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ABSTRACT
In the present paper, we define positive general Toeplitz operators between weighted harmonic Bloch spaces 𝑏∞𝛼 on the unit ball of
R𝑛 for the full range of parameter 𝛼 ∈ R, where symbols are positive Borel measures on the unit ball of R𝑛. We characterize the
boundedness and compactness of Toeplitz operators from one weighted harmonic Bloch space into another in terms of Carleson
measures and vanishing Carleson measures. Recently, in Doğan (2022), positive symbols of bounded and compact general Toeplitz
operators between harmonic Bergman-Besov spaces are completely characterized in term of Carleson measures and vanishing
Carleson measures. Our results extend those known for harmonic Bloch space.
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1. INTRODUCTION

Let 𝑛 ≥ 2 be an integer and B = B𝑛 be the open unit ball of R𝑛. Let 𝜈 be the normalized Lebesgue measure on B. For 𝛼 ∈ R, we
define the weighted measures 𝜈𝛼 on B by

𝑑𝜈𝛼 (𝑥) =
1
𝑉𝛼

(1 − |𝑥 |2)𝛼𝑑𝜈(𝑥).

These measures are finite only when 𝛼 > −1 and in this case we select the constant 𝑉𝛼 so that 𝜈𝛼 (B) = 1. Naturally 𝑉0 = 1. If
𝛼 ≤ −1, we set 𝑉𝛼 = 1. For 0 < 𝑝 < ∞, we denote the Lebesgue classes with respect to 𝜈𝛼 by 𝐿

𝑝
𝛼 and the corresponding norms

by ∥ · ∥𝐿𝑝
𝛼
.

Let ℎ(B) be the space of all complex-valued harmonic functions on B endowed with the topology of uniform convergence on
compact subsets. For 𝛼 > −1, the harmonic Bergman space 𝑏

𝑝
𝛼 is defined as 𝑏𝑝

𝛼 = 𝐿
𝑝
𝛼 ∩ ℎ(B) with norm ∥ · ∥𝐿𝑝

𝛼
. When 𝑝 = 2, 𝑏2

𝛼

is a reproducing kernel Hilbert space endowed with the inner product [ 𝑓 , 𝑔]𝑏2
𝛼
=
∫
B
𝑓 𝑔 𝑑𝜈𝛼 (𝑥) and with the reproducing kernel

𝑅𝛼 (𝑥, 𝑦) such that 𝑓 (𝑥) = [ 𝑓 (.), 𝑅𝛼 (𝑥, ·)]𝑏2
𝛼

for every 𝑓 ∈ 𝑏2
𝛼 and 𝑥 ∈ B. 𝑅𝛼 is real-valued and symmetric in its variables. The

homogeneous expansion of 𝑅𝛼 (𝑥, 𝑦) is given in the 𝛼 > −1 part of the formulas (2) and (3) below (see Djrbashian and Shamoian
(1988), Gergün et al. (2016)).

The well-known harmonic Bloch space 𝑏 is consists of all 𝑓 ∈ ℎ(B) such that

sup
𝑥∈B

(1 − |𝑥 |2) |∇ 𝑓 (𝑥) |

is finite. Let 𝐿∞ be the Lebesgue class of essentially bounded functions on B. For 𝛼 ∈ R we define

𝐿∞
𝛼 = {𝜑 : (1 − |𝑥 |2)𝛼𝜑(𝑥) ∈ 𝐿∞},

so that 𝐿∞
0 = 𝐿∞ and with norm ∥𝜑∥𝐿∞

𝛼
= ∥(1 − |𝑥 |2)𝛼𝜑(𝑥)∥𝐿∞ . For 𝛼 > 0, the weighted harmonic Bloch space 𝑏∞𝛼 is ℎ(B) ∩ 𝐿∞

𝛼

endowed with the norm ∥ · ∥𝐿∞
𝛼
, and is clearly imbedded in 𝐿∞

𝛼 by the inclusion 𝑖.
For 𝛼 > 0, the harmonic Bergman projection 𝑄𝛼 : 𝐿∞

𝛼 → 𝑏∞𝛼 is given by the integral operator

𝑄𝛼 𝑓 (𝑥) = 1
𝑉𝛼

∫
B
𝑅𝛼 (𝑥, 𝑦) 𝑓 (𝑦) (1 − |𝑦 |2)𝛼𝑑𝜈(𝑦) ( 𝑓 ∈ 𝐿∞

𝛼 ). (1)

It has a significant importance in the theory and the question when 𝑄𝛼 : 𝐿∞
𝛽
→ 𝑏∞

𝛽
is bounded is studied in many sources such
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as Choe et al. (2001); Jevtić and Pavlović (1999); Ligocka (1987) for 𝛽 = 0 and Ren and Kähler (2003) with a different integral
representation valid for 𝛽 > −1. Then we define the Toeplitz operator 𝛼𝑇𝜃 : 𝑏∞𝛼 → 𝑏∞𝛼 with symbol 𝜃 ∈ 𝐿1 by 𝛼𝑇𝜃 = 𝑄𝛼𝑀𝜃 𝑖,
where 𝑀𝜃 is the operator of multiplication by 𝜃. For a finite complex Borel measure 𝜇 on B, the Toeplitz operator 𝛼𝑇𝜇 is defined
by

𝛼𝑇𝜇 𝑓 (𝑥) =
1
𝑉𝛼

∫
B
𝑅𝛼 (𝑥, 𝑦) 𝑓 (𝑦) (1 − |𝑦 |2)𝛼𝑑𝜇(𝑦)

for 𝑓 ∈ 𝐿∞
𝛼 . The operator 𝛼𝑇𝜇 is more general and reduces to 𝛼𝑇𝜃 when 𝑑𝜇 = 𝜃𝑑𝜈. Toeplitz operators have been studied extensively

on the harmonic Bergman spaces by many authors. Particularly, the boundedness and compactness of Toeplitz operators with
positive symbols are completely characterized in term of Carleson measures as in Miao (1998), Miao (1997) on the ball and in
Choe et al. (2004a) on smoothly bounded domains. The Boundedness and compactness of Toeplitz operators with positive symbols
from a harmonic Bergman space into another are characterized in Choe et al. (2004b) on smoothly bounded domains and in Choe
et al. (2002) on the half space.

The harmonic Bergman 𝑏
𝑝
𝛼 and Bloch 𝑏∞𝛼 spaces can be extended to all real 𝛼. These are studied comprehensively in Gergün

et al. (2016) and Doğan and Üreyen (2018), respectively. We call the extended set 𝑏𝑝
𝛼 (𝛼 ∈ R) harmonic Bergman-Besov spaces

and the corresponding reproducing kernels 𝑅𝛼 (𝑥, 𝑦) (𝛼 ∈ R) harmonic Bergman-Besov kernels. The homogeneous expansion of
𝑅𝛼 (𝑥, 𝑦) can be expressed in terms of zonal harmonics 𝑍𝑘 (𝑥, 𝑦)

𝑅𝛼 (𝑥, 𝑦) =
∞∑︁
𝑘=0

𝛾𝑘 (𝛼)𝑍𝑘 (𝑥, 𝑦) (𝛼 ∈ R, 𝑥, 𝑦 ∈ B), (2)

where (see (Gergün et al. 2009, Theorem 3.7), (Gergün et al. 2016, Theorem 1.3))

𝛾𝑘 (𝛼) :=


(1 + 𝑛/2 + 𝛼)𝑘

(𝑛/2)𝑘
, if 𝛼 > −(1 + 𝑛/2);

(𝑘!)2

(1 − (𝑛/2 + 𝛼))𝑘 (𝑛/2)𝑘
, if 𝛼 ≤ −(1 + 𝑛/2),

(3)

and (𝑎)𝑏 is the Pochhammer symbol. For further details about zonal harmonics, see (Axler et al. 2001, Chapter 5).
By using the radial differential operators 𝐷𝑡

𝑠 (𝑠, 𝑡 ∈ R) introduced in Gergün et al. (2009) and Gergün et al. (2016), we can
define the weighted harmonic Bloch spaces 𝑏∞𝛼 for all 𝛼 ∈ B. These operators are compatible with reproducing kernels and yet
mapping ℎ(B) onto itself. We present the fundamental properties of 𝐷𝑡

𝑠 in Section 2. The linear transformation 𝐼 𝑡𝑠 is defined by

𝐼 𝑡𝑠 𝑓 (𝑥) := (1 − |𝑥 |2)𝑡𝐷𝑡
𝑠 𝑓 (𝑥),

for 𝑓 ∈ ℎ(B).

Definition 1.1. For 𝛼 ∈ R, we define the weighted harmonic Bloch space 𝑏∞𝛼 to consist of all 𝑓 ∈ ℎ(B) for which 𝐼 𝑡𝑠 𝑓 belongs to
𝐿∞
𝛼 for some 𝑠 and 𝑡 satisfying (see Doğan and Üreyen (2018) )

𝛼 + 𝑡 > 0. (4)

The quantity

∥ 𝑓 ∥𝑏∞
𝛼
= ∥𝐼 𝑡𝑠 𝑓 ∥𝐿∞

𝛼
= sup

𝑥∈B
(1 − |𝑥 |2)𝛼+𝑡 |𝐷𝑡

𝑠 𝑓 (𝑥) | < ∞,

defines a norm on 𝑏∞𝛼 for any such 𝑠, 𝑡 ∈ R.

Note that this definition is independent of 𝑠, 𝑡 under (4), and the norms in these spaces are all equivalent. Therefore the operator
𝐼 𝑡𝑠 isometrically imbeds 𝑏∞𝛼 into 𝐿∞

𝛼 for a given pair 𝑠, 𝑡 if and only if (4) holds.
Harmonic Bergman-Besov projections𝑄𝑠 that map Lebesgue classes boundedly onto weighted Bloch spaces 𝑏∞𝛼 can be identified

exactly as in the case of 𝛼 > 0 by

𝑠 > 𝛼 − 1. (5)

Then 𝐼 𝑡𝑠 is a right inverse to 𝑄𝑠 . See Doğan and Üreyen (2018) for more details.
Let 𝛼 ∈ R, s and t satisfing (5) and (4), and a measurable function 𝜃 on B be given. Then𝑄𝑠 forces us to define Toeplitz operators

on all 𝑏∞𝛼 as follows. We define the Toeplitz operator 𝑠,𝑡𝑇𝜃 : 𝑏∞𝛼 → 𝑏∞𝛼 with symbol 𝜃 by 𝑠,𝑡𝑇𝜃 = 𝑄𝑠𝑀𝜃 𝐼
𝑡
𝑠 . Explicitly,

𝑠,𝑡𝑇𝜃 𝑓 (𝑥) =
∫
B
𝑅𝑠 (𝑥, 𝑦)𝜃 (𝑦)𝐼 𝑡𝑠 𝑓 (𝑦)𝑑𝜈𝑠 (𝑦) ( 𝑓 ∈ 𝑏∞𝛼 ).

We see that 𝑠,𝑡𝑇𝜃 makes sense if 𝜃 ∈ 𝐿1
𝑠−𝛼. When 𝛼 > 0, we can take 𝑡 = 0 and a value of 𝑠 satisfying (5) is 𝑠 = 𝛼. Then 𝐼0

𝛼 is
inclusion, and 𝑠,𝑡𝑇𝜃 reduces to the classical Toeplitz operator 𝛼𝑇𝜃 = 𝑄𝛼𝑀𝜃 𝑖 on 𝑏∞𝛼 , 𝛼 > 0. We use the word classical to mean
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a Toeplitz operator with 𝑖 = 𝐼0
𝛼. It is possible to take 𝑠 ≠ 𝛼 also when 𝛼 > −1. Thus we have more general Toeplitz operators

defined via 𝐼 𝑡𝑠 strictly on harmonic Bloch spaces too. It turns out that the properties of Toeplitz operators studied in this paper are
independent of 𝑠, 𝑡 under (5) and (4).

Since the integral form for 𝑠,𝑡𝑇𝜃 is obtained, we can now define general Toeplitz operators on 𝑏∞𝛼 with symbol 𝜇. Let 𝛼, and 𝑠

and 𝑡 satisfing (5) and (4) be given. We let

𝑑𝜅(𝑦) = (1 − |𝑦 |2)𝑠+𝑡𝑑𝜇(𝑦)

and define

𝑠,𝑡𝑇𝜇 𝑓 (𝑥) =
1
𝑉𝑠

∫
B
𝑅𝑠 (𝑥, 𝑦)𝐼 𝑡𝑠 𝑓 (𝑦) (1 − |𝑦 |2)𝑠𝑑𝜇(𝑦)

=
1
𝑉𝑠

∫
B
𝑅𝑠 (𝑥, 𝑦)𝐷𝑡

𝑠 𝑓 (𝑦)𝑑𝜅(𝑦).

The operator 𝑠,𝑡𝑇𝜇 is more general and reduces to 𝑠,𝑡𝑇𝜃 when 𝑑𝜇 = 𝜃𝑑𝜈. It makes sense when

𝑑𝜓(𝑦) = (1 − |𝑦 |2)−(𝛼+𝑡 )𝑑𝜅(𝑦) = (1 − |𝑦 |2)𝑠−𝛼𝑑𝜇(𝑦)

is finite. Note that 𝜇 need not be finite in conformity with that 𝛼 is unrestricted.
The holomorphic counterpart of our characterizations from a Dirichlet space into itself have been obtained in Alpay and

Kaptanoğlu (2007). Recently, in Doğan (2022), positive symbols of bounded and compact general Toeplitz operators between
harmonic Bergman-Besov spaces are completely characterized in term of Carleson measures. In the present paper, we consider
the positive Toeplitz operator 𝑠,𝑡𝑇𝜇 and characterize those that are bounded and compact from a weighted harmonic Bloch space
𝑏∞𝛼1 into another 𝑏∞𝛼2 for 𝛼1, 𝛼2 ∈ R. Our main tool is Carleson measure.

Suppose 𝜇 is a positive Borel measure on B. For 𝛼 > −1, we say that 𝜇 is a 𝛼-Carleson measure if the inclusion 𝑖 : 𝑏𝑝
𝛼 → 𝐿 𝑝 (𝜇)

is bounded, that is, if (∫
B
| 𝑓 (𝑥) |𝑝 𝑑𝜇(𝑥)

)1/𝑝
≲ ∥ 𝑓 ∥𝑏𝑝

𝛼
, ( 𝑓 ∈ 𝑏

𝑝
𝛼).

As is usual with Carleson measure theorems, the property of being an 𝛼-Carleson measure is independent of 𝑝, because Theorem
3.1 is true for any 𝑝. However, it depends on 𝛼 > −1. So for a fixed 𝛼, an 𝛼-Carleson measure for one 𝑏

𝑝
𝛼 is a Carleson measure

for all 𝑏𝑝
𝛼 with the same 𝛼. We can now state our main result.

Theorem 1.2. Let 𝛼1, 𝛼2 ∈ R. Suppose that 𝛼1 + 𝑡 > 0, 𝛼2 + 𝑡 > 0 and

𝑠 > 𝛼𝑖 − 1, 𝑖 = 1, 2. (6)

Let

𝛾 = 𝑠 + 𝑡 + 𝛼1 − 𝛼2.

Let 𝜇 be a positive Borel measure on B and 𝑑𝜅(𝑦) = (1 − |𝑦 |2)𝑠+𝑡𝑑𝜇(𝑦). Then the following are equivalent:

(i) 𝑠,𝑡𝑇𝜇 : 𝑏∞𝛼1 → 𝑏∞𝛼2 is bounded.
(ii) 𝜅 is a 𝛾-Carleson measure.

In order to characterize compact Toeplitz operators 𝑠,𝑡𝑇𝜇 with positive 𝜇 from weighted harmonic Bloch spaces 𝑏∞𝛼1 into another
𝑏∞𝛼2 for all 𝛼1, 𝛼2 ∈ R, we present the notion of vanishing 𝛼-Carleson measures. If, for any sequence { 𝑓𝑘} in 𝑏

𝑝
𝛼 with 𝑓𝑘 → 0

uniformly on each compact subset of B and ∥ 𝑓𝑘 ∥𝑏𝑝
𝛼
≤ 1, where

lim
𝑘→∞

∫
B
| 𝑓𝑘 (𝑥) |𝑝 𝑑𝜇(𝑥) = 0,

then 𝜇 ≥ 0 is called vanishing 𝛼-Carleson measure. One can see from Theorem 3.3 that the notion of vanishing 𝛼-Carleson
measures on 𝑏

𝑝
𝛼 is also independent of 𝑝.

Theorem 1.3. Let 𝛼1, 𝛼2 ∈ R. Let 𝑠, 𝑡, 𝛾 and 𝜅 be as in Theorem 1.2. Then the following are equivalent:

(i) 𝑠,𝑡𝑇𝜇 : 𝑏∞𝛼1 → 𝑏∞𝛼2 is compact.
(ii) 𝜅 is a vanishing 𝛾-Carleson measure.

The proofs of our results are inspired by the work of Pau and Zhao (2015), where bounded and compact classical Toeplitz
operators between holomorphic weighted Bergman spaces are characterized.

We briefly summarize the notation and some preliminary material in Section 2. Section 3 is devoted to recall some charac-
terizations of (vanishing) 𝛼-Carleson measures. We will give the proof of our main results, Theorems 1.2 and 1.3, in Section
4.
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Throughout the paper, for two positive expressions 𝐴 and 𝐵, 𝐴 ≲ 𝐵 means that there exists a positive constant 𝐶, whose exact
value is inessential, such that 𝐴 ≤ 𝐶𝐵. We also use 𝐴 ∼ 𝐵 to mean both 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.

2. NOTATION AND PRELIMINARIES

The Pochhammer symbol (𝑎)𝑏 is defined by

(𝑎)𝑏 =
Γ(𝑎 + 𝑏)
Γ(𝑎) ,

when 𝑎 and 𝑎 + 𝑏 are off the pole set −N of the gamma function. Stirling formula provides
(𝑎)𝑐
(𝑏)𝑐

∼ 𝑐𝑎−𝑏 (𝑐 → ∞). (7)

2.1. Pseudo-hyperbolic Metric

For any 𝑎 ∈ B with 𝑎 ≠ 0, the Möbius transformation on B that exchanges the points 0 and 𝑎 is

𝜑𝑎 (𝑥) =
(1 − |𝑎 |2) (𝑎 − 𝑥) + |𝑎 − 𝑥 |2𝑎

[𝑥, 𝑎]2 .

Here we use the abbreviation

[𝑥, 𝑎] =
√︁

1 − 2𝑥 · 𝑎 + |𝑥 |2 |𝑎 |2,

where 𝑥 · 𝑎 denotes the usual inner product in R𝑛. Note that [𝑥, 𝑥] = 1 − |𝑥 |2. The pseudo-hyperbolic distance on B between
𝑥, 𝑦 ∈ B is defined by

𝜌(𝑥, 𝑦) = |𝜑𝑥 (𝑦) | =
|𝑥 − 𝑦 |
[𝑥, 𝑦] .

We need the following lemma from (Choe et al. 2008, Lemma 2.2).

Lemma 2.1. If 𝑎, 𝑥, 𝑦 ∈ B, then
1 − 𝜌(𝑥, 𝑦)
1 + 𝜌(𝑥, 𝑦) ≤ [𝑥, 𝑎]

[𝑦, 𝑎] ≤ 1 + 𝜌(𝑥, 𝑦)
1 − 𝜌(𝑥, 𝑦) .

The following lemma shows that if 𝑥, 𝑦 ∈ B are close in the pseudo-hyperbolic metric, then certain quantities are comparable.
Its proof clearly follows from Lemma 2.1.

Lemma 2.2. Let 0 < 𝛿 < 1. Then

[𝑥, 𝑦] ∼ 1 − |𝑥 |2 ∼ 1 − |𝑦 |2,

for all 𝑥, 𝑦 ∈ B with 𝜌(𝑥, 𝑦) < 𝛿.

For 𝑥 ∈ B, and 0 < 𝛿 < 1, the pseudo-hyperbolic ball with center 𝑥 and radius 𝛿 is given by 𝐸𝛿 (𝑥). We note that 𝐸𝛿 (𝑥) is an
Euclidean ball with center at 𝑐 and radius 𝑟 , where

𝑐 =
(1 − 𝛿2)𝑥
1 − 𝛿2 |𝑥 |2

and 𝑟 =
(1 − |𝑥 |2)𝛿
1 − 𝛿2 |𝑥 |2

.

So, we have 𝜈(𝐸𝛿 (𝑥)) ∼ (1 − |𝑥 |2)𝑛 for fixed 0 < 𝛿 < 1. More generally, for 𝛼 ∈ R, by Lemma 2.2

𝜈𝛼 (𝐸𝛿 (𝑥)) =
1
𝑉𝛼

∫
𝐸𝛿 (𝑥 )

(1 − |𝑦 |2)𝛼 𝑑𝜈(𝑦) ∼ (1 − |𝑥 |2)𝛼𝜈(𝐸𝛿 (𝑥)) ∼ (1 − |𝑥 |2)𝛼+𝑛. (8)

Let {𝑎𝑘} be a sequence of points in B and 0 < 𝛿 < 1. We say that {𝑎𝑘} is 𝛿-separated if 𝜌(𝑎 𝑗 , 𝑎𝑘) ≥ 𝛿 for all 𝑗 ≠ 𝑘 . See Luecking
(1993) for a proof of the following lemma.

Lemma 2.3. For fixed 0 < 𝛿 < 1, There exists a sequence of points {𝑎𝑘} in B such that the following hold.

(i) {𝑎𝑘} is 𝛿-separated.

(ii)
∞⋃
𝑘=1

𝐸𝛿 (𝑎𝑘) = B.

(iii) There exists a positive integer 𝑁 such that each 𝑥 ∈ B is contained in at most 𝑁 of the balls 𝐸𝛿 (𝑎𝑘).
From now on, whenever we use representation like 𝜇𝛼,𝛿 (𝑎𝑘), the sequence {𝑎𝑘} = {𝑎𝑘 (𝛿)} will refer to the sequence chosen

in Lemma 2.3 at all times.
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2.2. The Radial Differential Operators 𝐷𝑡
𝑠

If 𝑓 ∈ ℎ(B), then 𝑓 has a homogeneous expansion 𝑓 (𝑥) = ∑∞
𝑘=0 𝑓𝑘 (𝑥) with homogeneous harmonic polynomials 𝑓𝑘 of degree 𝑘 .

The series converges absolutely and uniformly on compact subsets of B.
For every 𝛼 ∈ R, 𝑅𝛼 (𝑥, 𝑦) is harmonic as a function of either of its variables on B. We have by (7)

𝛾𝑘 (𝛼) ∼ 𝑘1+𝛼 (𝑘 → ∞) (9)

for every 𝛼 ∈ R. By using the coefficients 𝛾𝑘 (𝛼) in the Bergman-Besov kernels, we define the radial differential operators 𝐷𝑡
𝑠 of

order 𝑡.

Definition 2.4. Let 𝑓 =
∑∞

𝑘=0 𝑓𝑘 ∈ ℎ(B) be given by its homogeneous expansion. For 𝑠, 𝑡 ∈ R we define 𝐷𝑡
𝑠 of order 𝑡 by

𝐷𝑡
𝑠 𝑓 :=

∞∑︁
𝑘=0

𝛾𝑘 (𝑠 + 𝑡)
𝛾𝑘 (𝑠)

𝑓𝑘 .

By (9), 𝛾𝑘 (𝑠 + 𝑡)/𝛾𝑘 (𝑠) ∼ 𝑘 𝑡 for any 𝑠, 𝑡. For every 𝑠 ∈ R, 𝐷0
𝑠 = 𝐼, the identity. The additive property 𝐷𝑧

𝑠+𝑡𝐷
𝑡
𝑠 = 𝐷𝑧+𝑡

𝑠 of 𝐷𝑡
𝑠

implies that it is invertible with two-sided inverse

𝐷−𝑡
𝑠+𝑡𝐷

𝑡
𝑠 = 𝐷𝑡

𝑠𝐷
−𝑡
𝑠+𝑡 = 𝐼 . (10)

For every 𝑠, 𝑡 ∈ R, the operator 𝐷𝑡
𝑠 : ℎ(B) → ℎ(B) is continuous in the topology of uniform convergence on compact subsets

(see (Gergün et al. 2016, Theorem 3.2)). The operator 𝐷𝑡
𝑠 is constructed so that in all cases

𝐷𝑡
𝑠𝑅𝑠 (𝑥, 𝑦) = 𝑅𝑠+𝑡 (𝑥, 𝑦), (11)

where differentiation is performed on one of the variables.
One of the most crucial properties about the map 𝐷𝑡

𝑠 is that it enables us to pass from one Bloch space to another. Moreover, we
have the following isomorphism. For a proof see (Doğan and Üreyen 2018, Proposition 4.6).

Lemma 2.5. Given 𝛼, for any 𝑠, 𝑡 ∈ R, the map 𝐷𝑡
𝑠 : 𝑏∞𝛼 → 𝑏∞𝛼+𝑡 is an isomorphism.

The following duality result is (Doğan and Üreyen 2018, Theorem 5.4).

Theorem 2.6. Let 𝑞 ∈ R. Pick 𝑠′, 𝑡′ such that

𝑠′ > 𝑞,

𝑞 + 𝑡′ > −1.

The dual of 𝑏1
𝑞 can be identified with 𝑏∞𝛼 (for any 𝛼 ∈ R) under the pairing

⟨ 𝑓 , 𝑔⟩ =
∫
B
𝐼 𝑡

′
𝑠′ 𝑓 𝐼

𝑠′−𝑞−𝛼

𝑡 ′+𝑞+𝛼 𝑔 𝑑𝜈𝑞+𝛼, ( 𝑓 ∈ 𝑏1
𝑞 , 𝑔 ∈ 𝑏∞𝛼 ).

2.3. Estimates on Harmonic Bergman-Besov Kernels

In case 𝛼 > −1, Bergman Kernels 𝑅𝛼 (𝑥, 𝑦) are real-valued and well-studied by many authors. The curious reader is referred to
Gergün et al. (2016) for extension of these properties to all 𝛼 ∈ R.

We have the following pointwise upper bounds on the Bergman-Besov kernels. For a proof see Coifman and Coifman (1980);
Ren (2003) when 𝛼 > −1 and Gergün et al. (2016) when 𝛼 ∈ R.

Lemma 2.7. Let 𝛼 ∈ R. For all 𝑥, 𝑦 ∈ B,

|𝑅𝛼 (𝑥, 𝑦) | ≲


1

[𝑥, 𝑦]𝛼+𝑛 , if 𝛼 > −𝑛;

1 + log
1

[𝑥, 𝑦] , if 𝛼 = −𝑛;

1, if 𝛼 < −𝑛.

The next result shows that the first part of the above estimate continues to hold when 𝑥 and 𝑦 are close enough in the
pseudo-hyperbolic distance. It can be proved in just the same way as (Miao 1998, Proposition 5).

Lemma 2.8. Assume 𝛼 > −𝑛. Then there exists a 𝛿 ∈ (0, 1) such that

𝑅𝛼 (𝑥, 𝑦) ∼
1

(1 − |𝑥 |2)𝛼+𝑛

whenever 𝑥 ∈ B and 𝑦 ∈ 𝐸𝛿 (𝑥).
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3. CARLESON MEASURES

Carleson measures on more general domains have been well studied by many authors. In this subsection we will recollect some
characterizations of (vanishing) 𝛼-Carleson measures for 𝑏𝑝

𝛼 (𝛼 > −1) in terms of the averaging functions.
Let 0 < 𝛿 < 1, the averaging function 𝜇𝛿 of 𝜇 is defined by

𝜇𝛿 (𝑥) =
𝜇(𝐸𝛿 (𝑥))
𝜈(𝐸𝛿 (𝑥))

(𝑥 ∈ B).

Also, for general case 𝛼 ∈ R we define

𝜇𝛼,𝛿 (𝑥) :=
𝜇(𝐸𝛿 (𝑥))
𝜈𝛼 (𝐸𝛿 (𝑥))

(𝑥 ∈ B).

By (8), 𝜇𝛼,𝛿 (𝑥) ∼ 𝜇(𝐸𝛿 (𝑥))/(1 − |𝑥 |2)𝛼+𝑛.
Now, we cite the next characterization of Carleson measures in terms of averaging functions which justify the fact that the notion

of 𝛼-Carleson measures on 𝑏
𝑝
𝛼 depend only on 𝛼.

Theorem 3.1. Assume 𝜇 is a positive Borel measure on B, 0 < 𝑝 < ∞ and 𝛼 > −1. The following are equivalent:

(a) 𝜇 is a 𝛼-Carleson measure.
(b) 𝜇𝛼,𝛿 ≲ 1 for some (every) 0 < 𝛿 < 1.

Notice that the condition (b) is equivalent to

𝜇(𝐸𝛿 (𝑥)) ≲ (1 − |𝑥 |2)𝛼+𝑛 for some (every) 0 < 𝛿 < 1.

Proof. For the case 𝛼 = 0, equivalence of (a) and (b) is given in (Choe et al. 2004a, Theorem 3.5) for bounded smooth domains.
The proof works just as well for general 𝛼 too.

We also need the following proposition. Its proof is similar to that of (Doğan 2022, Proposition 3.6), but for the sake of
completeness, we give the simplified version of it.

Proposition 3.2. Let 𝜇 be a positive Borel measure on B. Let 𝛼1 > 0 and −1 < 𝛼2 < ∞ and let

𝜚 = 𝛼1 + 𝛼2.

If 𝜇 is a 𝜚-Carleson measure, then∫
B
| 𝑓 (𝑥) | |𝑔(𝑥) | 𝑑𝜇(𝑥) ≲ ∥ 𝑓 ∥𝑏∞

𝛼1
∥𝑔∥𝑏1

𝛼2
( 𝑓 ∈ 𝑏∞𝛼1 , 𝑔 ∈ 𝑏1

𝛼2 ).

Proof. First, for 𝑓 ∈ 𝑏∞𝛼1 , ∫
B
| 𝑓 (𝑥) | |𝑔(𝑥) | 𝑑𝜇(𝑥) ≤ ∥ 𝑓 ∥𝑏∞

𝛼1

∫
B
|𝑔(𝑥) | (1 − |𝑥 |2)−𝛼1 𝑑𝜇(𝑥).

Next, by Theorem 3.1, if 𝜇 is a 𝜚 = 𝛼1 + 𝛼2 Carleson measure, that is, 𝜇(𝐸𝛿 (𝑥)) ≲ (1 − |𝑥 |2)𝛼1+𝛼2+𝑛, then (1 − |𝑥 |2)−𝛼1 𝑑𝜇(𝑥) is
an 𝛼2-Carleson measure since by Lemma 2.2,∫

𝐸𝛿 (𝑥 )
(1 − |𝑦 |2)−𝛼1𝑑𝜇(𝑦) ∼ (1 − |𝑥 |2)−𝛼1𝜇(𝐸𝛿 (𝑥)) ≲ (1 − |𝑥 |2)𝛼2+𝑛.

Thus by the definition of a Carleson measure∫
B
|𝑔(𝑥) | (1 − |𝑥 |2)−𝛼1 𝑑𝜇(𝑥) ≲ ∥𝑔∥𝑏1

𝛼2

for all 𝑔 ∈ 𝑏1
𝛼2 , which concludes the proof.

We next present a characterization of vanishing 𝛼-Carleson measures.

Theorem 3.3. Let 𝜇 be a positive Borel measure on B, 0 < 𝑝 < ∞ and 𝛼 > −1. The following are equivalent:

(a) 𝜇 is a vanishing 𝛼-Carleson measure.
(b) lim |𝑥 |→1− 𝜇𝛼,𝜀 (𝑥) = 0 for some (every) 0 < 𝜀 < 1.
(c) lim𝑘→∞ 𝜇𝛼,𝛿 (𝑎𝑘) = 0 for some (every) 0 < 𝛿 < 1.

Proof. For the case 𝛼 = 0, equivalence of (a), (b) and (c) is given in (Choe et al. 2004b, Theorem 3.5) for bounded smooth
domains. It works just as well for general 𝛼 too.
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4. BOUNDEDNESS AND COMPACTNESS OF TOEPLITZ OPERATORS

Our goal in this section is to prove Theorems 1.2 and 1.3. Before that we introduce a helpful relation for transforming certain
problems for general Toeplitz operators between 𝑏∞𝛼 , 𝛼 ∈ R𝑛 to similar problems for classical Toeplitz operators between 𝑏∞𝛼 when
𝛼 > 0. The harmonic and holomorphic Bergman-Besov-space versions are in Doğan (2022) and Alpay and Kaptanoğlu (2007),
respectively.

Theorem 4.1. We have 𝐷𝑡
𝑠 (𝑠,𝑡𝑇𝜇) = (𝑠+𝑡𝑇𝜅 )𝐷𝑡

𝑠 , where

𝑠+𝑡𝑇𝜅 𝑓 (𝑥) =
1
𝑉𝑠

∫
B
𝑅𝑠+𝑡 (𝑥, 𝑦) 𝑓 (𝑦)𝑑𝜅(𝑦)

is the classical Toeplitz operator from 𝑏∞𝛼1+𝑡 to 𝑏∞𝛼2+𝑡 . Consequently,

(𝑠,𝑡𝑇𝜇) = 𝐷−𝑡
𝑠+𝑡 (𝑠+𝑡𝑇𝜅 )𝐷𝑡

𝑠 , (𝑠+𝑡𝑇𝜅 ) = 𝐷𝑡
𝑠 (𝑠,𝑡𝑇𝜇)𝐷−𝑡

𝑠+𝑡 .

Proof. By differentiation under the integral sign and (11), we have

𝐷𝑡
𝑠 (𝑠,𝑡𝑇𝜇 𝑓 ) (𝑥) =

1
𝑉𝑠

∫
B
𝑅𝑠+𝑡 (𝑥, 𝑦)𝐷𝑡

𝑠 𝑓 (𝑦)𝑑𝜅(𝑦)

= (𝑠+𝑡𝑇𝜅 ) (𝐷𝑡
𝑠 𝑓 ) (𝑥) ( 𝑓 ∈ 𝑏∞𝛼1 ).

For the other statements, we note that (𝐷𝑡
𝑠)−1 = 𝐷−𝑡

𝑠+𝑡 by (10).

By Theorem 4.1, 𝑠,𝑡𝑇𝜇 is bounded from 𝑏∞𝛼1 to 𝑏∞𝛼2 if and only if 𝑠+𝑡𝑇𝜅 is bounded from 𝑏∞𝛼1+𝑡 to 𝑏∞𝛼2+𝑡 . With all these preliminary
works, we have laid the groundwork for proving our main results.

4.1. Proof of Theorem 1.2

(i) Implies (ii). Let 𝑠,𝑡𝑇𝜇 : 𝑏∞𝛼1 → 𝑏∞𝛼2 be bounded. First note that [𝑥, 𝑦] ≳ (1 − |𝑥 |2) and [𝑥, 𝑦] ≳ (1 − |𝑦 |2) for 𝑥, 𝑦 ∈ B. Then fix
𝑥 ∈ B and consider 𝑅𝑠+𝑡 (𝑥, .). Under the condition 𝑛 + 𝑠 + 𝑡 > 𝛼1 + 𝑡 provided by (6), it is elementary to verify using Lemma 2.7
that 𝑅𝑠+𝑡 (𝑥, .) ∈ 𝑏∞𝛼1+𝑡 with

∥𝑅𝑠+𝑡 (𝑥, .)∥𝑏∞
𝛼1+𝑡
≲ sup

𝑦∈B

(1 − |𝑦 |2)𝛼1+𝑡

[𝑥, 𝑦]𝑛+𝑠+𝑡 ≲ sup
𝑦∈B

(1 − |𝑦 |2)𝛼1+𝑡

(1 − |𝑦 |2)𝛼1+𝑡 (1 − |𝑥 |2)𝑛+𝑠−𝛼1
= (1 − |𝑥 |2)𝛼1−(𝑛+𝑠) .

Take 𝛿 = 𝛿0 where 𝛿0 is the number made available by Lemma 2.8. We have by Lemma 2.2 and Lemma 2.8

𝜅(𝐸𝛿 (𝑥)) ≲
𝑉𝛼1

𝑉𝑠

(1 − |𝑥 |2)2(𝑛+𝑠+𝑡 )
∫
𝐸𝛿 (𝑥 )

|𝑅𝑠+𝑡 (𝑥, 𝑦) |2𝑑𝜅(𝑦)

≲
𝑉𝛼1

𝑉𝑠

(1 − |𝑥 |2)2(𝑛+𝑠+𝑡 )
∫
B
|𝑅𝑠+𝑡 (𝑥, 𝑦) |2𝑑𝜅(𝑦)

= (1 − |𝑥 |2)2(𝑛+𝑠+𝑡 )
𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑥, .)] (𝑥),

and therefore

�̂�𝛾, 𝛿 (𝑥) =
𝜅(𝐸𝛿 (𝑥))
𝜈𝛾 (𝐸𝛿 (𝑥))
≲ (1 − |𝑥 |2)2(𝑛+𝑠+𝑡 )−(𝑛+𝛾)

𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑥, .)] (𝑥).

On the other hand, by the definition of 𝑏∞𝛼 , 𝛼 > 0, the boundedness of the Toeplitz operator 𝑠+𝑡𝑇𝜅 and an inequality above, we
obtain

𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑥, .)] (𝑥) = |𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑥, .)] (𝑥) |
≲ (1 − |𝑥 |2)−𝑡−𝛼2 ∥𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑥, .)] ∥𝑏∞

𝛼2+𝑡

≲ (1 − |𝑥 |2)−𝑡−𝛼2 ∥𝑠+𝑡𝑇𝜅 ∥∥𝑅𝑠+𝑡 (𝑥, .)∥𝑏∞
𝛼1+𝑡

≲ (1 − |𝑥 |2)−𝑡−𝛼2−𝑛−𝑠+𝛼1 ∥𝑠+𝑡𝑇𝜅 ∥,

where ∥𝑠+𝑡𝑇𝜅 ∥ denotes the operator norm of 𝑠+𝑡𝑇𝜅 : 𝑏∞𝛼1+𝑡 → 𝑏∞𝛼2+𝑡 . By bringing these estimates together, we conclude that

�̂�𝛾, 𝛿 (𝑥) ≲ ∥𝑠+𝑡𝑇𝜅 ∥.

By Theorem 3.1 this means that 𝜅 is a 𝛾-Carleson measure.
(ii) Implies (i). Next, suppose 𝜅 is a 𝛾-Carleson measure. Let

𝛼′
2 = 𝑠 − 𝛼2 > −1. (12)
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Since 𝛼′
2 > −1 and 𝛼2 + 𝑡 > 0, applying Theorem 2.6 (with 𝑞 = 𝛼′

2, 𝛼 = 𝛼2 + 𝑡, 𝑠′ = 𝛼′
2 + 𝛼2 + 𝑡 and 𝑡′ = 0), we get that the dual of

𝑏1
𝛼′

2
can be identified with 𝑏∞𝛼2+𝑡 under each of the pairings

[ 𝑓 , 𝑔]𝑏2
𝑠+𝑡

=

∫
B
𝑓 (𝑥)𝑔(𝑥) 𝑑𝜈𝑠+𝑡 (𝑥).

Let 𝑓 ∈ 𝑏∞𝛼1+𝑡 and ℎ ∈ 𝑏1
𝛼′

2
. Fubini theorem and the reproducing formula (1.5) of Gergün et al. (2016), since 𝛼′

2 > −1 and
𝛼′

2 < 𝑠 + 𝑡 by 𝛼2 + 𝑡 > 0, yield

[ℎ, 𝑠+𝑡𝑇𝜅 𝑓 ]𝑏2
𝑠+𝑡

=
1
𝑉𝑠

∫
B
ℎ(𝑦)

∫
B
𝑅𝑠+𝑡 (𝑥, 𝑦) 𝑓 (𝑥)𝑑𝜅(𝑥) 𝑑𝜈𝑠+𝑡 (𝑦)

=
1
𝑉𝑠

∫
B

(∫
B
𝑅𝑠+𝑡 (𝑥, 𝑦)ℎ(𝑦)𝑑𝜈𝑠+𝑡 (𝑦)

)
𝑓 (𝑥) 𝑑𝜅(𝑥)

=
1
𝑉𝑠

∫
B
ℎ(𝑥) 𝑓 (𝑥) 𝑑𝜅(𝑥).

The 𝛾 in the statement of the theorem is

𝛾 = 𝛼1 + 𝑡 + 𝛼′
2.

Thus, by Proposition 3.2,

| [ℎ, 𝑠+𝑡𝑇𝜅 𝑓 ]𝑏2
𝑠+𝑡
| ≲

∫
B
|ℎ(𝑥) | | 𝑓 (𝑥) | 𝑑𝜅(𝑥) ≲ ∥ 𝑓 ∥𝑏∞

𝛼1+𝑡
∥ℎ∥𝑏1

𝛼′2
.

By duality we have

∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞
𝛼2+𝑡
≲ sup

∥ℎ∥
𝑏1
𝛼′2

≤1
| [ℎ, 𝑠+𝑡𝑇𝜅 𝑓𝑘]𝑏2

𝑠+𝑡
|

≲ ∥ 𝑓 ∥𝑏∞
𝛼1+𝑡

.

Hence 𝑠+𝑡𝑇𝜅 is bounded from 𝑏∞𝛼1+𝑡 to 𝑏∞𝛼2+𝑡 .

4.2. Proof of Theorem 1.3

Before going to the proof, it is worth noting that by Theorem 4.1, 𝑠,𝑡𝑇𝜇 is compact from 𝑏∞𝛼1 to 𝑏∞𝛼2 if and only if 𝑠+𝑡𝑇𝜅 is compact
from 𝑏∞𝛼1+𝑡 to 𝑏∞𝛼2+𝑡 . For the proof of Theorem 1.3 we need the following lemma.

Lemma 4.2. Let 0 < 𝛼1, 𝛼2 < ∞ and 𝑠, 𝑡, 𝛾 and 𝜅 be as in Theorem 1.2. Let 𝑠+𝑡𝑇𝜅 be a bounded linear operator from 𝑏∞𝛼1 into 𝑏∞𝛼2 .
Then 𝑠+𝑡𝑇𝜅 is compact if and only if ∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞

𝛼2
→ 0 as 𝑘 → ∞ whenever { 𝑓𝑘} is a bounded sequence in 𝑏∞𝛼1 that converges to

0 uniformly on compact subsets of B.

Proof. The necessity being obvious we will only prove the sufficiency part of the equivalence above. Suppose { 𝑓𝑘} is a bounded
sequence in 𝑏∞𝛼1 . Note that if 𝛼 > 0, we have by (Doğan and Üreyen 2018, Corollary 5.3)

|𝑢(𝑥) | ≲
∥𝑢∥𝑏∞

𝛼

(1 − |𝑥 |2)𝛼
(13)

for all 𝑢 ∈ 𝑏∞𝛼 and 𝑥 ∈ B. Accordingly, it is uniformly bounded on each compact subset of B by (13) and thus it is a normal family
(see (Axler et al. 2001, Theorem 2.6)). That is, there exists a subsequence of { 𝑓𝑘} that converges uniformly on compact subsets
of B to a bounded harmonic function 𝑓 on B; for simplicity we denote this subsequence by { 𝑓𝑘} as well. The sequence { 𝑓𝑘 − 𝑓 }
is therefore bounded in 𝑏∞𝛼1 and converges to 0 uniformly on compact subsets of B. By assumption ∥𝑠+𝑡𝑇𝜅 ( 𝑓𝑘 − 𝑓 )∥𝑏∞

𝛼2
→ 0 as

𝑘 → ∞. This implies that the subsequence {𝑠+𝑡𝑇𝜅 𝑓𝑘} converges in 𝑏∞𝛼2 (to 𝑠+𝑡𝑇𝜅 𝑓 ). The proof is complete.

(i) Implies (ii). Since 𝑠+𝑡𝑇𝜅 is compact, then ∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞
𝛼2+𝑡

→ 0 whenever { 𝑓𝑘} is a bounded sequence in 𝑏∞𝛼1+𝑡 that converges to
0 uniformly on compact subsets of B by Lemma 4.2. Let {𝑎𝑘} ⊂ B with |𝑎𝑘 | → 1− and consider the functions

𝑓𝑘 (𝑥) = (1 − |𝑎𝑘 |2)𝑛+𝑠−𝛼1𝑅𝑠+𝑡 (𝑥, 𝑎𝑘).

Under the assumptions on 𝑠 and Lemma 2.7, since [𝑥, 𝑦] ≳ (1−|𝑥 |2) and [𝑥, 𝑦] ≳ (1−|𝑦 |2) for 𝑥, 𝑦 ∈ B, we get sup𝑘 ∥ 𝑓𝑘 ∥𝑏∞
𝛼1+𝑡

< ∞,
and it is clear that 𝑓𝑘 converges to 0 uniformly on compact subsets of B. Thus ∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞

𝛼2+𝑡
→ 0. Therefore, proceeding as in (i)
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Implies (ii) in Theorem 1.2, for any 𝛿 > 0, we obtain

�̂�𝛾, 𝛿 (𝑎𝑘) ≲ (1 − |𝑎𝑘 |2)2(𝑛+𝑠+𝑡 )−(𝑛+𝛾) |𝑠+𝑡𝑇𝜅 [𝑅𝑠+𝑡 (𝑎𝑘 , .)] (𝑎𝑘) |
= (1 − |𝑎𝑘 |2)2(𝑛+𝑠+𝑡 )−(𝑛+𝛾)−(𝑛+𝑠−𝛼1 ) |𝑠+𝑡𝑇𝜅 𝑓𝑘 (𝑎𝑘) |
= (1 − |𝑎𝑘 |2)𝛼2+𝑡 |𝑠+𝑡𝑇𝜅 𝑓𝑘 (𝑎𝑘) |
≲ ∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞

𝛼2+𝑡
→ 0.

Hence, by Theorem 3.3, the measure 𝜅 is a vanishing 𝛾-Carleson measure.
(ii) Implies (i). Finally, assume that 𝜅 is a vanishing 𝛾-Carleson measure. In particular, it is a 𝛾-Carleson measure and

thus 𝑠+𝑡𝑇𝜅 : 𝑏∞𝛼1+𝑡 → 𝑏∞𝛼2+𝑡 is bounded by Theorem 1.2. To show that the operator 𝑠+𝑡𝑇𝜅 is compact, we must prove that
∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞

𝛼2+𝑡
→ 0 whenever { 𝑓𝑘} is a bounded sequence in 𝑏∞𝛼1+𝑡 converging to 0 uniformly on compact subsets of B by Lemma

4.2. Similarly, as in the proof of Theorem 1.2, by duality we have (the number 𝛼′
2 being the one defined by (12)

∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞
𝛼2+𝑡
≲ sup

∥ℎ∥
𝑏1
𝛼′2

≤1
| [ℎ, 𝑠+𝑡𝑇𝜅 𝑓𝑘]𝑏2

𝑠+𝑡
|

≤ sup
∥ℎ∥

𝑏1
𝛼′2

≤1

∫
B
| 𝑓𝑘 (𝑥) | |ℎ(𝑥) |𝑑𝜅(𝑥).

Let 0 < 𝛿 < 1. Since 𝐸𝛿/2 (𝑥) is also a Euclidean ball with center at 𝑐 = (1− (𝛿/2)2)𝑥/(1− (𝛿/2)2 |𝑥 |2) and its radius behaves like
1 − |𝑥 |2 when 𝛿/2 is fixed, (Doğan 2020, Lemma 3.3) implies that

| 𝑓𝑘 (𝑥)ℎ(𝑥) | ≲
1
𝑟𝑛

∫
𝐵(𝑥,𝑟 )

| 𝑓𝑘 (𝑦)ℎ(𝑦) |𝑑𝜈(𝑦),

whenever 𝐵(𝑥, 𝑟) = {𝑦 : |𝑦 − 𝑥 | < 𝑟} ⊂ 𝐸𝛿/2 (𝑥) for all 𝑥 ∈ B. This directly leads to the estimate

| 𝑓𝑘 (𝑥)ℎ(𝑥) | ≲
1

(1 − |𝑥 |2)𝑛+𝛾

∫
𝐸𝛿/2 (𝑥 )

| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦) (𝑥 ∈ B).

Note that 𝐸𝛿/2 (𝑥) ⊂ 𝐸𝛿 (𝑎) for 𝑎 ∈ B and 𝑥 ∈ 𝐸𝛿/2 (𝑎). Let 𝐸𝛿/2 (𝑎𝑖) be the balls related to the sequence {𝑎𝑖} = {𝑎𝑖 (𝛿/2)} in
Lemma 2.3. So we obtain

| 𝑓𝑘 (𝑥)ℎ(𝑥) | ≲
1

(1 − |𝑥 |2)𝑛+𝛾

∫
𝐸𝛿/2 (𝑥 )

| 𝑓 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)

≲
1

(1 − |𝑥 |2)𝑛+𝛾

∫
𝐸𝛿 (𝑎𝑖 )

| 𝑓 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦), 𝑥 ∈ 𝐸𝛿/2 (𝑎𝑖)

for 𝑖 = 1, 2, . . . . Then Lemma 2.3 and Lemma 2.2 yield∫
B
| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥)

≲
∞∑︁
𝑖=1

∫
𝐸𝛿/2 (𝑎𝑖 )

| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥)

≲
∑︁
𝑖< 𝑗

∫
𝐸𝛿/2 (𝑎𝑖 )

| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥) +
∑︁
𝑖≥ 𝑗

∫
𝐸𝛿 (𝑎𝑖 )

| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)
∫
𝐸𝛿/2 (𝑎𝑖 )

𝑑𝜅(𝑥)
(1 − |𝑥 |2)𝑛+𝛾

≲
∑︁
𝑖< 𝑗

∫
𝐸𝛿/2 (𝑎𝑖 )

| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥) +
∑︁
𝑖≥ 𝑗

𝜅(𝐸𝛿/2 (𝑎𝑖))
(1 − |𝑎𝑖 |2)𝑛+𝛾

∫
𝐸𝛿 (𝑎𝑖 )

| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)

≲
∑︁
𝑖< 𝑗

∫
𝐸𝛿/2 (𝑎𝑖 )

| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥) + sup
𝑖≥ 𝑗

�̂�𝛾, 𝛿 (𝑎𝑖)
∑︁
𝑖≥ 𝑗

∫
𝐸𝛿 (𝑎𝑖 )

| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)

≲
∑︁
𝑖< 𝑗

∫
𝐸𝛿/2 (𝑎𝑖 )

| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥) + 𝑁 sup
𝑖≥ 𝑗

�̂�𝛾, 𝛿 (𝑎𝑖)
∫
B
| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)

for any 𝑗 where 𝑁 denotes the number provided by Lemma 2.3. Fix 𝑗 and let 𝑘 → ∞. Since 𝑓𝑘 converges to 0 uniformly on each
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𝐸𝛿/2 (𝑎𝑖), the 𝑖 < 𝑗 terms go to 0. The result is

lim sup
𝑘

sup
∥ℎ∥

𝑏1
𝛼′2

≤1

∫
B
| 𝑓𝑘 (𝑥)ℎ(𝑥) | 𝑑𝜅(𝑥) ≲ sup

𝑖≥ 𝑗

�̂�𝛾, 𝛿 (𝑎𝑖) sup
𝑘

sup
∥ℎ∥

𝑏1
𝛼′2

≤1

∫
B
| 𝑓𝑘 (𝑦)ℎ(𝑦) | (1 − |𝑦 |2)𝛾𝑑𝜈(𝑦)

≲ sup
𝑖≥ 𝑗

�̂�𝛾, 𝛿 (𝑎𝑖) sup
𝑘

∥ 𝑓𝑘 ∥𝑏∞
𝛼1+𝑡

sup
∥ℎ∥

𝑏1
𝛼′2

≤1

∫
B
|ℎ(𝑦) |𝑑𝜈𝛼′

2
(𝑥)

≲ sup
𝑖≥ 𝑗

�̂�𝛾, 𝛿 (𝑎𝑖) sup
𝑘

∥ 𝑓𝑘 ∥𝑏∞
𝛼1+𝑡

for each 𝑗 . Now let 𝑗 → ∞. Since 𝑏∞𝛼1+𝑡 -norms of 𝑓𝑘 are bounded and sup𝑖≥ 𝑗 �̂�𝛾, 𝛿 (𝑎𝑖) → 0 by assumption, it follows that

sup
∥ℎ∥

𝑏1
𝛼′2

≤1

∫
B
| 𝑓𝑘 (𝑥) | |ℎ(𝑥) |𝑑𝜅(𝑥) → 0.

Thus, ∥𝑠+𝑡𝑇𝜅 𝑓𝑘 ∥𝑏∞
𝛼2+𝑝2𝑡

→ 0, finishing the proof.
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