slant angle θ = α

4 ,

respectively. Moreover JV1 = V2 + V3, JN = 1
2 (−V2 + V3) such that J△ and

J(ltr(kerψ∗)) are distributions on R12
2 . Thus ψ is a semi slant lightlike submer-

sion.

Now, let ψ be a r-lightlike submersion. Therefore for U ∈ Γ(V) and X ∈ Γ(H),
we get

JU = ϕU + wU, JX = BX + CX, (9)

where wU(CX ) and ϕU(BX) are the transversal component and tangential of
JU(JX), respectively.

Denote by P1, P2, P3, P4, P5 the projections onto the distributions△, J△, J(ltr(kerψ∗)),
D1, D2, respectively.

Thus, for any U ∈ Γ(V), we can write

U = P1U + P2U + P3U + P4U + P5U.

We applying J to last equation, we get

JU = JP1U + JP2U + JP3U + JP4U + ϕP5U + wP5U, (10)

where ϕP5U(resp. wP5U) denotes the tangential (resp. transversal) component of
JP5U . Then, we have

JP1U = ϕP1U ∈ Γ(J△), wP1U = 0,

JP2U = ϕP2U ∈ Γ(△), wP2U = 0,

JP3U = wP3U ∈ Γ(ltr(kerψ∗)), ϕP3U = 0,

JP4U = ϕP4U ∈ Γ(D1),

ϕP5U ∈ Γ(D2), wP5U ∈ Γ(ψ(D2)).

Therefore, we can write

ϕU = ϕP1U + ϕP2U + ϕP5U.
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Theorem 1. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold, respectively. There-
fore ψ is a semi-slant lightlike submersion if and only if

i) Jltr(kerψ∗) is a distribution on M ,
ii) for all U ∈ Γ(kerψ∗),

ϕ2P5U = λP5U, (11)

where, λ = − cos2 θ and θdenotes the semi-slant angle of D2.

Proof. Firstly, let ψ be a semi-slant lightlike submersion. Therefore J△ is a dis-
tribution on S(kerψ∗). Then, using Lemma 1, J(ltr(kerψ∗)) is a distribution on
M .

Further, since ψ is semi-slant lightlike submersion, the slant angle betwen JU
and D2 is constant. Then using (10) and (7), we get

cos θD2 = −gM (U, (ϕP5)
2U)

∥JU∥ ∥ϕP5U∥
.

On the other hand, from (7), we obtain

cos θD2
=

∥JU∥
∥ϕP5U∥

.

By the last two equations, we have

cos θ2D2
= −gM (U, (ϕP5)

2U)

∥ϕP5U∥2
.

Since the angle θ is constant on D2, we give

ϕ2P5U = λ2P5U,

where λ = − cos2 θ.
Conversely, from (i), J△ is a distribution on S(kerψ∗). Moreover, if lemma 2 is

used, the proof is complete. □

Corollary 1. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore, for all
U, V ∈ Γ(kerψ∗)

gM (ϕU, ϕV ) = cos2 θgM (U, V ), (12)

gM (wU,wV ) = sin2 θgM (U, V ). (13)

4. Minimality, Integrability and Totally Geodesic Foliations

In this section, we investigate minimality,totally geodesic and integrability of
distributions.
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Theorem 2. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore D1 is
integrable if and only if

i)TUϕP4V − TV ϕP4U /∈ Γ(ψ(D2))
ii) gM (v∇UϕP4V − v∇V ϕP4U,BN) = gM (TV ϕP4U − TUϕP4V,CN)
iii) v∇UϕP4V − v∇V ϕP4U /∈ Γ(△),
where U, V ∈ Γ(D1),K ∈ Γ(D2),W ∈ Γ(Jltr(kerψ∗)), N ∈ Γ(ltr(kerψ∗)).

Proof. For all U, V ∈ Γ(D1), since [U, V ] ∈ Γ(V) we arrive gM ([U, V ], X) = 0, where
X ∈ Γ(H). Thus, for all K ∈ Γ(D2),W ∈ Γ(Jltr(kerψ∗)) and N ∈ Γ(ltr(kerψ∗)),
we get D1 is integrable if and only if gM ([U, V ],K) = 0, gM ([U, V ], N) = 0 and
gM ([U, V ],W ) = 0. Firsly using (7) and (8), we have

gM (∇UV,K) = −gM (∇UJV − (∇UJ)V, JK)

= −gM (∇UJV, JK). (14)

Then, from (7), (8) and (10) we get

gM ([U, V ],K) = −gM (∇UV, JϕP5K) + gM (∇UJV,wP5K)

+gM (∇V U, JϕP5K)− gM (∇V JU,wP5K).

Also, using (10), (12), (3) and (4) we have

gM ([U, V ],K) = cos2 θgM (∇UV,K) + gM (TUϕP4V,wP5K)

− cos2 θgM (∇V U,K)− gM (TV ϕP4U,wP5K).

After some calculations, we obtain

sin2 θgM ([U, V ],K) = gM (TUϕP4V − TV ϕP4U,wP5K)

which proves (i).
For N ∈ Γ(ltr(kerψ∗)), from (10), (14), we obtain

gM ([U, V ], N) = gM (∇UϕP4V −∇V ϕP4U, JN).

Thus, using (3) and (9), we get

gM ([U, V ], N) = gM (v∇UϕP4V − v∇V ϕP4U,BN)

+gM (TUϕP4V − TV ϕP4U,CN)

which gives (ii).
Finally, W ∈ Γ(Jltr(kerψ∗)), from (10), (14 ) and (3), we arrive at

gM ([U, V ],W ) = gM (v∇UϕP4V − v∇V ϕP4U, ϕP2W )

which proves (iii). □

Theorem 3. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold, where gM is semi-
Riemannian metric of index 2r. Therfore, the invariant distribution D1 is minimal.
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Proof. The distribuiton D1 is minimal iff TV V + TJV JV = 0, for all V ∈ Γ(D1).
By virtue of (7), (8) and (3), we obrtain

g(TV V + TJV JV,X) = g(∇V JV, JX)− g(∇JV V, JX)

which gives our assertion. □

Theorem 4. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore D2 is
integrable if and only if
i) gM (v∇KϕP5L− v∇LϕP5K,ϕP4U) = −gM (TKwP5L− TLwP5K,ϕP4U)
ii) gB(ψ∗(h∇KwP5L)−ψ∗(h∇LwP5K), ψ∗(CN)) = −gM (TKwP5L−TLwP5K,BN)
iii) gB(ψ∗(h∇KwP5L)−ψ∗(h∇LwP5K), ψ∗(wP3W )) = gM (TKϕP5L− T LϕP5K,wP3W ),

where K,L ∈ Γ(D2), U ∈ Γ(D1),W ∈ Γ(Jltr(kerψ∗)), N ∈ Γ(ltr(kerψ∗)).

Proof. For all K,L ∈ Γ(D2), U ∈ Γ(D1), using (10), (14), (3) and (4), we get

gM (∇KL,U) = gM (TKϕP5L+ v∇KϕP5L+ h∇KwP5L+ TKwP5L, ϕP4U).

After some calculations, we have

gM ([K,L], U) = gM (∇KϕP5L−∇LϕP5K,ϕP4U)

+gM (TKϕP5L− TLϕP5K,ϕP4U)

which proves (i).
For N ∈ Γ(ltr(kerψ∗)), from (10), (14) and ( 12), we arrive at

gM ([K,L], N) = cos2 θgM (∇KL,N) + gM (TKwP5L,BN) + gM (h∇KwP5L,CN)

− cos2 θgM (∇LK,N)− gM (TLwP5K,BN)− gM (h∇LwP5K,CN).

Now, using the character of ψ, we obtain

sin2 θgM ([K,L], N) = gM (TKwP5L− TLwP5K,BN)

+gB(ψ∗(h∇KwP5L)− ψ∗(h∇LwP5K), ψ∗(CN))

which proves (ii).
For W ∈ Γ(Jltr(kerψ∗))

gM ([K,L],W ) = gM (TKϕP5L− TLϕP5K,wP3W )

+gM (h∇KwP5L− h∇LwP5K,wP3W ).

Then, using the character of ψ, we have

gM ([K,L],W ) = gM (TKϕP5L− TLϕP5K,wP3W )

+gB(ψ∗(h∇KwP5L)− ψ∗(h∇LwP5K), ψ∗(wP3W ))

which proves (iii). □
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Theorem 5. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore △ is a
totally geodesic foliation on M if and only if

gM (TKJP3Z + TKwP5Z, JL) = gM (∇KJP2Z +∇KJP4Z +∇KϕP5Z, JL),

for any K,L ∈ Γ(△), Z ∈ S(kerψ∗).

Proof. For any K,L ∈ Γ(△), Z ∈ S(kerψ∗), using, (10 ) in (14), we have

gM (∇KL,Z) = −gM (∇KJP2Z, JL)− gM (∇KJP3Z, JL)− gM (∇KJP4Z, JL)

−gM (∇KϕP5Z, JL)− gM (∇KwP5Z, JL).

Then by (3) and (4), imply

gM (∇KL,Z) = −gM (∇KJP2Z, JL)− gM (TKJP3Z, JL)− gM (∇KJP4Z, JL)

−gM (∇KϕP5Z, JL)− gM (TKwP5Z, JL)

which gives our assertion. □

Theorem 6. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore D1 is a
totally geodesic foliation on M if and only if

gM (TUϕP5Z, JV ) = −gM (∇UϕP5Z, JV )

and
∇UJN /∈ Γ(D1), ∇UJW /∈ Γ(D1),

for all U, V ∈ Γ(D1), Z ∈ Γ(D2),W ∈ Γ(Jltr(kerψ∗)), N ∈ Γ(ltr(kerψ∗)).

Proof. Invariant distributionD1 defines a totally geodesic foliation iff gM (∇UV,Z) =
0, gM (∇UV,Z) = 0 and gM (∇UV,W ) = 0 for any U, V ∈ Γ(D1), Z ∈ Γ(D2),
N ∈ Γ(ltr(kerψ∗)), W ∈ Γ(Jltr(kerψ∗)).

For U, V ∈ Γ(D1), Z ∈ Γ(D2), using (7) and (8), we have

gM (∇UV,Z) = −gM (∇UJZ, JV ). (15)

By virtue of (10), (3) and (4) in (15) imply that

gM (∇UV,Z) = −gM (TUϕP5Z, JV )− gM (∇UϕP5Z, JV ).

Moreover, for N ∈ Γ(ltr(kerψ∗)),W ∈ Γ(Jltr(kerψ∗)), using (7), (8), (3) and (5),
we arrive at

gM (∇UV,N) = −gM (∇UJN, JV )

= −gM (v∇UJN, JV )

and W ∈ Γ(Jltr(kerψ∗))

gM (∇UV,W ) = −gM (∇UJW, JV )

= −gM (v∇UJW, JV ),

which gives our assertion. □
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Theorem 7. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore slant
distribution D2 is a totally geodesic foliation on M if and only if

gM (TUJZ,wV ) = −gM (v∇UJZ, ϕV ),

gM (TUJN,wV ) = −gM (v∇UJN, ϕV )

and
gM (TUJW, ϕV ) = −gB(ψ∗(h∇UJW ), ψ∗(wV )),

for all U, V ∈ Γ(D2), Z ∈ Γ(D1),W ∈ Γ(Jltr(kerψ∗)), N ∈ Γ(ltr(kerψ∗)).

Proof. For all U, V ∈ Γ(D2), Z ∈ Γ(D1),using (7) and (8), we give

gM (∇UV,Z) = −gM (∇UJZ, JV ). (16)

Now, from (3) and (9), we arrive at

gM (∇UV,Z) = −gM (TUJZ,wV )− gM (v∇UJZ, ϕV ).

Moreover, for W ∈ Γ(Jltr(kerψ∗)) and N ∈ Γ(ltr(kerψ∗)), using (9), (5) and (4),
we have

gM (∇UV,N) = −gM (TUJN,wV )− gM (v∇UJN, ϕV )

and

gM (∇UV,W ) = −gM (TUJW, ϕV )− gM (h∇UJW,wV )

which gives our assertion. □

Theorem 8. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore V is a
totally geodesic foliation on M if and only if

gM (v∇EBN + TECN, JF ) = −gM (TEBN + h∇ECN, JF )

and

v∇EϕP1F + v∇EϕP2F + v∇EϕP4F + v∇EϕP5F + TEwP3F + TEwP5F /∈ Γ(D2),

where E,F ∈ Γ(V), N ∈ Γ(ltr(kerψ∗)).

Proof. For any E,F ∈ Γ(H), N ∈ Γ(ltr(kerψ∗)), using ( 7), (8) and (9), we have

gM (∇EF,N) = −gM (∇EBN +∇ECN,F ).

Then, from (3) and (4), we arrive at

gM (∇EF,N) = −gM (TEBN + v∇EBN + TECN + h∇ECN, JF ).

On the other hand, for K ∈ Γ(D2), using (7), (8) and (10), we get

gM (∇EF, JK) = gM (J∇EϕP1F+J∇EϕP2F+J∇EϕP3F+J∇EϕP4F+J∇EϕP5F, JK).

By virtue of (3) and (4), we arrive at
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gM (∇EF,N) =gM (w(v∇EϕP1F + v∇EϕP2F + v∇EϕP4F + v∇EϕP5F + TEwP3F

+ TEwP5F ), JK)

which completes proof. □

Theorem 9. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore H is a
totally geodesic foliation on M if and only if

gM (AXBY + h∇XCY,wP5K) = gM (v∇XBY +AXCY, ϕP5K),

AXCY + v∇XBY /∈ Γ(D1),

and

AXBY + h∇XCY /∈ Γ(ltr(kerψ∗)),

where X,Y ∈ Γ(H),K ∈ Γ(D2).

Proof. For all X,Y ∈ Γ(H),K ∈ Γ(D2), from (7), ( 8) and (9), we have

gM (∇XY,K) = −gM (∇XBY +∇XCY, JK).

By virtue of (5) and (6), we get

gM (∇XY,K) = −gM (v∇XBY +AXBY +AXCY + h∇XCY, ϕP5K + wP5K).

Moreover, for U ∈ Γ(D1) and for W ∈ Γ(Jltr(kerψ∗)), by virtue of (5) and (6) we
arrive at

gM (∇XY,K) = −gM (v∇XBY +AXCY,K)

and

gM (∇XY,W ) = −gM (AXBY + h∇XCY,wP3W ),

which gives our assertion. □

Theorem 10. Let ψ : (M,J, gM ) → (B, gB) be a semi-slant lightlike submersion
from an indefinite Kaehler manifold to an r-lightlike manifold. Therefore M is a
locally product manifold of the leaves of V and H if and only if

gM (v∇EBN + TECN, JF ) = −gM (TEBN + h∇ECN, JF ),

v∇EϕP1F + v∇EϕP2F + v∇EϕP4F + v∇EϕP5F + TEwP3F + TEwP5F /∈ Γ(D2),

and

gM (AXBY + h∇XCY,wP5K) = gM (v∇XBY +AXCY, ϕP5K),

AXCY + v∇XBY /∈ Γ(D1),

AXBY + h∇XCY /∈ Γ(ltr(kerψ∗)),

where E,F ∈ Γ(V), N ∈ Γ(ltr(kerψ∗)), X,Y ∈ Γ(H),K ∈ Γ(D2).
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Conclusion 1. Submersions, lightlike manifolds and semi-Riemannian manifolds
have potential for applications in many fields of physics, engineering and math-
ematics. In particular it is applicable to the theory of liquid crystals (Harmonic
morphisms), theory of spacetimes, theory of relativity. Research in this theory
has been increasing in recent years After the defination of submersions from semi-
Riemannian manifolds onto lightlike manifolds, slant lightlike submersions were
studied. In this paper, the idea of examining semi-slant lightlike submersions are
emphasized. We defined and studied semi-slant lightlike submersions from an in-
definite Kaehler manifold to an r-lightlike manifold. We introduced geometry of
foliatons. The works on this subject will be useful tools for the applications of semi-
slant lightlike submersion with various manifolds.
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