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Güneş paneli teknolojisi ortalama 25 yıl ömrü olan bu tür sistemlerin kurulumu pahalıdır. Bu 

sistemlerden en iyi şekilde yararlanmak için geleceğe yönelik üretim tahminleri yapmak çoğu 

zaman önemlidir. Bu çalışmada, Konya merkezli yıllık 1MW kapasiteye sahip güneş enerjisi 

santrallerine (tek değişkenli zaman serisi) ait iki yıllık üç günlük frekans veri seti ve bir yıllık 

saatlik frekans veri seti değerlendirilmektedir. Elektrik üretim analizi, derin öğrenme 

kullanılarak güneş enerjisi santrallerinden elde edilen verilere dayanılarak yapılmaktadır. 

Tercih edilen yöntem uzun kısa süreli hafıza (LSTM) olup, zaman serisi analizinde kullanılan 

diğer bir istatistiksel yöntem olan mevsimsel otoregresif bütünleşik hareketli ortalama 

(SARIMA) ile kıyaslanmıştır. Her bir veri seti ile elde edilmiş sonuçlar beş farklı performans 

ölçüm mekanizmasına (MSE, RMSE, NMSE, MAE, MAPE ve R2) tabi tutulmuş ve LSTM 

modelinin genellikle SARIMA modeline göre daha gerçek verilere yakın sonuçlar verdiği tespit 

edilmiştir. RMSE skoruna göre dört santralin ortalama değeri LSTM'de 973, SARIMA'da 1361 

olup, bu durumda LSTM, SARIMA'ya göre başarılı bir sonuç vermiştir. Güneş enerjisi santrali 

kurmadan önce fizibilite çalışmasının yapılması karlılığı artırıcı bir role sahiptir. 
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Solar panel technology is expensive to install such systems, which have a lifespan of about 25 

years on average. It is often important to make production estimates for the future to make 

optimal use of these systems. This study assesses three two-year daily frequency data sets and 

a one-year hourly frequency data set from the solar power plants (univariate time series) based 

in Konya, which have a 1MW capacity per annum. Electricity production analysis is conducted 

based on the data from the solar power plants using deep learning. The preferred method is 

determined to be Long Short-Term Memory (LSTM), and it has been compared with another 

statistical method used in time series analysis, Seasonal Autoregressive Integrated Moving 

Average (SARIMA). The results obtained with each dataset have been subjected to five 

different performance measurement mechanisms (MSE, RMSE, NMSE, MAE, MAPE and R2). 

It has been observed that the LSTM model generally provides results closer to real data 

compared to the SARIMA model. According to the RMSE score, the average value of four 

power plants is 973 in LSTM and 1361 in SARIMA, in this case LSTM gave a successful result 

compared to SARIMA. Before establishing a solar power plant, carrying out a feasibility study 

has a profitability-enhancing role. 
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INTRODUCTION 

Renewable energy is a term used for power sources with a constant energy flow such as solar, 

wind, biomass, geothermal, hydroelectric, and wave power. It is arguable that renewable energy systems 

(RES) are the set of systems using renewable energy sources to meet the need for electricity due to the 

decreasing availability of energy sources commonly used around the world such as oil, natural gas, and 

coal. Fossil fuels and their derivatives, which are most frequently used in electricity production around 

the world, not only pollute the natural environment but at the same deliver negative effects on human, 

animal, and plant health. These and similar reasons render renewable energy use crucial. The demand 

for the existing types of renewable energy sources is increasing by each day; nevertheless, not an 

adequate body of work is available in practice for energy efficiency. This constitutes a significant 

obstacle vis-a-vis fossil fuel. For instance, if we consider that solar power plants (SPP), which require 

high installation and maintenance costs, have a lifespan of 25 years on average, the issue of efficiency 

appears critical for SPPs. 

In this study, we first review renewable energy sources, artificial intelligence and deep learning, 

time series definition, and analysis methods and then use the LSTM model (Long Short-Term Memory), 

a deep learning method, to make electricity production estimation for the future. For illustration, three 

SPPs selected from three different areas, which each have a 1 MW production capacity annually, are 

analyzed. This method evaluates the results by comparing with SARIMA (Seasonal ARIMA), a 

variation of ARIMA (Autoregressive Integrated Moving Average), which is another statistical method 

used in time series analysis. 

Alan Turing, who proposed the question “Can machines think?” in the 1950s, to be a subbranch 

of artificial intelligence. Computer scientist Arthur Samuel is believed to have coined the term “machine 

learning” in 1959 [1]. 

 

Figure 1 

Structural Differences in Machine Learning and Deep Learning 

Deep learning is an approach which essentially makes part of the family of machine learning and 

relies on artificial neural networks. Learning may be controlled, semi-controlled or uncontrolled [2]. Its 

fundamental difference from machine learning is that it can carry out the task of feature (or attribute) 
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extraction (formation of new derived values through measured values introduced as input) within its 

own neural network without any support as Figure 1 demonstrates. 

Artificial intelligence can be defined to include machine learning and deep learning respectively 

(Figure 2). 

 

Figure 2 

The Relationship of the Deep Learning Approach with Machine Learning and Artificial Intelligence 

𝐷𝐿 ⊂ 𝑀𝐿 ⊂ 𝐴𝐼 [3] 

Time series refers to the frequency of data points in areas such as statistics, econometrics, signal 

processing, seismology, meteorology, and mathematical finance and is measured in terms of regular 

time periods and consecutive time slots. The daily closing value of the BIST (Borsa Istanbul) Index or 

the daily passenger capacity of Turkish Airlines can be offered as an example. Time series are divided 

into two types: univariate and multivariate. While univariate series include a single feature (for instance, 

only radiation data in meteorology), multivariate series may allow for several features (for instance, 

temperature, pressure, radiation, wind speed, or radiation time in meteorology). 

Time series estimation is a conceptual model for predicting future events based on certain pre-

given events. An example of time series estimation in econometrics is prediction of the opening price 

of a stock share based on its previous performance [4]. 

A few academic studies that have been conducted concerning solar power, wind power, weather 

forecasts, electricity demands, and other topics using deep learning and artificial intelligence techniques 

are briefly touched upon. 

Cano et al. [5] utilized the HELIOSAT Method, which is one of the pioneering studies in solar 

radiation forecasting using prediction pixels derived from meteorological satellite images (cloud index 

(n)). Ruşen [6] aimed to understand the components of daily solar radiation on a horizontal surface in 

the selected region (Konya-Karaman) in the Central Anatolia Region using the HELIOSAT Method. 

Seven years of solar data were employed, and it was determined that the accuracy of daily global and 

diffuse solar radiation predictions was found to be acceptable. As a result, it was indicated that these 

predictions are important for calculating the performance and energy costs of solar power plants. Ruşen 

and Konuralp  [7] conducted a study aiming to compare and evaluate the validity of global and diffuse 

radiation estimation methods for nine locations in Turkey to accurately determine solar radiation 

components for solar system analysis. They employed the HELIOSAT, Meteonom, and PVGIS satellite-
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based methods. It was noted that the HELIOSAT Method (with measurement metrics of relative mean 

bias error and relative root mean square error) is considered a reliable method in situations where global 

and diffuse radiation data are not available compared to the others. 

Abdel-Nasser and Mahmoud [8] used the (LSTM-RNN) method to accurately estimate the output 

power of PV systems in their study. In their proposed method (LSTM with time steps), they used annual 

data sets obtained from different sites. When they compared with three different PV estimation methods 

(multiple linear regression (MLR), bagged regression trees (BRT) and neural networks), they stated that 

the prediction error in LSTM was lower. 

Agrawal et al. [9] proposed a new method for long-term load estimation at hourly resolution. They 

focused the model on a recurrent neural network of LSTM-RNN cells. They have considered the long-

term relationships in the time series data of the electrical load demand by using LSTM-RNN and have 

obtained results with correct predictions. They adapted this model to real-time data of the ISO New 

England electricity market. They collected twelve years of publicly available data from 2004 to 2015 to 

train and validate this model and made forecasts of electricity demand on a rounding basis over a five-

year period from 2011 to 2015. They stated that they predicted correctly with a 6.54 Mean Absolute 

Percent Error (MAPE) in the 2.25% confidence interval. 

Balluff et al. [10] using a RNN to estimate the wind speed and pressure in northern Europe (Great 

Britain, Ireland, France, Germany, Denmark) between 2001 and 2015 installed wind power plants, wind 

speed, wind direction, temperature and surface pressure data were used. 

Gensler et al. [11] used combinations of the relevant algorithm to demonstrate their prediction 

power compared to a standard MLP and a physical prediction model in estimating the energy output of 

21 GES. It has been stated that the results using Deep Learning algorithms show superior prediction 

performance compared to other reference models such as Artificial Neural Networks and physical 

models. 

Sharadga et al. [12] introduced several time series estimation methods, including those based on 

statistical methods and artificial intelligence, and rigorously compared PV power output estimation. In 

addition, they investigated the effect of prediction time horizon variation for all algorithms. The data 

used in the current study includes 3640 hours of operation from a 20 MW grid-connected PV station in 

China. 

Şencan [13] made a short-term electricity price estimation using LSTM in the study. In the model 

created, historical electricity price values are used as input. The data used are hourly electricity prices 

in Turkey for the years 2015, 2016 and 2017. The data used in the study are divided into two as training 

and testing for winter and summer seasons. The method used; Compared with the performance of RNN 

and Exponential Correction methods. MAPE values obtained using the LSTM method; 5.91% for winter 

and 5.77% for summer. 

LSTM model was created by Özen et al. [14] using temperature and humidity data received from 

Tekirdağ Provincial Directorate of Meteorology for temperature and humidity prediction with deep 

learning, and the success criteria were calculated as RMSE 1.895, MSE 3.547, R-square score value 

0.952 and MAE 1.614. 

In their study, Hacıbeyoğlu et al. [15] used the K Nearest Neighbor (KNN) algorithm to estimate 

energy efficiency in buildings. In their experimental results, KNN was more successful than linear 



Assessment of Electricity Generation Using Deep Learning on Solar Power Plants 
    

 
 

 

293 

 

 

regression and produced predictions at the level of 96%. 

Alparslan et al. [16] conducted a study on solar radiation prediction using Artificial Neural 

Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) methods. In this study, which 

considered the climatic conditions of the Karaman region, it was observed that the ANFIS model 

provided more accurate results in the prediction of monthly data compared to the ANN model. 

MATERIALS AND METHODS 

The study was conducted using several software tools on a computer. The general features of the 

computer used are indicated in Table 1. 

Table 1  

General Characteristics of the Computer Used 

Hardware Hardware Features 

CPU AMD Ryzen 1500X 3.5 GHz 

GPU NVIDIA GeForce GTX 1050Ti 4GB GDDR5 

Memory (RAM) 16 GB (8+8) 3000 MHz 

 

Software Tools 

This section includes the applications used in this study and the materials needed for deep learning 

and statistical analysis in the software libraries. These materials were preferred since they are frequently 

used in statistical studies, a good number of sample works involving them are available, and they are 

easy to access.  

Python is an object-oriented, modular, and interactive high-level programming language. Its 

modular structure supports any kind of data area entry. It can operate on almost any platform [17]. It is 

most often used in scientific studies and statistical science (along with the statistical language R). 

Anaconda is a Python-supported integrated Python distribution for applications in data science 

and other fields. In addition to the libraries typically used in the fields of artificial intelligence and data 

science, it also involves devices such as Jupyter Notebook and Spyder in its system [18]. 

Anaconda Navigator is a desktop graphical user interface included in the Anaconda distribution 

that allows developers to launch applications and manage conda (package manager used in Python) 

packages, environments, and channels without using command-lines [19]. 

Numpy (Numerical Python) is an open-source library frequently used by researchers and 

scientists that supports Python-based scientific calculations and the formation of multidimensional 

arrays and matrices through code writing on fewer lines to help form high-level mathematical functions 

[20]. 

Matplotlib is an open-source Python library used for data visualization. It is useful for two- or 

three-dimensional graph drawing [21]. It works compatibly with Numpy. It supports many types of 

graphs (lines, columns, circles, image processing etc.). 

Tensorflow is a free and open-source library developed by the firm Google that is used for neural 

networks and machine learning [22]. It operates compatibly with libraries such as Keras, used in neural 

networks, and scikit-learn, used for machine learning. Google integrated Keras into the system in the 

second version of Tensorflow. It has also recently presented the Tensorflow 3D library, which facilitates 
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deep learning in three-dimensional environments, for use by scientific researchers [23]. 

Pandas is an open-source library written using the Python language that is used for data analysis 

and manipulation. It is especially useful for importing data into a project and supports formats such as 

csv, txt, and xls. It operates in the types “Dataframe” and “Series.” It usually uses “dataframes” for 

machine learning. We can consider “dataframes” to be like tables in relational database systems. Pandas 

uses operations such as adding or removing columns or lines and merging or separating tables for 

“dataframes” like data tasks in a table [24]. 

Keras is an open-source neural network library written using Python and is used for deep learning. 

It can operate with Tensorflow. It was developed by Google engineer François Chollet. It is used in 

designing deep neural networks such as CNN and RNN [25]. 

Statsmodels is a Python library offering classes and functions for the computation of many 

different statistical models, statistical tests, and statistical data discovery. It provides a comprehensive 

list of statistical conclusions for each estimate. It is checked against available statistical packages to 

verify the accuracy of its conclusions [26]. 

Datasets 

The study analyzes four data sets from SPPs based in different locations in the province of Konya, 

each of which has a 1MW installed power. These power plants are in the districts of Çumra, Tuzlukçu, 

and Yunak in Konya. While three of these four data sets are daily frequency and span two years of 

electricity production data (kWh), the other is hourly frequency and spans about one year. These data 

consist of univariate time series. Figure 3 shows the locations of the SPPs. 

In the rest of the study, the Çumra power plant will be referred to as Plant_A (daily frequency), 

the Tuzlukçu power plant as Plant_B (daily frequency), the Yunak power plant as Plant_C (daily 

frequency), and the same Çumra power plant as Plant_D for hourly frequency. 

 

Figure 3 

The Locations of SPPs Used in the Study 

Figure 4 indicates the electricity production data graph for Plant_A. It includes 800 days of data. 

Figure 5 indicates the electricity production data graph for Plant_B. It includes 730 days of data. Figure 

6 indicates the electricity production data graph for Plant_C. It includes 730 days of data. Finally, Figure 

7 indicates the electricity production data graph for Plant_D. It includes 8777 hours of data. 
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Figure 4 

Electricity Production Chart of Plant_A (with daily frequency). 

 

Figure 5 

Electricity Production Chart of Plant_B (with daily frequency). 

 

Figure 6 

Electricity Production Chart of Plant_C (with daily frequency). 
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Figure 7 

Electricity Production Chart of Plant_D (with hourly frequency). 

Plant_D is in fact the data set derived from the Çumra power plant based on hourly frequency. It 

is labelled Plant_D to prevent confusion. While three data sets are offered in daily frequency, the fourth 

data set is offered in hourly frequency since the latter involves higher data density and we would like to 

be able to analyze how the system, especially the LSTM, will respond. That data density is high in deep 

learning is an important consideration in system training and in the forecasting mechanism. Data from 

Konya is used because this province is large in surface area and the region exhibits significant levels of 

solar heat and radiation annually [27]. 

The LSTM Method in Neural Networks and its Structural Properties 

LSTM networks are referred to as gate cells where information can be stored. A cell determines 

which information to store, how to use it or whether to forget any information during the task of 

forecasting. Input and output gates allow for the passage or blocking of information based on trained 

weights. This architecture can merge flow entry, previous status and the cell memory and inform long-

term dependencies. It was derived and formed out of the RNN (Recurrent Neural Network) structure 

[28]. 

All RNNs are in the form of recurrent neural module chains. In classic RNNs, these modules have 

a basic structure such as a single 𝑡𝑎𝑛ℎ layer. Figure 8 demonstrates the scheme of this chain.  

 

Figure 8 

Repeating Module in Standard RNN Contains a Single Layer [29] 

LSTMs, like RNNs, have a consecutive structure where they follow one another. The crucial 

difference here is that parts following each other do not have a single neural layer but a four-layered 

special-interaction structure. Figure 9 shows the LSTM chain. 
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Figure 9 

The Repeating Module in LSTM Includes Four Interactive Layers [29] 

In the diagram in Figure 9, the entire vector is transmitted from the output of the node for each 

line to the input of the other modules. While neural network layers are learned in the orange boxes, the 

yellow circles perform pointwise operations such as vector addition. Merged lines stand for the merging 

line and the line forking operation suggests that the copied content will move to different locations [29]. 

The LSTM architecture could add or remove information organized by structures called "gates". 

Gates are a way to allow the passage of information on demand. They consist of a sigmoid neural 

network layer and a point multiplication process (Figure 10). 

 

Figure 10 

Sigmoid Layer with Pointwise Multiplication [29] 

The sigmoid layer returns values between 0 and 1 that describe how much of each component it 

should allow to pass through. The value "0" means "closed to data transfers", while the value "1" means 

"available for data transfers". The standard LSTM has three of these gates for maintaining and 

controlling the cell state [29]. 

Steps of an LSTM Cell 

The first step in the model is to determine which information to throw away from the cell state. 

This task is carried out by a sigmoid layer called “the forget gate layer.” It looks at the points 𝑋𝑡 and 

ℎ𝑡−1 and outputs a number between 0 and 1 for each number in the cell state 𝐶𝑡−1 (Figure 11). An exit 

value of 1 represents “keep this information” while a value of 0 represents “get rid of this information”. 

The equation as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓)    (1) 

The next phase is the decision phase, determining what new information to keep based on the cell 

state. This takes place in two parts. First, the “gateway layer”, which is the sigmoid layer, determines 

which values will be updated. Next, a 𝑡𝑎𝑛ℎ layer creates a vector of new candidate values, 𝐶̃𝑡, that is 

added to the new state (Figure 12). In the next step, these two layers are combined to update the state. 
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Figure 11 

Sigmoid Layer with Pointwise Multiplication [29] 

 

Figure 12 

“Input gate” Layer in LSTM Cell [29] 

The formula of the input layer is given as follows: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖)    (2) 

𝐶̃𝑡 = tanh(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝐶)    (3) 

This makes it possible to update the old 𝐶𝑡−1 cell state to the new 𝐶𝑡 cell state. It had already been 

decided in the previous steps what to do. In this step, implementation begins. 

In this step, the old situation is multiplied by 𝑓𝑡, forgetting the information previously decided to 

forget. Then add 𝑖𝑡 ∗  𝐶̃𝑡 (as shown in the equation below). These values are new candidate values at 

scale where it is decided how much of each state value to update (Figure 13). 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡     (4) 

 

Figure 13 

Merge Layers After Previous Operations in LSTM Cell [29] 

In the last step, it is decided what to send as output. This output depends on the cell state but can 

also be a filtered version. In the first step, a sigmoid layer is run where it is decided which parts of the 
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cell state want to be output (Figure 14). The cell state is then passed through a 𝑡𝑎𝑛ℎ function (to keep 

the values between -1 and +1) and multiplied by the output of the sigmoid gate to output only the parts 

it was decided to include. 

 

Figure 14 

The ℎ𝑡 Gate is Created in the Last Step in the LSTM Cell [29]. 

The equations of the last step are shown as follows: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜)    (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)     (6) 

ARIMA and SARIMA Methods in Statistics 

The autoregressive integrated moving average model (ARIMA) is used in non-stationary time 

series. It uses the Box-Jenkins method [30]. While it represents local trends or differences in level, 

different parts of non-stationary processes display a certain level of similarity. A stable 𝐴𝑅𝐼𝑀𝐴(𝑚, 𝑑, 𝑛) 

model that is the difference d of the time series is shown as follows: 

𝑥̃𝑡 = ∑ 𝛷𝑖𝑆𝑑𝑥𝑡−𝑖 + ∑ 𝜃𝑗𝜔𝑡−𝑗
𝑛
𝑗=0

𝑚
𝑖=1    (7) 

Here, 𝑆 = 1 − 𝑞(−1) and 𝛷𝑚(𝑞) are fixed and reversible 𝐴𝑅(𝑚) operators. 𝑥𝑡 , 𝜔𝑡 , 𝛷𝑡 and 𝜃𝑗 are 

respectively the observed time series values, the error, the 𝐴𝑅, and the 𝑀𝐴 values. ‘d’ is the number of 

differences (non-seasonal), ‘m’ is the number of autoregressive terms, and ‘n’ is the number of delayed 

forecast errors [31].  

In the ARIMA process, stationarity in time series is identified and fixed and then the operation is 

made more forecastable using the 𝐴𝑅𝐼𝑀𝐴 model. 

If time series involve a seasonal impact, the Seasonal ARIMA (SARIMA) method is used. This 

method goes through operations like those in 𝐴𝑅𝐼𝑀𝐴 and incorporates the parameter s, which stands 

for seasonality and is expressed as 𝑆𝐴𝑅𝐼𝑀𝐴 (𝑚, 𝑑, 𝑛)𝑥(𝑀, 𝐷, 𝑁, 𝑠) statistically. The capitalized letters 

(M, D, and N) are the parameters used for the model involving seasonality. 

For time series to be forecasted in the ideal fashion and in statistical terms, they are expected to 

be static. It is possible to use methods such as a correlogram and the Dickey-Fuller test to determine 

whether a time series is static. Considering such a test, it is possible to make a time series static and 

engage in forecasting. 

Performance Measurements 

The performance of forecasting methods is measured using various metrics related to forecast 

error. Higher error values indicate lower prediction accuracy. This section will discuss various 

performance metrics frequently used to calculate prediction error. The point that needs attention here is 
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that x represents the observed value, 𝑥̃ stands for the estimated value, and n corresponds to the total 

number of cases [31]. This section will cover the performance metrics evaluated in the study. 

MSE (Mean Squared Error) 

The mean squared error refers to the distance between a regression curve and a series of points. 

The MSE measures the performance of the forecasting mechanism of a machine learning model. It 

always has a positive value, and it is possible to put forward that the closer the MSE result is to zero, 

the better performance the forecasting mechanism exhibits. The equation is shown as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑥̃𝑖 − 𝑥𝑖)2𝑛

𝑖=1     (8) 

NMSE (Normalized Mean Squared Error) 

This measurement is the normalized version of the MSE as follows:  

𝑁𝑀𝑆𝐸 =
𝑛 ∑ (𝑥̃𝑖−𝑥𝑖)2𝑛

𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1 ∑ 𝑥̃𝑖

𝑛
𝑖=1

    (9) 

It is accepted that the model is successful in cases in which the NMSE value measured for the 

best model is closest to zero. The NMSE, normalized by the multiplication term of the means found in 

the denominator, does not show bias due to under-forecasting or over-forecasting by the model [32]. 

RMSE (Root Mean Squared Error) 

The root mean squared error is obtained by extracting the square root of the MSE. It is a quadratic 

measurement used to find the distance between the value predicted by the forecasting mechanism of a 

machine learning model and the actual value. The RMSE accounts for the standard deviation in forecast 

errors. In other words, residuals are a measure of how far the regression line is from the actual data 

points. The RMSE does not allow for the use of absolute values, which are not desired in many 

mathematical computations [33]. It is considered that, by definition, the closer the RMSE is to zero, the 

better alignment it shows with data. However, it never takes the value of 0 in practice. In general, a 

lower RMSE is better than a higher one. Since the RMSE depends on the scale of numbers used for 

measurement, comparisons among different types of data will not have any validity. The model is 

frequently used in comparisons. The equation is shown below: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑥̃𝑖 − 𝑥𝑖)2𝑛

𝑖=1    (10) 

MAE (Mean Absolute Error) 

The mean absolute error is the measure of the difference between two constant variables (the 

following equation). The MAE is both the mean vertical and the mean horizontal distance between each 

actual value and the line best aligning with the data. The MAE result is easy to interpret and is frequently 

used in regression and time series problems [33]. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥̃𝑖 − 𝑥𝑖|𝑛

𝑖=1     (11) 

MAPE (Mean Absolute Percentage Error) 

The mean absolute percentage error is shown below: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥̃𝑖−𝑥𝑖

𝑥𝑖
|𝑛

𝑖=1 ∗ 100%   (12) 

The MAPE is frequently used in regression and time series models to determine the accuracy of 

forecasts. If the actual values include zero, the MAPE cannot be calculated since it needs to be divided 
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by zero (it will yield a false result). For very low forecast values, the percentage error cannot go above 

100%. Nevertheless, when very high forecast values are generated, there is no upper limit for the 

percentage error. When the MAPE is used to compare the accuracy of models used for forecasting, it is 

biased since it systematically selects a model with low forecasts [33]. 

R2 (Coefficient of determination) 

Coefficient of determination is shown below: 

𝑅2 = 1 −
1

𝑛
∑ (𝑥̃𝑖−𝑥𝑖)2𝑛

𝑖=1
1

𝑛
∑ (𝑥̅−𝑥𝑖)2𝑛

𝑖=1

      (13) 

The coefficient of determination (R-squared) [34] is expressed as the ratio of the variance in the 

dependent variable that can be predicted by the independent variables. For example, an R-squared of 

80% means that the independent variables can explain 80% of the variance in the dependent variable. 

R-squared generally corresponds to a value between 0 and 1. 

Hyperparameter Tuning 

Since the use of graphical cards allows for speed in parallel operations, researchers are now able 

to model complex structures with multiple layers and solving problems through deep learning has 

become equivalent to optimizing a multiple-layered neural structure. At this point, hyper-parameters 

often present themselves as tools used by researchers along with their insight [35]. 

In designing an ML model learning from data, designers need to use certain parameters to decide 

what algorithms or techniques to feature in the model. To illustrate, it is the designer who determines 

what value the value k will receive in the KNN classification algorithm. Similarly, it is the designer who 

decides which kernel function to use in the SVM algorithm. In deep neural models, the designer sets the 

dropout value and the number of neurons. It is initially not clear which criteria to use in the selection of 

such parameters. It depends on factors such as the data set and the type of problem. Thus, it is up to the 

designer what they will be. These parameters that vary by the characteristics of the data set are called 

hyperparameters. Figure 15 shows hyper-parameters and the state of model parameters [35]. In statistical 

science, the parameters referred to as “orders” in ARIMA models used for time series estimation are 

also called hyperparameters since they are adjusted according to the makeup of the series. 

 

Figure 15 

Hyperparameters and Relationship of Model Parameters [36]. 
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RESULTS AND DISCUSSIONS 

In the study, LSTM and Seasonal ARIMA (SARIMA) models were used for each data set (these 

data are univariate time series). The forecast graphs for each model used for each data set are given 

along with the actual values. To compare the forecast accuracy of these models, MSE, RMSE, NMSE, 

MAE, and MAPE error measurements were used. 

The LSTM Model 

The basic sequential model available in the Keras library was preferred, and among the layers of 

this model, primarily the LSTM model was used. The general structure of the model is shown in Table 

2. 

Table 2  

General Structure of The LSTM Model Used 

MODEL TYPE: SEQUENTIAL 

LAYER OUTPUT SIZE* NUMBER OF PARAMETERS 

Lstm 32 4864 

Dropout 32 0 

Lstm_1 25 5800 

Dense 1 26 

Total number of parameters: 10.690, Number of trainable parameters: 10.690  

* Dimensions and other values are hyperparameters. 

The model has a structure consisting of four layers. The input number for the LSTM in the first 

layer was set as 32 (since it is a hyperparameter, it is possible to change it if necessary). As the forgetting 

of weak information returns a positive result for the forecasting mechanism, a dropout layer was added 

and was set at the value 0.5. (In general, you start out with this value, but it is subject to change and is 

up to the designer.) Following the thinning operation, a new LSTM layer was formed at the third layer 

and the intermediate input number was set at 25. Finally, the Dense (conventional YSA model) layer 

was added, and its output dimension was given as 1 and ReLU (hyperparameter) was used as the 

activation function. For optimization, the RMSProp algorithm was added. The Batch dimension 

(hyperparameter) was given as 16. Every step is 200 epochs (hyperparameter). The standard LSTM 

model was used. In model comparison, the LSTM will be expressed parametrically as (32, 25). The 

parameters were respectively set as the first and second LSTM layer (output dimension). 

The SARIMA Model 

The Python-supported Statsmodels library was used in the making of this model. In addition, for 

the SARIMA parameters to be available in the best possible way in the SPPs involving daily data, the 

‘auto_arima’ method in the pmdarima [37] library was used for control purposes only. The most 

appropriate model (the one with the lowest AIC value) was selected among different models, using the 

AIC method [38]. It is a process that requires attention statistically to determine the parameters in the 

operation process of SARIMA (in determining the parameters following the analysis of autocorrelation 

and partial autocorrelation functions etc.). For this end, in addition to AIC, the Dickey-Fuller unit root 

test, which we mentioned in the third section, was applied to confirm the stationary of the time series. 

This test is a method developed to identify whether a time series is stationary or non-stationary. It can 

determine whether a time series includes a unit root [39]. It is recommended that the forecasting 

mechanism be run in stationary time series in SARIMA. In non-stationary time series, on the other hand, 
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it is necessary to first make them static for to determine the parameters (extracting a difference, 

logarithmic calculations etc.). 

Since the data sets involve a seasonal impact, assessment was made using the Seasonal ARIMA 

(SARIMA) model. Differently from the Standard ARIMA (𝐴𝑅𝐼𝑀𝐴 (𝑚, 𝑑, 𝑛)), the SARIMA is 

expressed as (𝑚, 𝑑, 𝑛)𝑥 (𝑀, 𝐷, 𝑁, 𝑠). The value ‘s’ here corresponds to an integer that stands for 

seasonality. M, D, and N are the parameters used for seasonal ARIMA. This value is a hyperparameter, 

like other ARIMA expressions. 

The basic flow diagram for the LSTM and SARIMA models is indicated in Figure 16. 

 

Figure 16 

LSTM and SARIMA Basic Flow Chart of the Study. 

The LSTM model was evaluated using the same parameters for each data set. This is because the 

LSTM model is a trainable one and can generate results that are based on relevant data. Training for the 

SARIMA is informed by the characteristics of the data set (trends, stationarity criteria), it is required to 

run pre-operations for data, and the parameters are unique for each data set. They apply separately for 

each data. 

Result for the Datasets  

In this section, the SARIMA and LSTM models were applied in each data set and the results of 

the models were applied individually for each data set. The LSTM model was formed for once only 

(Table 2) and the same model was applied for each data set. 70% of each data set was reserved for 

training, and 30% for testing. As indicated in Figure 16, for each data set, the ‘auto arima’ method, the 

Dickey-Fuller test, and then the AIC test were run, and the parameters were set accordingly. 

Plant_A (Figure 4) includes 800 days of data. The model obtained for Plant_A is 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 1)𝑥 (0, 1, 1, 365). Since it involves yearly data, the final parameter (seasonal) was set at 

365. The forecasting results for the dates between 12.5.2019 and 31.12.2019 following these operations 

are shown in Figure 17. 
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Figure 17  

Estimation Results for Plant_A 

The LSTM model which we formed after reviewing the performance results (error measurements) 

for Plant_A, which is in Çumra and has a 1MW installed power, exhibited a successful performance in 

comparison to the SARIMA (except for the MAPE) (Table 3). 

Table 3  

Performance Results of Plant_A 

MODEL RMSE MSE NMSE MAE MAPE R2 

SARIMA (1,1,1) x (0,1,1,365) 1525.37 kWh 2326754 0.08 1104.16 61% 0,44 

LSTM (32,25) 1163.62 kWh 1354012 0.05 870.46 78% 0,67 

Plant_B (Figure 5) includes 730 days of data. The operations run for Plant_A were also run for 

Plant_B. The model thus obtained 𝑖𝑠 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 1) 𝑥 (0, 1, 1, 365). After the parameters for this 

model were set, the SARIMA and LSTM models were applied to the data set and the results in Figure 

18 emerged for the dates between 1.6.2019 and 31.12.2019. 

Figure 18  

Estimation Results for Plant_B 
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The performance results for Plant_B, located in Tuzlukçu and with a 1 MW installed power, were 

examined. The LSTM model we developed exhibited results relatively close to actual data compared to 

the SARIMA model, as was the case with Plant_A (Table 4). 

Table 4  

Performance Results of Plant_B 

MODEL RMSE MSE NMSE MAE MAPE R2 

SARIMA (1,1,1) x (0,1,1,365) 1994.28 kWh 3977153 0.12 1556.63 58% -0,004 

LSTM (32,25) 1341.93 kWh 1800776 0.06 1005.14 44% 0,55 

Plant_C (Figure 6), like Plant_B, includes 730 days of data. The model derived is 

𝑆𝐴𝑅𝐼𝑀𝐴 (1, 1, 1)𝑥 (0, 1, 1, 365). After the parameters for the model were set, the SARIMA and LSTM 

models were applied to the data set and the results shown in Figure 19 were obtained for the dates 

between 1.6.2019 and 31.12.2019. 

Figure 19  

Estimation Results for Plant_C 

If we analyze the performance results for the SPP located in Yunak, which has a 1MW installed 

power, the LSTM model yielded more satisfactory results than the SARIMA model (Table 5). 

Table 5  

Performance Results of Plant_C 

MODEL RMSE MSE NMSE MAE MAPE R2 

SARIMA (1,1,1) x (0,1,1,365) 1756.39 kWh 3084906 0.1 1324.56 52% 0,37 

LSTM (32,25) 1301.53 kWh 1693980 0.06 1004.43 44% 0,65 

Plant_D (Figure 7) includes 8777 hours of data differently from the other data sets. It was formed 

through the conversion of the original data for Plant_A into hourly frequency (under normal 

circumstances, data is recorded in the system automatically in fifteen-minute periods). 

The data pattern for Plant_D displays a strikingly different behavior from the data for the other 

three SPPs. Thus, different factors played a role in determining the parameters. Only the AIC test was 
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applied in Plant_D for the task of selecting parameters. 

The model obtained because of the test is 𝑆𝐴𝑅𝐼𝑀𝐴 (1, 0, 1)𝑥 (1, 1, 1, 24). The value ‘s’ was set 

at 24 since the SPP is operational 24 hours a day (a hyper-parameter). The forecasting results of the 

LSTM and SARIMA models derived for the dates between 6.7.2018 and 23.10.2018 following this 

procedure can be viewed in Figure 20. 

Figure 20  

Estimation Results for Plant_D 

If we take a glance at the performance errors for Plant_D (Table 6), the error data is lower in the 

LSTM model than in the SARIMA model and the former model yields more successful results. The 

MAPE value was not added because the actual data included zero (0). 

Table 6  

Performance Results of Plant_D 

MODEL RMSE MSE NMSE MAE R2 

SARIMA (1,0,1) x (1,1,1,24) 167.93 kWh 28200.48 0.38 102.86 0,75 

LSTM (32,25) 86.26 kWh 7440.79 0.11 38.58 0,94 

While machine learning and deep learning are not new technologies, they continue to develop and 

receive interest constantly. This study made use of these topics and aimed to make contributions to 

research focused on improving the efficiency of such systems since renewable energy systems are in 

high demand due to the limited availability of underground sources in the 21st century. 

This study can be a precursor for work on forecasting future production values and engaging in 

plant maintenance in due time and with low cost to slow down the decrease in the efficiency of solar 

power plants over time, given that it is constantly expanded and updated, with its models improving 

each time. Its forecasting infrastructure can be reduced to monthly periods, and it can be used in 

identifying the problems encountered over a given month or time of the year in the past as soon as they 

recur in the future. 

Thanks to its monthly production estimates, this system has the potential to offer individuals (real 
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or legal) the chance to take measures so that they can minimize any penalties they may be required to 

pay due to electricity production that is above or below the level specified in agreements by electricity 

distribution companies which are based on monthly production in SPPs. Similarly, this study can not 

only be turned into a set of package applications and provide data for the SCADA systems used by 

electricity distribution companies but at the same time include different data from the SCADA systems 

and help make further inferences. 

In addition, it is important to constantly improve and optimize the deep learning model. This study 

can be trained constantly using instant data obtained through the systems at the basic (elementary) level. 

The learning ability of the model can be advanced through training. If we consider that the standard 

lifespan of an SPP is 25 years and three years of past data are sufficient for conducting a study at the 

optimal level, we can argue that such work is crucial for SPPs. 

CONCLUSIONS 

In this study, which engages in electricity production estimation based on solar power plants, 

methods (LSTM and SARIMA) available in the fields of deep learning, statistics, and econometrics 

were used to make time series analysis. These methods were implemented on four different SPP data 

sets and the results were compared using the RMSE, MSE, NMSE, MAE, MAPE and R2, which are 

frequently used in performance measurements. 

The tests for Plant_A, Plant_B, Plant_C, and Plant_D, which are elaborated on in the following 

chapters, were assessed, and while results close to actual data were obtained in both methods (based on 

the NMSE measure, all models returned results close to zero), the LSTM results still yielded more 

successful values than the SARIMA. Here, it should be noted that the hyper-parameters have an impact 

because hyper-parameters play a crucial role in determining the direction of forecasting. Second, the 

computational power of the GPU used in this study (CPUs work with less speed than GPUs in terms of 

computational power today) made positive contributions to obtaining the desired values both in such a 

short time and in a consistent way. And at last, LSTM architecture provides more parameter learning 

makes powerful to do forecast. Particularly when a data has long-term trend. 

In terms of the coefficient of determination (R2), when examining Power Plants A, B, and C 

transmitting data at daily frequency, it was found that the R2 values of LSTM models explain over 55% 

of their variances. Although they do not approach a value of 1, LSTM models outperform SARIMA 

models in all tested power plants. For instance, when examining the SARIMA forecast for Power Plant 

B, the R2 value was -0.004, indicating insufficient predictive capability of the model for Power Plant B. 

To rectify this, it is important for the model to undergo appropriate preprocessing steps on the dataset 

(such as reconfiguring the Dickey-Fuller test, redefining the minimum AIC value, or re-determining 

SARIMA parameters using autocorrelation and partial autocorrelation functions). Surprisingly, when 

examining Power Plant D transmitting data at hourly frequency, both models' R2 values are high, and 

the LSTM model even approaches a value of 1. 

While the LSTM library used in the study made use of GPU support, the SARIMA library made 

use of CPU only (the Statsmodels library does not support GPU). The obstacle encountered in deep 

learning design makes it necessary to have expensive equipment (GPU or TPU requiring high 

computational power) to run fast and efficient operations. 

Another issue is correction of data pollution (removal of insignificant data and value assignment 

based on the series trend etc.). Optimization and rearrangement of data pollution is a factor facilitating 

the forecasting function. Such procedures are frequently run-in analyzing data. 
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