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ABSTRACT 

The Fibonacci sequence, a special number sequence studied a lot recently and plays an important role with its 

applications in many fields of science, can be obtained in different areas of mathematics and with different 

methods. In this study, Fibonacci numbers are obtained with using suborbital graphs of the Modular group 𝚪 and 

some special matrices.  

Keywords- Fibonacci Numbers, Suborbital Graphs, Modular Group, Imprimitive Action, Congruence 

Subgroup 

 

ÖZ 

Son zamanlarda üzerinde çokça çalışılan ve bilimin birçok alanındaki uygulamalarıyla önemli bir rol oynayan özel 

bir sayı dizisi olan Fibonacci dizisi, matematiğin farklı alanlarında ve farklı yöntemlerle elde edilebilmektedir. Bu 

çalışmada, Fibonacci sayıları Modüler grubun alt yörüngesel grafları ve bazı özel matrisler kullanılarak elde 

edilmiştir.  

Anahtar Kelimeler- Fibonacci Sayıları, Alt Yörüngesel Graflar, Modüler Grup, İmpirimitif Hareket, 

Kongrüans Altgrup  
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I. INTRODUCTION 

In the 13th century, the Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, … } is constructed inductively so that each 

member is the sum of the preceding two members, was introduced by Leonardo Fibonacci. These numbers play a 

significant role not only in all areas of Mathematics but also in statistics, finance, architecture ext. Additionally, 

the golden ratio is a mathematical principle that originates from the Fibonacci sequence, calculated by dividing 

each Fibonacci number by one that directly precedes it. Further, [1] has more thorough details regarding this 

sequence. 

The modular group is a fundamental group in number theory. The group acts on the upper half plane 

𝒰 ≔ {𝑧 ∈ ℂ: 𝐼𝑚(𝑧) > 0} and its elements correspond to fractional linear transformations of this plane as follows. 

It plays a crucial role in the study of modular forms, automorphic forms, and their connections to elliptic curves, 

quadratic forms, and many other areas of mathematics. For more information, see [2]. 

Suborbital graphs are an interesting topic within graph theory that has received significant attention in the 

literature. Suborbital graphs are classes of graphs that arise in the study of group actions on sets, particularly when 

considering the orbits of vertices or edges under the action of a group. These graphs have applications in various 

fields, including algebraic graph theory and combinatorics.  

The concept of suborbital graphs for a permutation group acting on a set was first introduced in [3]. Based 

on this idea in [4], suborbital graphs for the Modular group were given as follows:  

The modular group Γ consists of the pairs of matrices 

                                         ± (
𝑎 𝑏
𝑐 𝑑

) , 𝑤ℎ𝑒𝑟𝑒  𝑎, 𝑏, 𝑐, 𝑑 𝜖ℤ  𝑣𝑒 𝑎𝑑 − 𝑏𝑐 = 1.                                                       

In the paper, we omit the symbol ±, and identify each matrix with its negative. Γ acts on the extended 

rational  

ℚ̂ = ℚ ∪  {∞} by  

𝑧 →  
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
 ,   (

𝑎 𝑏
𝑐 𝑑

) 𝜖Γ.   

More precisely, by                                                                 

(
𝑎 𝑏
𝑐 𝑑

) .
𝑥

𝑦
=  

𝑎𝑥 + 𝑏𝑦

𝑐𝑥 + 𝑑𝑦
 .    

We summarize imprimitive action of a group 𝐺 on a set 𝑋 and suborbital graphs concerning the pair 

(𝐺, 𝑋). For each member 𝑔 of 𝐺, if 𝑔: 𝑋 → 𝑋 one to one onto, then 𝑔 is called a permutation of 𝑋. If all members 

of 𝐺 are permutations of 𝑋, then pair (𝐺, 𝑋), or only 𝐺 for short, is said to be a permutation group.  

Now suppose (𝐺, 𝑋) is a permutation group and the relation " ≈ " on 𝑋 is an equivalence relation. Whenever 𝑥 ≈
𝑦 implies that 𝑔(𝑥) ≈ 𝑔(𝑦), for all 𝑔 ∈ 𝐺, the relation ≈ is called 𝐺 −invariant. In this case, each equivalence 

class is said to be a block. Some of 𝐺 −invariant equivalence relations are below:  

(𝑖) Identity relation:      𝑥 ≈ 𝑦 ⇔ 𝑥 = 𝑦,          

(𝑖𝑖) Universal relation:  𝑥 ≈ 𝑦  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦𝜖𝑋. 

These two relations are called trivial. If there is a relation other than the above two, on 𝑋 then (𝐺, 𝑋) is called an 

imprimitive permutation group. If 𝐺 is transitive on 𝑋, that is, if 𝑥, 𝑦 ∈ 𝑋 then 𝑦 = 𝑔(𝑥) for some 𝑔 ∈ 𝐺, then 

(𝐺, 𝑋) is an imprimitive transitive permutation group.  

In the paper, we take 𝐺 = Γ and 𝑋 = ℚ̂. Of course, in this case, (Γ, ℚ̂) is a transitive permutation group, 

the imprimitive relation is defined in [3] as follows:  

The stabilizer  𝛤∞  of the Modular group Γ is the group  

                                          𝛤0(𝑛) = {(
𝑎 𝑏
𝑐 𝑑

) ∈ Γ| 𝑐 ≡ 0 𝑚𝑜𝑑𝑛}. 

If 𝑛 > 1, then 𝛤∞ < 𝛤0(𝑛) < Γ. So the relation, defined by  

𝑟

𝑠
≈  

𝑥

𝑦
  ⇔   𝑟𝑦 − 𝑠𝑥 ≡ 0 (𝑚𝑜𝑑𝑛), 
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is imprimitive. So (Γ, ℚ̂) is an imprimitive transitive permutation group.  

Now we give suborbitals, and suborbital graphs from [4]. Γ acts, as well, on the set ℚ̂ × ℚ̂, by 𝑔: (𝛼, 𝛽) →
(𝑔(𝛼), 𝑔(𝛽)). The orbits of the action are called suborbitals.  

From the suborbital 𝑂(𝛼, 𝛽) containing (𝛼, 𝛽), we construct the suborbital graph 𝒢(𝛼, 𝛽): the vertices 𝛼 

are in ℚ̂, while there is a directed edge from 𝑢 to 𝑣, shown  

                                                                               𝑢 → 𝑣  if (𝑢, 𝑣) ∈ 𝑂(𝛼, 𝛽). 

If we chose, as a vertex set, the block  

[∞] = [1/0] = {
𝑥
𝑦

∈ ℚ| 𝑦 ≡ 0 (𝑚𝑜𝑑𝑛)}, 

we get a subgraph 𝒢 (𝛼,
𝑢

𝑛
) , 𝐹𝑢,𝑛 for short.  

Let 𝑣0, 𝑣1, 𝑣2, … , 𝑣𝑘  be in [∞]. The configurations   𝑣0 →  𝑣1 → 𝑣2 → ⋯ → 𝑣𝑘  and  𝑣0 →  𝑣1 → 𝑣2 → ⋯   

are called a path and infinite path, respectively.  

Theorem 1.1 [4]  There is an edge   
𝑟

𝑠
→  

𝑥

𝑦
 𝜖 𝐹𝑢,𝑛     if and only if either                                                                         

𝑎) 𝑥 ≡ 𝑢𝑟 𝑚𝑜𝑑𝑛,    𝑟𝑦 − 𝑠𝑥 = 𝑛                     or          

𝑏) 𝑥 ≡ −𝑢𝑟 𝑚𝑜𝑑𝑛,    𝑟𝑦 − 𝑠𝑥 = −𝑛                                                                                                                                            

One of the studies about suborbital graphs can be reviewed in [5]. After that several authors' work on 

these subjects facilitated some branches of Mathematics such as number theory, group theory ext. Obtaining the 

Fibonacci sequence is one of the most attractive outcomes within them. This sequence has been obtained in many 

ways. For example, in [6-9], some modular subgroups of Γ and related suborbital graphs are used to construct the 

sequence using infinite paths, and furthermore, in [10-12], some continued fractions are taken to produce the 

sequence, and in [13] some special matrices are used.  

In this work, we believe in outlining the suborbital graph for a congruence subgroup 𝛤0(𝑛)  to find a 

relation of these graphs and the Fibonacci sequence.  

II. MAIN CALCULATIONS 

Let 𝑢  be a natural number. Then, 

                                                             𝑇 = (
−𝑢 1

−(𝑢2 + 3𝑢 + 1) 𝑢 + 3
)   

is in Γ.   

If  𝑘0 = 3, is the minimal positive integer for which 𝑢2 + 𝑘0 𝑢 + 1 ≡ 0(𝑚𝑜𝑑𝑛) in [5], and 𝑛 = 𝑢2 + 3𝑢 + 1,  

then 𝑇 ∈ 𝛤0(𝑛).  

Further, from    

                 𝑇(𝑧) =
−𝑢𝑧 + 1

−(𝑢2 + 3𝑢 + 1)𝑧 + (𝑢 + 3)
= 𝑧                                                                                                           (1) 

we get that   

−(2𝑢 + 3) + √5

−2(𝑢2 + 3𝑢 + 1)
= 𝑧1   ,    

−(2𝑢 + 3) − √5

−2(𝑢2 + 3𝑢 + 1)
= 𝑧2       

are fixed points of 𝑇.  

Theorem 2.1 Let 𝑘 be a natural number. Then,  

𝑖)     𝑇𝑘 (
1

0
) ⟶ 𝑇𝑘 (

𝑢

𝑛
)  in 𝐹𝑢,𝑛                                                                                                                                                      

𝑖𝑖)     𝑇𝑘 (
1

0
) ⟶ 𝑇𝑘+1 (

1

0
)  in 𝐹𝑢,𝑛                                                                                                                                                 

𝑖𝑖𝑖)     {𝑇𝑘 (
1

0
)}

𝑘𝜖ℕ
    is an increasing sequence and the path                                                                                                   
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𝑇 (
1

0
) ⟶ 𝑇2 (

1

0
) ⟶ 𝑇3 (

1

0
) ⟶ ⋯             

is an infinite.  

Proof.  i) We will prove this by using the principle of mathematical induction and Theorem 1.1. 

We observe that  

𝑇 (
1

0
) =

𝑢

𝑛
⟶

3𝑢 + 1

3𝑛
= 𝑇 (

𝑢

𝑛
)                

holds for 𝑘 = 1.  

Assume that  

                 𝑇𝑘 (
1

0
) ⟶ 𝑇𝑘 (

𝑢

𝑛
)                                                                                                                                                    (2) 

Since the expression (2) is true for 𝑘, we have   

                                                                 𝑇 ( 𝑇𝑘 (
1

0
)) ⟶ 𝑇 (𝑇𝑘 (

𝑢

𝑛
))                                                                                        

So the proof is completed. 

ii)  Using the above condition (i), we get  

                                                            𝑇𝑘 (
1

0
) ⟶ 𝑇𝑘 (

𝑢

𝑛
) = 𝑇𝑘 (𝑇 (

1

0
)) .                                                                            

iii) Since 𝑇 with  𝑇(𝑧) =
−𝑢𝑧 + 1

(𝑢2 + 3𝑢 + 1)𝑧 + (𝑢 + 3)
    is strictly increasing, we have the results.                             

Theorem 2.2   Let  𝑎, 𝑏𝜖ℕ   and   
1

𝑛
≤

𝑎

𝑛𝑏
<

(2𝑢 + 3) − √5

2𝑛
. Then,                                                                                    

𝑖)          
𝑎

𝑛𝑏
< 𝑇 (

𝑎

𝑛𝑏
) <

(2𝑢 + 3) − √5

2𝑛
,                                                                                                                                      

𝑖𝑖)      
𝑎

𝑛𝑏
⟶ 𝑇 (

𝑎

𝑛𝑏
) in 𝐹𝑢,𝑛  if and only if   𝑎 =

(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
     and                                                              

there exists some 𝑡𝜖ℕ such that 5𝑏2 + 4 = 𝑡2. 

Proof. i) Given   
𝑎

𝑛𝑏
<

(2𝑢 + 3) − √5

2𝑛
   we have  (2𝑢 + 3)𝑏 − 2𝑎 > √5𝑏 ⇒  ((2𝑢 + 3)𝑏 − 2𝑎)

2
> 5𝑏2.            

Then, 𝑎2 − (2𝑢 + 3)𝑎𝑏 + (𝑢2 + 3𝑢 + 1)𝑏2 > 0 and let us take 𝑛 = 𝑢2 + 3𝑢 + 1,  so 

                                                            𝑛𝑎2 − (2𝑢 + 3)𝑎𝑏𝑛 + 𝑛2𝑏2 > 0 

Then, we obtain that  

                 
𝑎

𝑛𝑏
< 𝑇 (

𝑎

𝑛𝑏
) =

−𝑎𝑢 + 𝑛𝑏

(−𝑎 + (𝑢 + 3)𝑏)𝑛
                                                                                                                    (3) 

Furthermore, since   

𝑎

𝑛𝑏
<

(2𝑢 + 3) − √5

2𝑛
 

     

and   𝑇   is increasing on  

 

[
1

𝑛
,
(2𝑢 + 3) − √5

2𝑛
) ∩ ℚ 

and by (1), then we get that        

                 𝑇 (
𝑎

𝑛𝑏
) <

(2𝑢 + 3) − √5

2𝑛
                                                                                                                                      (4) 
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From (3) and (4), we see that  

𝑎

𝑛𝑏
< 𝑇 (

𝑎

𝑛𝑏
) <

(2𝑢 + 3) − √5

2𝑛
. 

 

ii)  Let  
𝑎

𝑛𝑏
⟶ 𝑇 (

𝑎

𝑛𝑏
)   be an edge in 𝐹𝑢,𝑛 . Then,                                                                                                      

it follows that  

  𝑎2 − (2𝑢 + 3)𝑎𝑏 + 𝑛𝑏2 > 0    and    𝑎2 − (2𝑢 + 3)𝑎𝑏 + 𝑛𝑏2 = 1.  

Since 

4𝑎2 − 4(2𝑢 + 3)𝑎𝑏 + 4𝑛𝑏2 = 4,   4𝑎2 − 4(2𝑢 + 3)𝑎𝑏 + 4𝑛𝑏2 + 5𝑏2 = 4 + 5𝑏2,  

so 

 |(2𝑢 + 3)𝑏 − 2𝑎| = √5𝑏2 + 4  holds.  

Since   
𝑎

  𝑛𝑏
<

(2𝑢 + 3) − √5

2𝑛
  this shows that  (2𝑢 + 3)𝑏 − 2 > 0  and                                                                           

𝑎 =
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
 

which means for 𝑎, 𝑏𝜖ℕ there exists some 𝑡𝜖ℕ   such that 5𝑏2 + 4 = 𝑡2.  

Conversely,  if  𝑎 =
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
 ,  𝑡𝜖ℕ and 5𝑏2 + 4 = 𝑡2, then                                                                       

𝑎

𝑛𝑏
=

(2𝑢 + 3)𝑏 − √5𝑏2 + 4
2

𝑛𝑏
 

and   

− (
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) 𝑢 + 𝑛𝑏

(− (
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) + (𝑢 + 3)𝑏) 𝑛

= 𝑇 (
𝑎

𝑛𝑏
). 

This implies that  

        (− (
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) + (𝑢 + 3)𝑏) (

(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
)                  

                                                                                                  −𝑏 (− (
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) 𝑢 + 𝑛𝑏) = 1 

and                            

(− (
(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) 𝑢 + 𝑛𝑏) ≡ − ((− (

(2𝑢 + 3)𝑏 − √5𝑏2 + 4

2
) 𝑢 + 𝑛𝑏)) 𝑢 (𝑚𝑜𝑑 𝑛). 

 

According to Theorem 1.1, we have  that  
𝑎

𝑛𝑏
⟶ 𝑇 (

𝑎

𝑛𝑏
)  in 𝐹𝑢,𝑛 .                                                                                       

Here are two major corollaries without proof. 

Corollary 2.3             

i)    
1

0
⟶

𝑢

𝑛
+

0

1. 𝑛
⟶

𝑢

𝑛
+

1

3. 𝑛
⟶

𝑢

𝑛
+

3

8. 𝑛
⟶ ⋯ ⟶

𝑢

𝑛
+

𝑎𝑘

𝑏𝑘 . 𝑛
⟶

𝑢

𝑛
+

𝑏𝑘

(3𝑏𝑘 − 𝑎𝑘). 𝑛
⟶ ⋯                                      

      is an infinite path in  𝐹𝑢,𝑛 , 
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 ii) Every vertex in (i) is less than   
(2𝑢 + 3) − √5

2𝑛
 ,                                                                                                                

 iii) The numbers 5𝑎𝑘
2 + 4, 5𝑏𝑘

2 + 4  are perfect squares for the natural numbers  𝑎𝑘 , 𝑏𝑘 ∈ ℕ  in (i) . 

Proof. Theorem 2.1 and Theorem 2.2 conclude the proof.   

Corollary 2.4 The numbers 𝑘 ∈ ℤ+  making   5𝑘2 + 4  perfect squares are  

                 0, 1, 3, 8, … , 𝑥, 𝑦, 3𝑦 − 𝑥                                                                                                                                        (5)     

Proof. Corollary 2.3 concludes the proof.        

Now, we will investigate the numbers obtained from the inverse matrix of   𝑇 . 

The inverse matrix of  𝑇   is  (
𝑢 + 3 −1

(𝑢2 + 3𝑢 + 1) −𝑢
) , and for  𝑢 = 1 we have 𝑆 ≔ (

4 −1
5 −1

) .  

So we get the following. 

Theorem 2.5 

i)  For all 𝑘 ∈ ℕ, 𝑆𝑘 (
3

5
) ⟶ 𝑆𝑘+1 (

3

5
),                                                                                                                                         

ii)  {𝑆𝑘 (
3

5
)}

𝑘𝜖ℕ
  is an increasing sequence and the path   

3

5
⟶ 𝑆 (

3

5
) ⟶ 𝑆2 (

3

5
) ⟶ 𝑆3 (

3

5
) ⟶ ⋯                             

is an infinite. 

Proof. We conclude the proof as in Theorem 2.1. 

Theorem 2.6  Let  𝑆 ≔ (
4 −1
5 −1

) 𝜖𝛤0(5)  and 𝑎, 𝑏𝜖ℕ  such that 
3

5
≤

𝑎

5𝑏
<

5 + √5

10
. Then,                                            

𝑖)   
𝑎

5𝑏
< 𝑆 (

𝑎

5𝑏
) <

5 + √5

10
 ,                                                                                                                                                         

𝑖𝑖)   
𝑎

5𝑏
⟶ 𝑆 (

𝑎

5𝑏
)   is an edge in 𝐹1,5   if and only if  𝑎 =

5𝑏 + √5𝑏2 − 4

2
  and                                                               

there exists some  𝑟𝜖ℕ   such that 5𝑏2 − 4 = 𝑟2.                                                                                                                     

Proof.   Given 
𝑎

5𝑏
<

5 + √5

10
, we have  2𝑎 − 5𝑏 < √5𝑏 ⇒  (2𝑎 − 5𝑏)2 < 5𝑏2.                                                            

From this, we get    4𝑎2 − 20𝑎𝑏 + 20𝑏2 < 0, 𝑎2 − 5𝑎𝑏 + 5𝑏2 < 0  and  5𝑎2 − 25𝑎𝑏 + 25𝑏2 < 0 . Then,   

                  
𝑎

5𝑏
<

4𝑎 − 5𝑏

5𝑎 − 5𝑏
=  𝑆 (

𝑎

5𝑏
)                                                                                                                                      (6) 

 

Since S is increasing on [
3

5
,
5 + √5

10
) ∩ ℚ , and  𝑆 (

 5 + √5

10
) =

5 + √5

10
  from (1),  we have                                    

                 𝑆 (
𝑎

5𝑏
) <  

 5 + √5

10
                                                                                                                                                   (7) 

From (6) and (7), we get   
𝑎

5𝑏
< 𝑆 (

𝑎

5𝑏
) <

5 + √5

10
  .                                                                                                               

ii) Given  
𝑎

5𝑏
⟶ 𝑆 (

𝑎

5𝑏
)   we have that  𝑎2 − 5𝑎𝑏 + 5𝑏2 < 0  and by Theorem 1.1, we have                                  

𝑎2 − 5𝑎𝑏 + 5𝑏2 = −1 . 

Then,  −4𝑎2 + 20𝑎𝑏 − 20𝑏2 = 4,   −4𝑎2 + 20𝑎𝑏 − 20𝑏2 − 5𝑏2 = 4 − 5𝑏2  and  (2𝑎 − 5𝑏)2 = −4 + 5𝑏2     

so  |2𝑎 − 5𝑏| = √5𝑏2 − 4 .  Since  
3

5
≤

𝑎

5𝑏
<

5 + √5

10
 we have 2𝑎 − 5𝑏 > 0  and                                                        
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2𝑎 − 5𝑏 = √5𝑏2 − 4, and  

𝑎 =
5𝑏 + √5𝑏2 − 4

2
 

Furthermore, since √5𝑏2 − 4  𝜖 ℕ, there exists some  𝑟𝜖ℕ   such that 5𝑏2 − 4 = 𝑟2. 

Conversely, let   𝑎 =
5𝑏 + √5𝑏2 − 4

2
   and   5𝑏2 − 4 = 𝑟2   for some  𝑟𝜖ℕ.                                                                      

Then,  

                         
𝑎

5𝑏
=

5𝑏 + √5𝑏2 − 4
2

5𝑏
   ,           𝑆 (

𝑎

5𝑏
) =

10𝑏 + 4√5𝑏2 − 4
2

5 (
3𝑏 + √5𝑏2 − 4

2
)

            and                         

5𝑏 + √5𝑏2 − 4

2
∙

3𝑏 + √5𝑏2 − 4

2
− 𝑏 ∙

10𝑏 + 4√5𝑏2 − 4

2

=  
15𝑏2 + 5𝑏√5𝑏2 − 4 + 3𝑏√5𝑏2 − 4 + 5𝑏2 − 4 − 20𝑏2 − 8𝑏√5𝑏2 − 4

4
        

= −1                                                                                                    

 

Since   

                       
10𝑏 + 4√5𝑏2 − 4

2
+ 

5𝑏 + √5𝑏2 − 4

2
= 5 (

3𝑏 + √5𝑏2 − 4

2
)   ≡ 0 (𝑚𝑜𝑑5 ),        

we get that   

                       
10𝑏 + 4√5𝑏2 − 4

2
≡ − (

5𝑏 + √5𝑏2 − 4

2
) (𝑚𝑜𝑑5) ,        

and  

𝑎

5𝑏
⟶ 𝑆 (

𝑎

5𝑏
)  is an edge in 𝐹1,5 . 

We get the following corollaries. 

Corollary 2.7     

i)                               
4

5
−

1

5.1
⟶

4

5
−

1

5.2
⟶

4

5
−

2

5.5
⟶ ⋯ ⟶

4

5
−

𝑎𝑘

5𝑏𝑘

⟶
4

5
−

𝑏𝑘

5. (3𝑏𝑘 − 𝑎𝑘).
⟶ ⋯                          

is an infinite path in  𝐹1,5 , 

ii) Every vertex in (i) is less than   
5 − √5

10
  ,                                                                                                                              

iii) The numbers 5𝑎𝑘
2 − 4, 5𝑏𝑘

2 − 4   are perfect squares for the natural numbers  𝑎𝑘 , 𝑏𝑘 ∈ ℕ  in (i) . 

Proof. Theorem 2.5 and Theorem 2.6 conclude the proof. 

Corollary 2.8  The numbers 𝑘 ∈ ℤ+  making   5𝑘2 − 4  perfect squares are  

                    1,2,5,13, … , 𝑥, 𝑦, 3𝑦 − 𝑥                                                                                                                                    (8)                               

Proof. Corollary 2.7 concludes the proof. 

In view of  Corollary 2.4 and Corollary 2.8, we have the main result as follows: 

Corollary 2.9  Let the sequences {𝑘𝑛}𝑛∈ℕ, {𝑚𝑛}𝑛∈ℕ  be satisfying the conditions (5) and (8), respectively. 

Then, the sequence {𝐹𝑛}𝑛∈ℕ  defined by  
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                                                               𝐹𝑛 = {

                 
𝑘𝑛+1

2

, 𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑜𝑑𝑑    

𝑚𝑛

2
 ,   𝑖𝑓 𝑛 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛

   

for all 𝑛 ∈ ℕ, that is (𝑘1, 𝑚1, … , 𝑘𝑛, 𝑚𝑛, 𝑘𝑛+1, 𝑚𝑛+1, … ), is the Fibonacci sequence. 

III. CONCLUSIONS 

In this work, we have found a connection between the suborbital graph of the Modular group and the 

Fibonacci sequence. Fibonacci sequence and suborbital graphs are widely studied by several authors [6-13]. These 

studies using suborbital graphs are not so old. So we believe that our contributions open avenues to some more 

advanced studies. It might be that the Fibonacci sequence may be generalized by the theory of graphs, namely 

suborbital graphs by taking some groups other than the Modular group, using the method in the study or different 

methods. 
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