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Highlights 

• This paper covers the definition of the unit power Lindley distribution. 

• Properties of unit power Lindley distribution are derived. 

• Different parameter estimation methods are used to estimate the unknown parameters. 
 

Article Info 

 

Abstract 

This paper introduces the unit power Lindley distribution and presents its fundamental statistical 

properties, such as density and cumulative distribution functions, hazard rate functions, and, their 

characteristics, moments, and related measures. The parameters of this newly proposed 

distribution are estimated by using six different methods: maximum likelihood, least squares, 

weighted least squares, Cramér von Mises, Anderson Darling, and right-tail Anderson Darling. 

The performances of the considered estimation methods are compared through an extensive 

Monte Carlo simulation study. Additionally, two real datasets are modeled to demonstrate that 

the unit power Lindley distribution provides a significantly better fit than compared to commonly 

used unit distributions. 
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1. INTRODUCTION 

 

Modeling bounded events, such as percentages, proportions, or rates, is essential in numerous practical 

scenarios. In such cases, the bounded statistical distributions, which lie on the interval (0,1), play a critical 

role. For instance, see [1-7]. Among these distributions, the Beta distribution has been widely utilized for 

modeling data within bounded intervals, see [8]. In recent years, the Topp-Leone [9] and Kumaraswamy 

(KM) [10] distributions have gained popularity for this purpose; see [11, 12]. Additionally, unit 

distributions, derived through transformations of well-known distributions, offer an alternative for 

modeling bounded data sets. For instance, unit Gamma [13], unit Weibull (UW) [14], unit Birnbaum-

Saunders [15], unit Lindley (UL) [8], unit inverse Gaussian [16], new unit Lindley [17], unit Burr-XII [18], 

unit Chen [19], unit modified Burr-III [20], and unit log-log [21] distributions have been proposed by 

various authors. These studies delve into the statistical properties of the distributions, including 

characteristics, and moments, reliability measures, among others. Furthermore, several estimation methods 

have been employed to estimate the parameters of these models. 

 

Lindley distribution is a very flexible distribution in reliability analysis which has so many extensions in 

the literature (see some examples [22-25]). In this study, we introduce the unit power Lindley (UPL) 

distribution derived from the transformation of the power Lindley (PL) distribution. The PL distribution, 

initially proposed by [26] as an extension of the Lindley distribution, see [27], has gained attention for its 

flexibility and computational simplicity. It has found applications in various fields including wind energy 

[28], reliability analysis [29], and quality control [30], among others. For further insights, refer to [31-33]. 

The PL distribution is advocated as a more flexible alternative to the Lindley distribution. Consequently, 
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proposing a distribution with even more adaptable properties within the (0,1) range is necessary, thus 

serving as a potential alternative for the UL distribution. 

 

The primary objective of this paper is to introduce a novel distribution, the UPL distribution, defined within 

the unit interval. To achieve this, we analyze various aspects of the UPL distribution, including the shapes 

of its density and cumulative distribution functions (cdf), the hazard rate function (hrf), the quantile function 

(qf), moments, related measures, and their corresponding 3D plots. Furthermore, the model parameters of 

the UPL distribution are estimated using several methods: maximum likelihood (ML), least squares (LS), 

weighted least squares (WLS), Cramér von Mises (CM), Anderson Darling (AD), and right tail Anderson 

Darling (RAD). The performances of these estimation techniques are evaluated through Monte Carlo 

simulation studies. Additionally, we compare the modeling performance of the UPL distribution with 

various distributions, namely KM, Beta, UL, and UW, which are bounded within the interval (0,1) and 

commonly used in unit modeling, by considering real data applications. 

 

The remainder of the paper is structured as follows: Section 2 provides the definitions and properties of the 

UPL distribution. The estimation methods employed in this study are outlined in section 3. In section 4, we 

conduct an extensive Monte Carlo simulation study to compare the performances of the estimation methods. 

Additionally, real datasets are analyzed for illustrative purposes. Finally, concluding remarks and final 

comments are presented in section 5. 

 

2. UPL DISTRIBUTION: DEFINITIONS AND PROPERTIES 

 

The Lindley distribution was first defined by [34]. It has the following probability density function (pdf): 

 

𝑓(𝑡; 𝛽) =
𝛽2

𝛽 + 1
(1 + 𝑡)𝑒−𝛽𝑡, 𝑡 > 0 and 𝛽 > 0. 

 

The Lindley distribution is extremely significant in reliability studies. Furthermore, [35] examined the 

distributional properties of the Lindley distribution and provided practical applications. However, the 

Lindley distribution may not be appropriate in some cases. To improve the flexibility of this distribution, 

[26] considered PL distribution by utilizing a power transformation as 𝑌 = 𝑇
1

𝛼. Consequently, the resulting 

distribution is known as the power Lindley (PL) distribution, and the pdf of 𝑌 is 

 

𝑓𝑃𝐿(𝑦; 𝛼, 𝛽) =
𝛼𝛽2

1 + 𝛽
(1 + 𝑦𝛼)𝑦𝛼−1𝑒−𝛽𝑦𝛼

, 𝑦 > 0, 𝛼 > 0 𝑎𝑛𝑑 𝛽 > 0. 

 

Additionally, the cdf of 𝑌 is 

 

𝐹𝑃𝐿(𝑦; 𝛼, 𝛽) = 1 − (1 +
𝛽𝑦𝛼

1 + 𝛽
) 𝑒−𝛽𝑦𝛼

. 

 

Moreover, in this study, to derive a new distribution defined on the unit interval, we apply the 𝑋 =
𝑌 (1 + 𝑌)⁄  transformation, resulting in the following pdf called UPL distribution: 

 

𝑓𝑈𝑃𝐿(𝑥; 𝛼, 𝛽) =
𝛼𝛽2

1 + 𝛽
(1 + (

𝑥

1 − 𝑥
)

𝛼

) (
𝑥

1 − 𝑥
)

𝑎−1

𝑒
−𝛽(

𝑥

1−𝑥
)

𝛼

(
1

(1 − 𝑥)2
), (1) 

 

where 𝑥 ∈ (0,1), 𝛼 > 0, and 𝛽 > 0. 

 

Definition 2.1. If the random variable 𝑋 follows a UPL distribution with the parameters 𝛼 and 𝛽 (denoted 

as 𝑋 ∼ 𝑈𝑃𝐿(𝛼, 𝛽)), its pdf is defined by the form provided in (1). 

 

Additionally, the cdf of the UPL distribution is obtained as follows by integrating the pdf given in (1): 
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𝐹𝑈𝑃𝐿(𝑥; 𝛼, 𝛽) = 1 − 𝑒
−𝛽(

𝑥

1−𝑥
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥

1 − 𝑥
)

𝛼

)]. 

 

The pdf and cdf plots of the UPL distribution for several parameter values of 𝛼 and 𝛽 are demonstrated in 

Figure 1 (a) and (b), respectively. It is obvious from Figure 1 (a) that the pdf of the UPL distribution shows 

a single mode and typically positive skewness. As a result, the UPL distribution offers increased flexibility 

in modeling various datasets defined on the unit interval. It can be further seen from Figure 1 (b) that the 

cdf of UPL distribution is increasing and continuous.  

 

 

 
Figure 1. (a)The pdf plots of UPL distribution for different values of 𝛼 and 𝛽,  

(b) The cdf plots of UPL distribution for different values of 𝛼 and 𝛽 

 

2.1. Hazard Rate Function 

 

Theorem 2.1. The hrf of UPL distribution is  

 

ℎ𝑈𝑃𝐿(𝑥; 𝛼, 𝛽) =
𝛼𝛽2𝑥𝛼−1((1 − 𝑥)𝛼 + 𝑥𝛼)

(𝛽 + 1)(1 − 𝑥)2𝛼+1 + 𝑥𝛼(1 − 𝑥)𝛼+1
. (2) 

 

Proof. The survival function of UPL distribution can be derived as follows: 

 

𝑆𝑈𝑃𝐿(𝑥; 𝛼, 𝛽) = 1 − 𝐹(𝑥) = 𝑒
−𝛽(

𝑥

1−𝑥
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥

1 − 𝑥
)

𝛼

)]. (3) 

 

Then, the hrf can be easily derived using the formula ℎ(𝑥) =
𝑓(𝑥)

𝑆(𝑥)
, where 𝑓(𝑥) is the pdf of the UPL 

distribution given in (1) and 𝑆(𝑥) is given in (3). 

 

Furthermore, the condition 
𝜕

𝜕𝑥
ℎ(𝑥) > 0, holds for all 𝛽 > 0 and 𝑎 > 1 indicating that the hrf is consistently 

increasing concerning 𝑥. Figure 2 illustrates the varying behaviour of the hrf across different parameter 

values. It can also be observed that the shape of the hrf resembles J-shaped. 
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Figure 2. The hrf plots of UPL distribution for different values of 𝛼 and 𝛽 

 

2.2. Quantile Function 

 

Theorem 2.2. The qf of the UPL distribution for any 𝛼, 𝛽 > 0 is 

 

𝑄𝑈𝑃𝐿(𝑢; 𝛼, 𝛽) = 𝐹𝑈𝑃𝐿
−1 (𝑢; 𝛼, 𝛽) =

[−1 −
1

𝛽
−

1

𝛽
𝑊−1 (−

𝛽+1

𝑒𝛽+1
(1 − 𝑢))]

1

𝛼

1 + [−1 −
1

𝛽
−

1

𝛽
𝑊−1 (−

𝛽+1

𝑒𝛽+1
(1 − 𝑢))]

1

𝛼

,   0 < 𝑢 < 1, 

 

(4) 

where 𝑊−1 indicates the negative branch of the Lambert 𝑊 function (one can see [36] for details). 

 

Proof. [26] derived the qf of the PL distribution as follows: 

 

𝐹𝑃𝐿
−1(𝑢; 𝛼, 𝛽) = [−1 −

1

𝛽
−

1

𝛽
𝑊−1 (−

𝛽 + 1

𝑒𝛽+1
(1 − 𝑢))]

1

𝛼

. 

 

(5) 

Using the transformation 𝑋 = 𝑌 (1 + 𝑌)⁄ , the qf of the UPL distribution can be easily done by the formula 

𝑄𝑈𝑃𝐿(𝑢; 𝛼, 𝛽) = 𝐹𝑈𝑃𝐿
−1 (𝑢; 𝛼, 𝛽) =

𝐹𝑃𝐿
−1(𝑢;𝛼,𝛽)

1+𝐹𝑃𝐿
−1(𝑢;𝛼,𝛽)

. 

 

2.3. Moments and Related Measures 

 

The 𝑘-th moment of the UPL distribution is expressed as 

 

𝜇𝑘
′ = 𝐸(𝑋𝑘) = ∫ 𝑥𝑘 (

𝛼𝛽2

1 + 𝛽
(1 + (

𝑥

1 − 𝑥
)

𝛼

) (
𝑥

1 − 𝑥
)

𝑎−1

𝑒
−𝛽(

𝑥

1−𝑥
)

𝛼

(
1

(1 − 𝑥)2
))

1

0

𝑑𝑥. 

 

However, explicit expressions for the 𝑘-th moments of the UPL distribution are not available. The moments 

of UPL distribution can be computed thanks to numerical methods. By employing the numerical integration, 

we obtain the results for mean or expected value (𝜇1
′ ), variance (𝜎2), skewness (𝛾1) and kurtosis (𝛾2) for 

different values of 𝛼 and 𝛽 as represented in Table 1. Here, 

 

𝜇1
′ = 𝐸(𝑋),   𝜎2 = 𝑉𝑎𝑟(𝑋),   𝛾1 =

𝐸(𝑋 − 𝜇1
′ )3

𝜎3
 and 𝛾2 =

𝐸(𝑋 − 𝜇1
′ )4

𝜎4
. 
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Table 1. Descriptive moments of UPL distribution for different values of 𝛼 and 𝛽 

 𝜇1
′  𝜎2 𝛾1 𝛾2 

𝛼 = 0.6, 𝛽 = 0.5 0.7262 0.0717 -1.2457 2.7020 

𝛼 = 1, 𝛽 = 1 0.5000 0.0482 -0.4318 1.3651 

𝛼 = 2, 𝛽 = 1 0.4947 0.0171 -0.7773 2.0124 

𝛼 = 0.8, 𝛽 = 2 0.3127 0.0464 0.3655 0.6968 

𝛼 = 1, 𝛽 = 3 0.2500 0.0272 0.4716 0.8638 

𝛼 = 2, 𝛽 = 3 0.3438 0.0142 -0.2909 1.5132 

 

Additionally, Figures 3 and 4 depict the 3D plots for the mean, variance, skewness, and kurtosis values of 

UPL distribution corresponding to various values of 𝛼 and 𝛽. The findings from Table 1, Figure 3, and 

Figure 4 likely present the skewness and kurtosis values for different sets of parameters 𝛼 and 𝛽, indicating 

how the shape of the UPL distribution changes with these parameters. Remarkably, the distribution tends 

to be platykurtic, as the computed kurtosis values are less than 3.  

 

 
 

Figure 3. The 3D plots for the mean and variance of UPL distribution for different values of 𝛼 and 𝛽 

 

 
Figure 4. The 3D plots for the skewness and kurtosis of UPL distribution for different values of 𝛼 and 𝛽 
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3. PARAMETER ESTIMATION 

 

In this section, the estimation methods used in this study are given which are the ML, LS, WLS, CM, AD, 

and RAD, respectively. 

 

3.1. Maximum Likelihood Estimation  
 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample of size 𝑛 from 𝑈𝑃𝐿(𝛼, 𝛽). the ML estimators of 𝛼 and 𝛽 are obtained 

by following the likelihood function: 

 

𝐿(𝑥; 𝛼, 𝛽) = ∏
𝛼𝛽2

𝛽 + 1

𝑛

𝑖=1

(1 + (
𝑥𝑖

1 − 𝑥𝑖
)

𝛼

) (
𝑥𝑖

1 − 𝑥𝑖
)

𝛼−1

𝑒
−𝛽(

𝑥𝑖
1−𝑥𝑖

)
𝛼

1

(1 − 𝑥𝑖)2
. 

 

After taking the logarithm of this function, the log-likelihood function is derived as follows: 

 

ℓ(𝛼, 𝛽) = 𝑛 log(𝛼) + 2𝑛log(𝛽) − 𝑛log(1 + 𝛽) − 𝛽 ∑ (
𝑥𝑖

1 − 𝑥𝑖
)

𝛼
𝑛

𝑖=1

 

+ ∑ log (1 + (
𝑥𝑖

1 − 𝑥𝑖
)

𝛼

)

𝑛

𝑖=1

 

− ∑ log(1 − 𝑥𝑖)2 + (𝛼 − 1) ∑ log (
𝑥𝑖

1 − 𝑥𝑖
)

𝑛

𝑖=1

𝑛

𝑖=1

. 

 

The ML estimators of the corresponding parameters are obtained from the solutions of the likelihood 

equations: 

 

𝜕

𝜕𝛼
ℓ(𝛼, 𝛽) =

𝑛

𝛼
− 𝛽 ∑ (

𝑥𝑖

1 − 𝑥𝑖
)

𝛼

log (
𝑥𝑖

1 − 𝑥𝑖
)

𝑛

𝑖=1

 

+ ∑
(

𝑥𝑖

1−𝑥𝑖
)

𝛼
log (

𝑥𝑖

1−𝑥𝑖
)

1 + (
𝑥𝑖

1−𝑥𝑖
)

𝛼 + ∑ log (
𝑥𝑖

1 − 𝑥𝑖
) = 0

𝑛

𝑖=1

𝑛

𝑖=1

, 

(5) 

𝜕

𝜕𝛽
ℓ(𝛼, 𝛽) =

2𝑛

𝛽
−

𝑛

1 + 𝛽
− ∑ (

𝑥𝑖

1 − 𝑥𝑖
)

𝛼
𝑛

𝑖=1

= 0. (6) 

 

Obviously, the ML estimator of 𝛽, say �̂�, is  

 

�̂�(𝛼) =

− (∑ (
𝑥𝑖

1−𝑥𝑖
)

𝛼
− 𝑛𝑛

𝑖=1 ) + √(∑ (
𝑥𝑖

1−𝑥𝑖
)

𝛼
− 𝑛𝑛

𝑖=1 )
2

+ 8𝑛 ∑ (
𝑥𝑖

1−𝑥𝑖
)

𝛼
𝑛
𝑖=1

2 ∑ (
𝑥𝑖

1−𝑥𝑖
)

𝛼
𝑛
𝑖=1

. 
(7) 

 

However, the ML estimator of 𝛼, say  �̂�, is obtained from the solution of the following nonlinear equation 

 

𝑛

𝛼
− 𝛽 ∑ (

𝑥𝑖

1 − 𝑥𝑖
)

𝛼

log (
𝑥𝑖

1 − 𝑥𝑖
)

𝑛

𝑖=1

+ ∑
(

𝑥𝑖

1−𝑥𝑖
)

𝛼
log (

𝑥𝑖

1−𝑥𝑖
)

1 + (
𝑥𝑖

1−𝑥𝑖
)

𝛼 + ∑ log (
𝑥𝑖

1 − 𝑥𝑖
) = 0

𝑛

𝑖=1

𝑛

𝑖=1

. 

 

By using numerical methods, firstly we obtain �̂�, then by incorporating it in (7), we derive �̂�.  
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Under regularity conditions, as sample size 𝑛 → ∞, the asymptotic distribution of 𝜽 = (𝛼, 𝛽) goes to 

normal distribution 

 

√𝑛(�̂� − 𝜽)
𝐷
→ 𝑁(0, 𝐼−1(𝜽)), 

 

where 𝐼 is the Fisher information matrix. Each element of this matrix is defined as −𝐸 (
𝜕2ℓ(𝜽)

𝜕𝜽𝟐 ). In our case, 

since the calculation of the expectations is complicated, we use the observed Fisher information matrix, 

given as follows: 

 

𝐼(𝜽) = [
𝐼11 𝐼12 
𝐼21 𝐼22 

], 

 

where 

 

𝐼11 =
𝜕2ℓ(𝛼, 𝛽)

𝜕𝛼2
= −

𝑛

𝛼2
− 𝛽 ∑ (

𝑥𝑖

1 − 𝑥𝑖
)

𝛼

log (
𝑥𝑖

1 − 𝑥𝑖
)

2
𝑛

𝑖=1

 

+ ∑
log (

𝑥𝑖

1−𝑥𝑖
)

2
(

𝑥𝑖

1−𝑥𝑖
)

𝑎

1 + (
𝑥𝑖

1−𝑥𝑖
)

𝛼 − ∑
log (

𝑥𝑖

1−𝑥𝑖
)

2
(

𝑥𝑖

1−𝑥𝑖
)

2𝑎

((
𝑥𝑖

1−𝑥𝑖
)

𝛼
+ 1)

2

𝑛

𝑖=1

𝑛

𝑖=1

, 

𝐼22 =
𝜕2ℓ(𝛼, 𝛽)

𝜕𝛽2
= −

2𝑛

𝛽2
+

𝑛

(1 + 𝛽)2
, 

𝐼12 =
𝜕2ℓ(𝛼, 𝛽)

𝜕𝛼𝜕𝛽
= − ∑ (

𝑥𝑖

1 − 𝑥𝑖
)

𝛼

log (
𝑥𝑖

1 − 𝑥𝑖
)

𝑛

𝑖=1

. 

 

Thus, the asymptotic 100(1 − 𝛾)% confidence interval for 𝛼 and 𝛽 are 

 

�̂� ± 𝑧𝛾 2⁄ se(�̂�), and �̂� ± 𝑧𝛾 2⁄ se(�̂�), 

 

where 𝑧𝛾 2⁄  is the 𝛾 2⁄ th quantile of the standard normal distribution and se(�̂�) and se(�̂�) are the standard 

error of  �̂� and  �̂�, respectively. It should be stated that the standard errors are derived from the square root 

of the diagonal of the inverse observed Fisher information matrix.  

 

3.2. Least Squares Estimation 
 
Let 𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛) be ordered observations of a random sample of size 𝑛 from 𝑈𝑃𝐿(𝛼, 𝛽). In 

order to derive the LS estimators of 𝛼 and 𝛽, we use the method introduced by [37]: 

 

𝑆(𝛼, 𝛽) = ∑  

𝑛

𝑖=1

( 𝐹(𝑥(𝑖)) −
𝑖

𝑛 + 1
)

2

. (8) 

 

This method aims to minimize (8) which indicates the differences between expected and observed ordered 

cdf of 𝑈𝑃𝐿(𝛼, 𝛽). Here, 
𝑖

𝑛+1
, (𝑖 = 1, . . , 𝑛) are the expected values of 𝐹(𝑥(𝑖)). We incorporate the cdf of 

𝑈𝑃𝐿(𝛼, 𝛽) into (8) and take derivatives with respect to 𝛼 and 𝛽, obtain the following equations: 

 

𝜕𝑆(𝛼, 𝛽)

𝜕𝛼
= ∑ (1 − 𝑒

−𝛽(
𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
𝑖

𝑛 + 1
) 𝛿1(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

, (9) 



Hulya KARAKUS, Fatma Zehra DOGRU, Fatma Gul AKGUL/ GU J Sci, 38(1): x-x(2025) 

 

𝜕𝑆(𝛼, 𝛽)

𝜕𝛽
= ∑ (1 − 𝑒

−𝛽(
𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
𝑖

𝑛 + 1
) 𝛿2(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

, (10) 

 

where 

 

𝛿1(𝑥, 𝛼, 𝛽) = (
𝑥

1 − 𝑥
)

𝛼

𝑙𝑜𝑔 (
𝑥

1 − 𝑥
) 𝑒

−𝛽(
𝑥

1−𝑥
)

𝛼

((𝛽 +
𝛽

𝛽 + 1
(

𝑥

1 − 𝑥
)

𝛼

) −
1

𝛽 + 1
), (11) 

𝛿2(𝑥, 𝛼, 𝛽) =
𝜕𝐹(𝑥)

𝜕𝛽
= 𝑒

−𝛽(
𝑥

1−𝑥
)

𝛼

(
𝑥

1 − 𝑥
)

𝛼

(1 +
𝛽

𝛽 + 1
(

𝑥

1 − 𝑥
)

𝛼

+
1

(𝛽 + 1)2
). (12) 

 

Obviously, (9)-(10) cannot be solved explicitly. Therefore, we resort to iterative methods to obtain LS 

estimates of 𝛼 and 𝛽.   

 

3.3. Weighted Least Squares Estimation 
 

The WLS estimators of 𝛼 and 𝛽 are derived by minimizing the following equation with respect to the 

corresponding parameters: 

 

𝑊(𝛼, 𝛽) = ∑  

𝑛

𝑖=1

(𝑛 + 1)2(𝑛 + 2)

𝑖(𝑛 − 𝑖 + 1)
( 𝐹(𝑥(𝑖)) −

𝑖

𝑛 + 1
)

2

. (13) 

 

We incorporate the cdf of 𝑈𝑃𝐿(𝛼, 𝛽) into (13) and take derivatives concerning 𝛼 and 𝛽, obtain the 

following equations:  

 

∑
1

𝑖(𝑛 − 𝑖 + 1)
(1 − 𝑒

−𝛽(
𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
𝑖

𝑛 + 1
) 𝛿1(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

, (14) 

∑
1

𝑖(𝑛 − 𝑖 + 1)
(1 − 𝑒

−𝛽(
𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
𝑖

𝑛 + 1
) 𝛿2(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

. (15) 

 

Here, 𝛿1(𝑥(𝑖), 𝛼, 𝛽) and 𝛿2(𝑥(𝑖), 𝛼, 𝛽) are similar as in (11) and (12), respectively. By solving (14)-(15) 

numerically, we obtain the WLS estimates of 𝛼 and 𝛽.   

 

3.4. Cramér-von Mises Estimation 
 

In this subsection and the following subsections, we use minimum distance methods proposed by [38, 39]. 

These methods work based on minimizing the goodness of fit statistics, see [40]. 

The CM estimators of 𝛼 and 𝛽 are derived by minimizing the following equation with respect to the 

corresponding parameters: 

 

𝐶(𝛼, 𝛽) =
1

12𝑛
+ ∑ ( 𝐹(𝑥(𝑖)) −

2𝑖 − 1

2𝑛
)

2

.

𝑛

𝑖=1

 (16) 

 

We incorporate the cdf of 𝑈𝑃𝐿(𝛼, 𝛽) into (16) and take derivatives according to 𝛼 and 𝛽, obtain the 

following equations:  
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∑ (1 − 𝑒
−𝛽(

𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
2𝑖 − 1

2𝑛
) 𝛿1(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

, (17) 

∑ (1 − 𝑒
−𝛽(

𝑥(𝑖)

1−𝑥(𝑖)
)

𝛼

[1 + (
1

𝛽 + 1
(

𝑥(𝑖)

1 − 𝑥(𝑖)
)

𝛼

)] −
2𝑖 − 1

2𝑛
) 𝛿2(𝑥(𝑖), 𝛼, 𝛽) = 0

𝑛

𝑖=1

. (18) 

 

Here, 𝛿1(𝑥(𝑖), 𝛼, 𝛽) and 𝛿2(𝑥(𝑖), 𝛼, 𝛽) are similar as in (11) and (12), respectively. By solving (17)-(18) 

numerically, we obtain the CV estimates of 𝛼 and 𝛽.   

 

3.5. Anderson Darling Estimation 
 

The AD estimators of 𝛼 and 𝛽 are derived by minimizing the following equation concerning the 

corresponding parameters: 

 

𝐴(𝛼, 𝛽) = −𝑛 −
1

𝑛
∑(2𝑖 − 1)log [𝐹(𝑥(𝑖)) (1 − 𝐹(𝑥(𝑖∗)))] ,

𝑛

𝑖=1

 (19) 

 

where 𝑖∗ = 𝑛 − 𝑖 + 1. We incorporate the cdf of 𝑈𝑃𝐿(𝛼, 𝛽) into (19) and take derivatives with respect to 

𝛼 and 𝛽, obtain the following equations:  

 

∑(2𝑖 − 1) [
𝛿1(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
−

𝛿1(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
] = 0

𝑛

𝑖=1

, (20) 

∑(2𝑖 − 1) [
𝛿2(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
−

𝛿2(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
] = 0

𝑛

𝑖=1

. (21) 

 

Here, 𝛿1(𝑥(𝑖), 𝛼, 𝛽) and 𝛿2(𝑥(𝑖), 𝛼, 𝛽) are similar as in (11) and (12), respectively. By solving (17)-(18) 

numerically, we obtain the AD estimates of 𝛼 and 𝛽.   

 

3.6. Right-Tail Anderson Darling Estimation 
 

The RAD estimators of 𝛼 and 𝛽 are derived by minimizing the following equation with respect to the 

corresponding parameters: 

 

𝑅(𝛼, 𝛽) =
𝑛

2
− 2 ∑ (𝐹(𝑥(𝑖))) −

1

𝑛
∑(2𝑖 − 1)log (1 − 𝐹(𝑥(𝑖∗)))

𝑛

𝑖=1

𝑛

𝑖=1

, (22) 

 

where 𝑖∗ = 𝑛 − 𝑖 + 1. We incorporate the cdf of 𝑈𝑃𝐿(𝛼, 𝛽) into (22) and take derivatives according to 𝛼 

and 𝛽, then obtain the following equations:  

 

−2 ∑
𝛿1(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
+

1

𝑛

𝑛

𝑖=1

∑(2𝑖 − 1)

𝑛

𝑖=1

𝛿1(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
= 0, (23) 
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−2 ∑
𝛿2(𝑥(𝑖), 𝛼, 𝛽)

𝐹(𝑥(𝑖), 𝛼, 𝛽)
+

1

𝑛

𝑛

𝑖=1

∑(2𝑖 − 1)

𝑛

𝑖=1

𝛿2(𝑥(𝑖∗), 𝛼, 𝛽)

1 − 𝐹(𝑥(𝑖∗), 𝛼, 𝛽)
= 0. (24) 

 

Here, 𝛿1(𝑥(𝑖), 𝛼, 𝛽) and 𝛿2(𝑥(𝑖), 𝛼, 𝛽) are similar as in (11) and (12), respectively. By solving (23)-(24) 

numerically, we find the AD estimates of 𝛼 and 𝛽.   

 

4. NUMERICAL STUDIES  

 

This section covers an extensive Monte Carlo simulation study which is for evaluating the performance of 

the numerous estimation methods, namely ML, LS, WLS, CV, AD, and RAD, and real data analysis to 

demonstrate the implementation of the UPL distribution. Additionally, we provide 100(1 − 𝛾) confidence 

intervals (CI) by using average width (AW) and coverage probabilities (CP) for the ML estimators. The 

computational details for the simulation study, particularly the procedure for generating random numbers 

from the UPL distribution with parameters α and β, are outlined below: 

 

Computational details: 

(i) Random number generation procedure for the UPL distribution with parameters 𝛼 and 𝛽: 

- Generate 𝑈𝑖~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  𝑖 = 1,2, … , 𝑛. 

- Compute    𝑋𝑖 = [−1 −
1

𝛽
−

1

𝛽
𝑊−1 (−

𝛽+1

𝑒𝛽+1
(1 − 𝑈𝑖))]

1
𝛼⁄

 ,  𝑖 = 1,2, … , 𝑛. Then, 
𝑋𝑖

𝑋𝑖+1
 yields the UPL-

distributed random sample.  

(ii) The number of replications is set to 𝑁 = 1000 for the simulations. 

(iii) The true parameter values for the simulation are taken as: 

(𝛼, 𝛽) = (1,1), (1,3), (2,1), (2,3), (0.8,2), (0.6,0.5). 

We note that these true parameter values are also used for the pdf plots in Figure 1, demonstrating various 

modelling types.  

(iv) The sample size for the simulation is designated as 𝑛 = 25,50,100 and 200. 

(v) The simulation study and the real data example are conducted using the MATLAB R2023a software. 

(vi) For the performance comparison in the simulation study, bias and mean squared error (MSE) measures 

are provided as follows: 

 

𝐵𝑖𝑎𝑠(�̂�) = �̅� − 𝛼,                        𝐵𝑖𝑎𝑠(�̂�) = �̅� − 𝛽, 

𝑀𝑆𝐸(�̂�) =
1

𝑁
∑ (�̂�𝑖 − 𝛼)2𝑁

𝑖=1 ,        𝑀𝑆𝐸(�̂�) =
1

𝑁
∑ (�̂�𝑖 − 𝛽)2𝑁

𝑖=1 . 

 

Here, �̅� =
1

𝑁
∑ �̂�𝑖

𝑁
𝑖=1 , �̅� =

1

𝑁
∑ �̂�𝑖

𝑁
𝑖=1 , and �̂�𝑖 and �̂�𝑖 represent the 𝑖-th simulated estimate. 

(vii) The same true parameter values are used for computing the 100(1 − 𝛾) CI and CP, with the 

significance level set as 𝛾 = 0.05. 

(viii) The "fminsearch" optimization function in MATLAB is utilized for parameter estimation in all 

computations. One can see [41] some details of algorithms used in “fminsearch”. 

 

4.1. Simulation Study 

 
This comprehensive simulation study offers valuable insights into the comparative performance of 

estimation methods, allowing for comparing their efficiency in the case of different sample sizes and 

parameter settings for the UPL distribution. Tables 2-7 present detailed simulation study results, including 

biases and MSE values for all estimates obtained using ML, LS, WLS, CV, AD, and RAD methods. 

Notably, as observed in the tables, MSE values tend to decrease with larger sample sizes, indicating the 

consistency of all estimation methods. It is worth noting that the tables highlight the smallest MSE values 

using bold labels, indicating superior performance in estimation. Specific insights from each table are 

summarized below: 
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In most cases in Table 2, the AD method yields the smallest MSE values for parameters  𝛼 = 1 and 𝛽 = 1. 

According to Table 3 for parameter values  𝛼 = 1 and 𝛽 = 3, the ML method produces the smallest MSE 

values, with AD and RAD methods closely following. Results for parameter values 𝛼 = 2 and 𝛽 = 1 in 

Table 4 indicate the AD method as the most suitable among the compared methods. Furthermore, the ML 

method is identified as the most efficient based on MSE values for parameter values 𝛼 = 2 and 𝛽 = 3 in 

Table 5. When we check the results of Tables 6 and 7, the ML method consistently exhibits the smallest 

MSE values, particularly for parameter values 𝛼 = 0.6 and 𝛽 = 0.5, and  𝛼 = 0.8 and 𝛽 = 2.  

 

Additionally, Table 8 provides the CP and the AW values for the ML method. We have the following from 

this table. CP values closely align with the nominal value of 95%, indicating accurate estimation, and AW 

values decrease as the number of samples increases, as expected.  

 

Table 2. Bias and MSE values for �̂� and �̂� 

𝛼 = 1, 𝛽 = 1 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.0637    -0.0031     0.0066     0.0597     0.0148     0.0353    

(0.0351)     (0.0370)     (0.0323)     (0.0499)     (0.0269)     (0.0331)     

�̂� -0.0020     0.0096     0.0093     0.0041     0.0080 0.0002 

(0.0360)     (0.0184)     (0.0183)     (0.0206)     (0.0180)    (0.0194) 

𝑛 = 50 

�̂� 0.0266    -0.0056     0.0018     0.0237     0.0044     0.0106    

(0.0131)     (0.0168)     (0.0136)     (0.0185)     (0.0122)     (0.0131)     

�̂� -0.0023     0.0044     0.0033     0.0013     0.0032     0.0007 

(0.0164)     (0.0086)     (0.0083)    (0.0090)     (0.0084)     (0.0090) 

𝑛 = 100 

�̂� 0.0180     0.0027     0.0079     0.0173     0.0077     0.0112    

(0.0063)     (0.0083)     (0.0067)     (0.0088)     (0.0063)     (0.0069)     

�̂� -0.0051    -0.0010    -0.0017    -0.0026    -0.0015    -0.0028 

(0.0086)     (0.0046)     (0.0045)     (0.0047)     (0.0045)     (0.0047) 

𝑛 = 200 

�̂� 0.0061    -0.0019     0.0009     0.0054     0.0004     0.0035     

(0.0027)     (0.0034)     (0.0027)     (0.0035)     (0.0026)     (0.0029)     

�̂� 0.0021     0.0026     0.0024     0.0017     0.0026     0.0014 

(0.0043)     (0.0023)     (0.0022)     (0.0023)     (0.0022)     (0.0024) 

            * The MSE values of the estimates are given in parentheses 

 

Table 3. Bias and MSE values for �̂� and �̂� 

𝛼 = 1, 𝛽 = 3 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.0440     0.0127     0.0249     0.0781     0.0359     0.0650     

(0.0279)   (0.0437)    (0.0405)     (0.0570)     (0.0363)     (0.0489)     

�̂� 0.0372    -0.2512    -0.2252    -0.0482    -0.1985    -0.1537 

(0.1720)    (0.6312)     (0.5761)     (0.8172)     (0.4944)     (0.5275) 

𝑛 = 50 

�̂� 0.0202         0.0108     0.0195     0.0425     0.0237     0.0353 

(0.0136)     (0.0201)     (0.0170)     (0.0234)     (0.0160)     (0.0188)     

�̂� 0.0498    -0.3272    -0.3076    -0.2399    -0.2960    -0.2808 

(0.1265)     (0.2788)     (0.2412)     (0.2591)     (0.2285)     (0.2210) 

𝑛 = 100 

�̂� 0.0130     0.0203     0.0272     0.0360     0.0265     0.0349     

(0.0067)    (0.0106)     (0.0090)     (0.0119)     (0.0084)     (0.0101)     

�̂� 0.0408    -0.3304    -0.3140    -0.2884    -0.3150    -0.3031 

(0.0768)     (0.1980)     (0.1718)    (0.1792)     (0.1682)     (0.1618) 

𝑛 = 200 

�̂� 0.0088     0.0250     0.0285     0.0328     0.0275     0.0351     

(0.0034)     (0.0056)     (0.0048)     (0.0062)     (0.0046)     (0.0060)    

�̂� 0.0232    -0.3325    -0.3217    -0.3119    -0.3234    -0.3126 

(0.0391)     (0.1537)     (0.1392)     (0.1421)     (0.1392)     (0.1324) 

            * The MSE values of the estimates are given in parentheses 
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Table 4. Bias and MSE values for �̂� and �̂� 

𝛼 = 2, 𝛽 = 1 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.1007 -0.0198 -0.0070 0.1031 0.0118 0.0386 

(0.1245) (0.1558) (0.1333) (0.1930) (0.1037) (0.1192) 

�̂� 0.0059 0.0165 0.0155 0.0120 0.0142 0.0087 

(0.0356) (0.0192) (0.0185) (0.0221) (0.0185) (0.0199) 

𝑛 = 50 

�̂� 0.0422 -0.0300    -0.0128 0.0282 -0.0058 0.0078 

(0.0530) (0.0591) (0.0505) (0.0631) (0.0459) (0.0499) 

�̂� 0.0062 0.0112 0.0100     0.0082     0.0099     0.0072 

(0.0171) (0.0086) (0.0086) (0.0090) (0.0086) (0.0091) 

𝑛 = 100 

�̂� 0.0242    -0.0088     0.0024     0.0203     0.0018     0.0080 

(0.0241) (0.0319) (0.0256) (0.0334) (0.0239) (0.0267) 

�̂� 0.0010     0.0042     0.0032     0.0026     0.0034     0.0022 

(0.0082) (0.0044) (0.0042) (0.0045) (0.0042) (0.0046) 

𝑛 = 200 

�̂� 0.0143    -0.0052     0.0018     0.0092     0.0008     0.0088 

(0.0120) (0.0155) (0.0121) (0.0158) (0.0120) (0.0132) 

�̂� 0.0004     0.0012     0.0011     0.0004     0.0013    -0.0003 

(0.0042) (0.0023) (0.0022) (0.0023) (0.0022) (0.0024) 

            * The MSE values of the estimates are given in parentheses 

 

Table 5. Bias and MSE values for �̂� and �̂� 

𝛼 = 2, 𝛽 = 3 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.1146     0.0409     0.0649     0.1734     0.0850     0.1461     

(0.1407)     (0.1949)    (0.1810)     (0.2550)    (0.1559)     (0.2197)     

�̂� 0.1617    -0.2791    -0.2528    -0.0761    -0.2490    -0.2040 

(0.3773)     (0.8552)     (0.7858)     (1.1870)     (0.4746)     (0.5428) 

𝑛 = 50 

�̂� 0.0466     0.0297     0.0479     0.0933     0.0528     0.0868     

(0.0587)    (0.0862)     (0.0744)     (0.1007)     (0.0693)     (0.0893)     

�̂� 0.0947    -0.3232    -0.3012    -0.2356    -0.2929    -0.2687 

(0.1830)     (0.2926)     (0.2506)     (0.2762)     (0.2403)     (0.2319) 

𝑛 = 100 

�̂� 0.0301 0.0455 0.0578 0.0771 0.0580 0.0754 

(0.0268) (0.0413) (0.0353) (0.0467) (0.0340) (0.0403) 

�̂� 0.0585 -0.3169 -0.3019 -0.2744 -0.3006 -0.2881 

(0.0902) (0.1952) (0.1698) (0.1778) (0.1671) (0.1606) 

𝑛 = 200 

�̂� 0.0147 0.0509 0.0568 0.0666 0.0547 0.0707 

(0.0125) (0.0228) (0.0191) (0.0251) (0.0181) (0.0216) 

�̂� 0.0264 -0.3267 -0.3168 -0.3059 -0.3187 -0.3067 

(0.0391) (0.1510) (0.1364) (0.1396) (0.1364) (0.1286) 

            * The MSE values of the estimates are given in parentheses 

Table 6. Bias and MSE values for �̂� and �̂� 

𝛼 = 0.8, 𝛽 = 2 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.0509 0.0304 0.0375 0.0853 0.0446 0.0627 

(0.0223) (0.0311) (0.0274) (0.0428) (0.0235) (0.0316) 

�̂� 0.0661 -0.1830 -0.1772 -0.1139 -0.1700 -0.1642 

(0.1345) (0.1514) (0.1387) (0.1685) (0.1270) (0.1300) 

𝑛 = 50 

�̂� 0.0256 0.0296 0.0347 0.0561 0.0365 0.0480 

(0.0093) (0.0147) (0.0126) (0.0181) (0.0116) (0.0141) 

�̂� 0.0452 -0.1882 -0.1820 -0.1568 -0.1792 -0.1759 

(0.0639) (0.0890) (0.0817) (0.0854) (0.0771) (0.0769) 

𝑛 = 100 

�̂� 0.0109 0.0272 0.0309 0.0402 0.0306 0.0372 

(0.0041) (0.0072) (0.0062) (0.0084) (0.0060) (0.0067) 

�̂� 0.0217 -0.1971 -0.1919 -0.1822 -0.1916 -0.1895 

(0.0262) (0.0607) (0.0564) (0.0564) (0.0559) (0.0552) 

𝑛 = 200 
�̂� 0.0068 0.0281 0.0303 0.0345 0.0299 0.0354 

(0.0022) (0.0041) (0.0037) (0.0046) (0.0036) (0.0043) 
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�̂� 0.0098 -0.2032 -0.1993 -0.1960 -0.1993 -0.1976 

(0.0128) (0.0522) (0.0495) (0.0496) (0.0493) (0.0486) 

            * The MSE values of the estimates are given in parentheses 

Table 7. Bias and MSE values for �̂� and �̂� 

𝛼 = 0.6, 𝛽 = 0.5 

𝑛  ML LS WLS CV AD RAD 

𝑛 = 25 

�̂� 0.0307 -0.0863 -0.0820 -0.0630 -0.0439 -0.0609 

(0.0096) (0.0121) (0.0106) (0.0091) (0.0085) (0.0082) 

�̂� -0.0134 0.1839 0.1831 0.1700 0.1497 0.1662 

(0.0134) (0.0390) (0.0382) (0.0341) (0.0301) (0.0333) 

𝑛 = 50 

�̂� 0.0125 -0.0830 -0.0790 -0.0716 -0.0696 -0.0670 

(0.0037) (0.0091) (0.0080) (0.0074) (0.0073) (0.0063) 

�̂� -0.0036 0.1815 0.1809 0.1746 0.1726 0.1702 

(0.0068) (0.0358) (0.0353) (0.0333) (0.0333) (0.0320) 

𝑛 = 100 

�̂� 0.0048 -0.0810 -0.0780 -0.0753 -0.0779 -0.0684 

(0.0017) (0.0076) (0.0069) (0.0067) (0.0069) (0.0056) 

�̂� -0.0002 0.1788 0.1792 0.1753 0.1791 0.1702 

(0.0033) (0.0333) (0.0333) (0.0320) (0.0333) (0.0304) 

𝑛 = 200 

�̂� 0.0050 -0.0776 -0.0756 -0.0748 -0.0768 -0.0665 

(0.0009) (0.0066) (0.0061) (0.0061) (0.0063) (0.0050) 

�̂� -0.0035 0.1748 0.1754 0.1724 0.1763 0.1667 

(0.0017) (0.0310) (0.0314) (0.0304) (0.0317) (0.0285) 

            * The MSE values of the estimates are given in parentheses 

Tablo 8. CP and AW values for  �̂� and �̂� 

 �̂� �̂� 

𝛼 𝛽 𝑛 CP AW CP AW 
1 1 25 0.9510 0.1238 0.9450 0.1422 
  50 0.9510 0.0607 0.9430 0.0707 
  100 0.9520 0.0299 0.9550 0.0353 
  200 0.9570 0.0148 0.9480 0.0177 
1 3 25 0.9350 0.1346 0.9620 0.4889 
  50 0.9390 0.0648 0.9460 0.2235 
  100 0.9480 0.0320 0.9470 0.1089 
  200 0.9520 0.0158 0.9510 0.0533 
2 1 25 0.9520 0.2492 0.9370 0.1421 
  50 0.9490 0.1215 0.9470 0.0705 
  100 0.9470 0.0596 0.9590 0.0353 
  200 0.9510 0.0297 0.9540 0.0176 
2 3 25 0.9490 0.2683 0.9620 0.4776 
  50 0.9600 0.1297 0.9550 0.2244 
  100 0.9530 0.0634 0.9670 0.1080 
  200 0.9540 0.0315 0.9530 0.0534 
0.8 2 25 0.9490 0.1062 0.9600 0.2697 
  50 0.9670 0.0512 0.9570 0.1293 
  100 0.9470 0.0253 0.9530 0.0638 
  200 0.9530 0.0125 0.9570 0.0317 
0.6 0.5 25 0.9480 0.0692 0.9110 0.0919 
  50 0.9490 0.0338 0.9410 0.0464 
  100 0.9420 0.0167 0.9530 0.0231 
  200 0.9540 0.0083 0.9560 0.0116 

 
4.2. Real Data Examples 

 
This section includes the application of two real data sets from the metal industry to illustrate the modelling 

performance of the UPL distribution. The first dataset consists of measures on burrs with a hole diameter 

of 12 mm and a sheet thickness of 3.15 mm, for 50 observations. The second dataset contains measures on 
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burrs with a hole diameter of 9 mm and a sheet thickness of 2 mm for 50 observations. Note that [42] used 

extreme value distribution to model the corresponding data sets. The datasets are available in Tables 9 and 

10.  

 

Table 9. Dataset 1 

0.04 0.02 0.06 0.12 0.14 0.08 0.22 0.12 0.08 0.26 0.24 0.04 0.14 0.16 0.08 0.26 0.32 0.28 0.14 0.16 0.24 0.22 0.12 

0.18 0.24 0.32 0.16 0.14 0.08 0.16 0.24 0.16 0.32 0.18 0.24 0.22 0.16 0.12 0.24 0.06 0.02 0.18 0.22 0.14 0.06 0.04 

0.14 0.26 0.18 0.16 

 

Table 10. Dataset 2 

0.06 0.12 0.14 0.04 0.14 0.16 0.08 0.26 0.32 0.22 0.16 0.12 0.24 0.06 0.02 0.18 0.22 0.14 0.22 0.16 0.12 0.24 0.06 

0.02 0.18 0.22 0.14 0.02 0.18 0.22 0.14 0.06 0.04 0.14 0.22 0.14 0.06 0.04 0.16 0.24 0.16 0.32 0.18 0.24 0.22 0.04 

0.14 0.26 0.18 0.16 

 

According to the results of the Monte Carlo simulation study, it is realised that the ML method demonstrates 

superior performances among the others. Therefore, in the application part, only the ML method is used to 

estimate the parameters of the UPL distribution. Moreover, to compare the modelling performance of the 

UPL distribution, the well-known unit distributions, namely, Beta, KM, UL, and UW distributions are used. 

It should be stated that the ML estimates of the parameters of the corresponding distributions are obtained 

as well.  

 

To assess the modelling performance of the Beta, KM, UL, UW, and UPL distributions, the values for the 

Akaike information criterion (AIC) [43], Bayesian information criterion (BIC) [44], and Effective 

determination information criterion (EDC) [45] are calculated by using the following formula: 

 

−2ℓ + 𝑚𝑐𝑛 , 
 

where ℓ represents the maximized log-likelihood, 𝑚 is the number of parameters to be estimated in the 

model and 𝑐𝑛 is the penalty term. Specially, 𝑐𝑛 = 2 for AIC, 𝑐𝑛 = log(𝑛) for BIC and 𝑐𝑛 = 0.2√𝑛 for 

EDC. These criteria provide a quantitative basis for comparing the models, considering both goodness of 

fit and model complexity. 

 

Furthermore, the Kolmogorov-Smirnov (KS) test statistic is employed to assess the suitability of each 

distribution for the given datasets. The KS test statistic is calculated through the following steps: 

Step 1: Sort the data from the smallest to the largest values: 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛). 

Step 2: Calculate the KS test statistic using the formula: 

 

𝐷 = max
𝑖=1,2,…,𝑛

{|𝐹𝑛(𝑥) − 𝐹(𝑥)|}, 

 

where, 𝐹𝑛(𝑥) =
1

𝑛
∑ 𝐼𝑥𝑖≤𝑥

𝑛
𝑖=1  represents the empirical distribution and 𝐹(𝑥) is the distribution function. 

 

It's worth noting that a smaller value of D indicates a better fit between the empirical data and the 

distribution being tested. It should be noted that the KS test statistics and p-values are computed via the 

“kstest2” function in MATLAB.  

 

In Table 11, the ML estimates, KS test statistics with p-values, and values of the maximized log-likelihood 

(ℓ), AIC, BIC, and EDC, are presented for KM, Beta, UL, UW, and UPL distributions. The results given 

in Table 11 indicate that, for Dataset 1, the UPL distribution exhibits the smallest information criterion 

values and the lowest KS test statistic with the highest p-value. Consequently, the UPL distribution appears 

as the most suitable model for Dataset 1. To support this conclusion, Figure 5 includes the histogram of 

Dataset 1 along with the fitted density lines for the KM, Beta, UL, UW, and UPL distributions. According 

to this visual illustration, the UPL distribution demonstrates the best fit among the considered distributions.  

 



 
Hulya KARAKUS, Fatma Zehra DOGRU, Fatma Gul AKGUL/ GU J Sci, 38(1): x-x(2025) 

 

 

Additionally, Quantile-Quantile (Q-Q) plots for Dataset 1 are derived from the KM, Beta, UL, UW, and 

UPL distributions in Figure 6. According to Figure 6, it is evident that the Q-Q plot for the UPL distribution 

closely follows the expected straight line, indicating a superior fit compared to the other distributions for 

Dataset 1. This visual confirmation aligns with the results obtained from the statistical measures and further 

supports the conclusion that the UPL distribution offers the best fit for the given Dataset 1. 

 

Table 11. Estimation results of related distributions given for Dataset 1 
 UPL KM Beta UL UW 

Estimates 
�̂� 1.7646 2.0774 2.6826 5.5829 0.0876 

�̂� 14.1279 33.1374 13.8658 - 3.0519 

Information 

Criteria 

ℓ 56.9368 56.0687 54.6067 47.5774 48.6626 

AIC -109.8736 -108.1374 -105.2133 -93.1548 -93.3252 

BIC -106.0496 -104.3133 -101.3893 -87.3307 -89.5012 

EDC -111.0452 -109.3089 -106.3849 -92.3263 -94.4968 

Test Statistics KS 

p-value 

0.0967 

0.9671 

0.1000 

0.9541 

0.1400 

0.6779 

0.2310 

0.1222 

0.1800 

0.3584 

 

 
Figure 5. Histogram of Dataset 1 along with the fitted pdfs obtained from UPL, KM, Beta, UL, and UW 
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Figure 6. Q-Q plots of the UPL, KM, Beta, UL, and UW for Dataset 1 

 

Table 12 presents the estimation results for Dataset 2 given in Table 10, including the ML estimates for the 

UPL, KM, Beta, UL, and UW distributions, as well as the KS test statistics with p-values, and the values 

of the maximized log-likelihood (ℓ), AIC, BIC, and EDC. The results reveal that the UPL distribution yields 

the smallest information criterion values and the lowest KS test statistic with the highest p-value. 

Consequently, it is concluded that the UPL distribution fits as the best model for Dataset 2. This conclusion 

is further supported by Figure 7, which includes estimated pdf graphs for the UPL, KM, Beta, UL, and UW 

distributions, along with a histogram of Dataset 2. As indicated by this visual representation, the UPL 

distribution demonstrates the best fit among the considered distributions for Dataset 2.  

 

Figure 8 presents Q-Q plots for Dataset 2 derived from the UPL, KM, Beta, UL, and UW distributions. As 

observed in Figure 8, the Q-Q plot for the UPL distribution closely aligns with the expected straight line, 

supporting the conclusion that the UPL distribution offers the best fit for Dataset 2. This visual 

representation, combined with the statistical results, provides additional support for the findings based on 

information criteria and the KS test statistic. 

 

Table 12. Estimation results of related distributions given for Dataset 2 
 UPL KM Beta UL UW 

Estimates 
�̂� 1.6996 1.9606 2.4004 6.0324 0.0791 

�̂� 14.9204 31.3795 13.5218 - 2.9937 

Information 

Criteria 

ℓ 58.5944 57.5214 55.9312 50.4449 50.0217 

AIC -113.1888 -111.0429 -107.8624 -98.8897 -96.0434 

BIC -109.3648 -107.2189 -104.0384 -93.0657 -92.2194 

EDC -114.3604 -112.2145 -109.0340 -98.0613 -97.2150 

Test Statistics KS 

p-value 

0.1494 

0.6030 

0.1600 

0.5077 

0.1800 

0.3584 

0.2514 

0.0730 

0.2200 

0.1546 
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Figure 7. Histogram of Dataset 2 along with the fitted pdfs obtained from UPL, KM, Beta, UL, and UW 

 

 

 
Figure 8. Q-Q plots of the UPL, KM, Beta, UL, and UW for Dataset 2 
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5. RESULTS 

 

In this paper, we propose a new unit distribution, named the UPL distribution, by transforming the PL 

distribution. In order to specify the statistical characteristic of this distribution, firstly we draw the pdf, cdf, 

and hrf plots. It is seen that the UPL distribution can be positively or negatively skewed concerning different 

parameter settings and generally platykurtic. The hrf of the UPL distribution displays a j-shaped pattern, 

indicating its versatility in modeling various dataset characteristics.  

 

The parameters of UPL distribution are estimated by using the ML, LS, WLS, CM, AD, and RAD methods. 

The performances of these methods are compared via Monte-Carlo simulation study. Moreover, the 

asymptotic confidence intervals of the parameters are constructed by using the asymptotic properties of ML 

estimators. The simulation study concludes that the ML estimators generally outperform the other methods. 

Consequently, in real data applications, we utilize the ML method to estimate the parameters of the UPL 

distribution.  

 

The modeling performance of UPL distribution is compared via KM, Beta, UL, and UW distributions. 

These comparisons are based on information criteria such as AIC, BIC EDC, and KS test statistics with p-

values. This analysis indicates that the UPL distribution demonstrates superior performance in terms of 

both information criteria and KS test statistics. Therefore, we propose that the UPL distribution can serve 

as an effective alternative unit distribution for modeling datasets bounded within the interval (0,1) due to 

its flexible modeling performance. 
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