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ABSTRACT
We investigate 𝜁 (Ric)-vector fields on doubly warped product manifolds. We obtain some results when the vector field is also
𝜁 (Ric) on factor manifolds. We prove that if a vector field is a 𝜁 (Ric)-vector field on a doubly warped product manifold, it is also a
𝜁 (Ric)-vector field on the factor manifolds under certain conditions. Also, we show that a vector field on a doubly warped product
manifold can be a 𝜁 (Ric)-vector field with some conditions. Moreover we give two important applications of this concept in the
Lorentzian settings, which are the doubly warped product generalized Robertson-Walker space-time and doubly warped product
standard static space-time.
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1. INTRODUCTION

There are many special types of smooth vector fields in the literature such as Killing, conformal, concircular, etc. The existence
of any special type of vector field can directly influence the geometry of the manifold on which it is defined. For example, any
Riemannian manifold with non-zero concircular vector field is a locally warped product (see Chen (2015)). Also, the topological
property of a Riemannian manifold can influence the form of a vector field defined in that manifold. For instance, every affine
vector field is Killing (see Kobayashi (1995)) on a compact and orientable Riemannian manifold. Moreover, the existence of a
vector field and the algebraic topological property of the manifold on which it is defined are closely related.
The notion of 𝜁 (Ric)-vector fields was first defined by Hinterleitner and Kiosak (2008), then many geometers have studied these
types of vector fields in several kinds of differentiable structures (see De et al. (2021), Hinterleitner and Kiosak (2009), Kırık and
Özen Zengin (2015), Kırık and Özen Zengin (2015), Kırık and Özen Zengin (2019), Özen Zengin and Kırık (2013)).

The concept of warped product manifolds introduced by Bishop and O’Neill Bishop and O’Neill (1969) to investigate Rieman-
nian manifolds with negative sectional curvature. This is the concept that describes the geometry of many significant relativistic
space-time, which has a wide range of uses in both differential geometry and mathematical physics (Bishop and O’Neill (1969),
O’Neill (1983)).

In the present paper, we consider 𝜁 (Ric)-vector fields on doubly warped product manifolds. We obtain that if a vector field is
a 𝜁 (Ric)-vector field on a doubly warped product manifold, it is also a 𝜁 (Ric)-vector field on the factor manifolds under certain
conditions. Moreover, we show that a vector field on a doubly warped product manifold can be a 𝜁 (Ric)-vector field with some
conditions. Finally, considering 𝜁 (Ric)-vector fields on a doubly warped product generalized Robertson-Walker space-time and
doubly warped product standard static space-time, we get some results.

2. DOUBLY WARPED PRODUCT MANIFOLDS WITH 𝜁(RIC)-VECTOR FIELDS

A doubly warped product Ehrlich (1974) 𝑓2𝑀1 × 𝑓1 𝑀2 of (𝑀1, 𝑔1) and (𝑀2, 𝑔2) is the product manifold 𝑀 = 𝑀1 × 𝑀2 and it has
the following metric:

𝑔 = ( 𝑓2 ◦ 𝜎)2𝜎∗
1 (𝑔1) + ( 𝑓1 ◦ 𝜎)2𝜎∗

2 (𝑔2), (1)
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where (𝑀1, 𝑔1) and (𝑀2, 𝑔2) are two Riemannian manifolds and 𝑓1 ∈ 𝐶∞ (𝑀1), 𝑓2 ∈ 𝐶∞ (𝑀2). 𝜎1 and 𝜎2 are defined as canonical
projections of 𝑀1 ×𝑀2 onto 𝑀1 and 𝑀2, respectively. For 𝑖 = 1, 2, 𝜎∗

𝑖
(𝑔𝑖) is the pullback of 𝑔𝑖 via 𝜎𝑖 . We say that 𝑓𝑖 is a warping

function of ( 𝑓2𝑀1 × 𝑓1 𝑀2, 𝑔). If 𝑓1 or 𝑓2 is constant, then the manifold is a warped product Bishop and O’Neill (1969). Also, we
get a direct product manifold Chen (2017) when both 𝑓1 and 𝑓2 are constant.

Let ( 𝑓2𝑀1 × 𝑓1 𝑀2, 𝑔) be a doubly warped product manifold. In this study, the same notation will be used for a vector field and
for its lift. It is also true for a metric and its pullback. Because each 𝜎𝑖 is a (positive) homothety, the connection is preserved. Also,
we can use the same notation for a connection on 𝑀𝑖 and for its pullback via 𝜎𝑖 . For ( 𝑓2𝑀1 × 𝑓1 𝑀2, 𝑔), the covariant derivative
formulas Ehrlich (1974) are obtained as follows:

∇𝑍𝑇 = ∇1
𝑍
𝑇 − 𝑔(𝑍,𝑇)∇(ln( 𝑓2 ◦ 𝜋2)), (2)

∇𝑍𝑊 = ∇𝑊𝑍 = 𝑊 (ln( 𝑓2 ◦ 𝜋2))𝑍 + 𝑍 (ln( 𝑓1 ◦ 𝜋1))𝑊, (3)

∇𝑉𝑊 = ∇2
𝑉
𝑊 − 𝑔(𝑉,𝑊)∇(ln( 𝑓1 ◦ 𝜋1)), (4)

for 𝑍,𝑇 ∈ 𝔏(𝑀1) and 𝑉,𝑊 ∈ 𝔏(𝑀2). Here ∇ and ∇𝑖 are the Levi-Civita connections of 𝑓2𝑀1 × 𝑓1 𝑀2 and 𝑀𝑖 respectively, for
𝑖 ∈ {1, 2}. Also, we use the notation 𝔏(𝑀𝑖) for the set of lifts of vector fields on 𝑀𝑖 . On the other hand, we obtain 𝑀1 × {𝑝2} and
{𝑝1} ×𝑀2 are totally umbilical submanifolds and their mean curvature vector fields are closed in 𝑓2𝑀1 × 𝑓1 𝑀2 Gutierrez and Olea
(2012). Here 𝑝1 ∈ 𝑀1 and 𝑝2 ∈ 𝑀2.

Remark 2.1. Here, 𝑙 = ln 𝑓2 (resp. 𝑘 = ln 𝑓1) and for the function 𝑙 (resp. 𝑘) and its pullback 𝑙 ◦𝜎2 (resp. 𝑘 ◦𝜎1), the same symbol
is used from now on.

Let S, S1 and S2 be the lifts of Ricci curvature tensors of ( 𝑓2𝑀1 × 𝑓1 𝑀2, 𝑔), (𝑀1, 𝑔1) and (𝑀2, 𝑔2) respectively. Then, the
followings are hold:

Lemma 2.2. Blaga and Taştan (2022) Let 𝑍,𝑇 ∈ 𝔏(𝑀1) and 𝑉,𝑊 ∈ 𝔏(𝑀2). Then, we have

S(𝑍,𝑇) = S1 (𝑍,𝑇) − 𝑚2
𝑓1
ℎ
𝑓1
1 (𝑍,𝑇) − 𝑔(𝑍,𝑇)Δ𝑙, (5)

S(𝑍,𝑉) = (𝑚1 + 𝑚2 − 2)𝑍 (𝑘)𝑉 (𝑙), (6)

S(𝑉,𝑊) = S2 (𝑉,𝑊) − 𝑚1
𝑓2
ℎ
𝑓2
2 (𝑉,𝑊) − 𝑔(𝑉,𝑊)Δ𝑘, (7)

where Δ is the Laplacian operator on ( 𝑓2𝑀1 × 𝑓1 𝑀2, 𝑔), 𝑚𝑖 = 𝑑𝑖𝑚(𝑀𝑖) for 𝑖 ∈ {1, 2} and
ℎ
𝑓1
1 (𝑍,𝑇) = 𝑍𝑇 ( 𝑓1) − (∇1

𝑍
𝑇) ( 𝑓1) and ℎ

𝑓2
2 (𝑉,𝑊) = 𝑉𝑊 ( 𝑓2) − (∇2

𝑉
𝑊) ( 𝑓2).

Now, we recall the definition of 𝜁 (Ric) vector field defined by Hinterleitner and Kiosak (2008).

Definition 2.3. A vector field 𝜁 is called 𝜁 (Ric) if for any vector field 𝑋 on a Riemannian manifold (𝑀𝑚, 𝑔) the equation

∇𝑋𝜁 = 𝜇Q𝑋 (8)

holds, where ∇ is the Levi-Civita connection of the metric 𝑔, Q is the Ricci operator of the Ricci tensor S of 𝑀 and 𝜇 is a constant.

For a doubly warped product manifold, we give the main theorem about 𝜁(Ric)-vector fields as follows:

Theorem 2.4. Let the vector field 𝜁 = 𝜁1 + 𝜁2 be 𝜁 (Ric) on (𝑀 = 𝑓2 𝑀1 × 𝑓1 𝑀2, 𝑔) for 𝑖 = 1, 2, 𝜁𝑖 ∈ 𝔏(𝑀𝑖). Then, we have

(i) The vector field 𝜁1 is 𝜁1 (Ric) on 𝑀1 ⇔

𝜇𝑚2
𝑓1

ℎ
𝑓1
1 (𝑍,𝑇) +

{
𝜇Δ𝑙 + 𝜁2 (𝑙)

}
𝑔(𝑍,𝑇) = 0, (9)

(ii) The vector field 𝜁2 is 𝜁2 (Ric) on 𝑀2 ⇔

𝜇𝑚1
𝑓2

ℎ
𝑓2
2 (𝑉,𝑊) +

{
𝜇Δ𝑘 + 𝜁1 (𝑘)

}
𝑔(𝑉,𝑊) = 0, (10)

where 𝑍,𝑇 ∈ 𝔏(𝑀1) and 𝑉,𝑊 ∈ 𝔏(𝑀2).
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Proof. Let the vector field 𝜁 be 𝜁 (Ric) on 𝑀. Then, we get 𝜇S(𝑍,𝑇) = 𝑔(∇𝑍 𝜁, 𝑇) for all
𝑍,𝑇 ∈ 𝔏(𝑀1). From (5), we get

𝜇S(𝑍,𝑇) = 𝜇

{
S1 (𝑍,𝑇) − 𝑚2

𝑓1
ℎ
𝑓1
1 (𝑍,𝑇) − 𝑔(𝑍,𝑇)Δ𝑙

}
.

Hence, from (2), we obtain

𝜇S1 (𝑍,𝑇) − 𝜇
𝑚2
𝑓1
ℎ
𝑓1
1 (𝑍,𝑇) − 𝜇𝑔(𝑍,𝑇)Δ𝑙

= 𝑔(∇1
𝑍
𝜁1 − 𝑔(𝑍, 𝜁1)∇𝑙, 𝑇) + 𝑔(𝑍 (𝑘)𝜁2 + 𝜁2 (𝑙)𝑍,𝑇).

Thus, we have

𝜇S1 (𝑍,𝑇) = 𝑔(∇1
𝑍
𝜁1, 𝑇) + 𝜇𝑚2

𝑓1
ℎ
𝑓1
1 (𝑍,𝑇) + 𝜇𝑔(𝑍,𝑇)Δ𝑙

−𝑔(𝑍, 𝜁1)𝑔(∇𝑙, 𝑇) + 𝑍 (𝑘)𝑔(𝜁2, 𝑇) + 𝜁2 (𝑙)𝑔(𝑍,𝑇)

= 𝑔(∇1
𝑍
𝜁1, 𝑇) + 𝜇𝑚2

𝑓1
ℎ
𝑓1
1 (𝑍,𝑇) +

{
𝜇Δ𝑙 + 𝜁2 (𝑙)

}
𝑔(𝑍,𝑇).

This concludes the first assertion.

Regarding the second assertion, we have 𝜇S(𝑉,𝑊) = 𝑔(∇𝑉 𝜁,𝑊) for all 𝑉,𝑊 ∈ 𝔏(𝑀2), since the vector field 𝜁 is 𝜁 (Ric) on
𝑀 . Using (7), we get

𝜇S(𝑉,𝑊) = 𝜇

{
S2 (𝑉,𝑊) − 𝑚1

𝑓2
ℎ
𝑓2
2 (𝑉,𝑊) − 𝑔(𝑉,𝑊)Δ𝑘

}
.

Hence, using (4) we obtain

𝜇S2 (𝑉,𝑊) − 𝜇
𝑚1
𝑓2
ℎ
𝑓2
2 (𝑉,𝑊) − 𝜇𝑔(𝑉,𝑊)Δ𝑘

= 𝑔(∇2
𝑉
𝜁2 − 𝑔(𝑉, 𝜁2)∇𝑘,𝑊) + 𝑔(𝑉 (𝑙)𝜁1 + 𝜁1 (𝑘)𝑉,𝑊).

After some calculations, we obtain

𝜇S2 (𝑉,𝑊) = 𝑔(∇2
𝑉
𝜁2,𝑊) + 𝜇𝑚1

𝑓2
ℎ
𝑓2
2 (𝑉,𝑊) + 𝜇𝑔(𝑉,𝑊)Δ𝑘

−𝑔(𝑉, 𝜁2)𝑔(∇𝑘,𝑊) +𝑉 (𝑙)𝑔(𝜁1,𝑊) + 𝜁1 (𝑘)𝑔(𝑉,𝑊)

= 𝑔(∇2
𝑉
𝜁2,𝑊) + 𝜇𝑚1

𝑓2
ℎ
𝑓2
2 (𝑉,𝑊) +

{
𝜇Δ𝑘 + 𝜁1 (𝑘)

}
𝑔(𝑉,𝑊).

Thus the assertion is hold.

Theorem 2.5. Let the vector field 𝜁 = 𝜁1 + 𝜁2 be defined on a doubly warped product
(𝑀 = 𝑓2 𝑀1 × 𝑓1 𝑀2, 𝑔), where 𝜁𝑖 ∈ 𝔏(𝑀𝑖), for 𝑖 = 1, 2. If

𝜇S1 (𝑋1, 𝑌1) = 𝑔(∇1
𝑋1
𝜁1, 𝑌1) + 𝜇𝑚2

𝑓1
ℎ
𝑓1
1 (𝑋1, 𝑌1) + 𝜇𝑔(𝑋1, 𝑌1)Δ𝑙

−𝑔(𝑋1, 𝜁1)𝑌2 (𝑙) + 𝜁2 (𝑙)𝑔(𝑋1, 𝑌1) + 𝑋2 (𝑙)𝑔(𝜁1, 𝑌1)
−𝜇(𝑚1 + 𝑚2 − 2)𝑋1 (𝑘)𝑌2 (𝑙)

(11)

and

𝜇S2 (𝑋2, 𝑌2) = 𝑔(∇2
𝑋2
𝜁2, 𝑌2) + 𝜇𝑚1

𝑓2
ℎ
𝑓2
2 (𝑋2, 𝑌2) + 𝜇𝑔(𝑋2, 𝑌2)Δ𝑘

−𝑔(𝑋2, 𝜁2)𝑌1 (𝑘) + 𝜁1 (𝑘)𝑔(𝑋2, 𝑌2) + 𝑋1 (𝑘)𝑔(𝜁2, 𝑌2)
−𝜇(𝑚1 + 𝑚2 − 2)𝑋2 (𝑙)𝑌1 (𝑘),

(12)

hold, then the vector field 𝜁 is 𝜁 (Ric) with scalar 𝜇, where 𝑋1, 𝑌1 ∈ 𝔏(𝑀1) and 𝑋2, 𝑌2 ∈ 𝔏(𝑀2).

Proof. Let 𝑇,𝑊 ∈ 𝔛(𝑀), where 𝑇 = 𝑋1 + 𝑋2 and 𝑊 = 𝑌1 + 𝑌2. Suppose that the vector field 𝜁 is 𝜁 (Ric) on 𝑀 with scalar 𝜇.
Then, 𝜇S(𝑇,𝑊) = 𝑔(∇𝑇 𝜁,𝑊). Using (5) and (7), we have

𝜇S(𝑋1 + 𝑋2, 𝑌1 + 𝑌2) = 𝑔(∇𝑋1+𝑋2 (𝜁1 + 𝜁2), 𝑌1 + 𝑌2).
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Then, we have

𝜇

{
S(𝑋1, 𝑌1) + S(𝑋1, 𝑌2) + S(𝑋2, 𝑌1) + S(𝑋2, 𝑌2)

}
= 𝑔(∇1

𝑋1
𝜁1 − 𝑔(𝑋1, 𝜁1)∇𝑙 + 𝑋1 (𝑘)𝜁2 + 𝜁2 (𝑙)𝑋1 + 𝜁1 (𝑘)𝑋2 + 𝑋2 (𝑙)𝜁1

+ ∇2
𝑋2
𝜁2 − 𝑔(𝑋2, 𝜁2)∇𝑘,𝑌1 + 𝑌2).

Hence, we obtain

𝜇

{
S1 (𝑋1, 𝑌1) − 𝑚2

𝑓1
ℎ
𝑓1
1 (𝑋1, 𝑌1) − 𝑔(𝑋1, 𝑌1)Δ𝑙

+(𝑚1 + 𝑚2 − 2)𝑋1 (𝑘)𝑌2 (𝑙) + (𝑚1 + 𝑚2 − 2)𝑋2 (𝑙)𝑌1 (𝑘)

+S2 (𝑋2, 𝑌2) −
𝑚1
𝑓2

ℎ
𝑓2
2 (𝑋2, 𝑌2) − 𝑔(𝑋2, 𝑌2)Δ𝑘

}
= 𝑔(∇1

𝑋1
𝜁1, 𝑌1) − 𝑔(𝑋1, 𝜁1)𝑔(∇𝑙, 𝑌2) + 𝑋1 (𝑘)𝑔(𝜁2, 𝑌2)

+𝜁2 (𝑙)𝑔(𝑋1, 𝑌1) + 𝜁1 (𝑘)𝑔(𝑋2, 𝑌2) + 𝑋2 (𝑙)𝑔(𝜁1, 𝑌1)

+𝑔(∇2
𝑋2
𝜁2, 𝑌2) − 𝑔(𝑋2, 𝜁2)𝑔(∇𝑘,𝑌1).

(13)

If the equations (11) and (12) hold, the assertion is hold from (13), which completes the proof.

In the remaining part, we give the definitions of a standard static space-time (SSS-T) and a generalized Robertson-Walker
space-time (GRW). Let (𝑀2, 𝑔2) be an 𝑚2−dimensional Riemannian manifold and 𝐽 is an open connected interval of R. If a
(𝑚2 + 1)− dimensional doubly warped product �̄� = 𝑓2𝐽 × 𝑓1 𝑀2 has the metric tensor

�̄� = −( 𝑓 2
2 )𝑑𝑡

2 ⊕ ( 𝑓 2
1 )𝑔2,

then it is called a doubly warped product generalized Robertson-Walker space-time. Here,
𝑓1 ∈ 𝐶∞ (𝐽) and 𝑓2 ∈ 𝐶∞ (𝑀2), respectively and 𝑑𝑡2 is defined as the usual Euclidean metric tensor on 𝐽. For more details,
see Flores and Sánchez (1974), Sánchez (1999), Sánchez (1998).

The following lemma is the direct consequences of (2)∼(4), see also El-Sayied et al. (2020), pp. 3775.

Lemma 2.6. Let (�̄� = 𝑓2𝐽 × 𝑓1 𝑀2, �̄�) be a doubly warped product generalized Robertson-Walker space-time and𝑈,𝑉 ∈ 𝔏(𝑀2).
Then we have

∇𝜕𝑡𝜕𝑡 = 𝑓 2
2 ∇𝑙, (14)

∇𝑉𝜕𝑡 = ∇𝜕𝑡𝑉 = 𝑉 (𝑙)𝜕𝑡 + 𝑘 ′𝑉, (15)

∇𝑈𝑉 = ∇2
𝑈
𝑉 − �̄�(𝑈,𝑉)∇𝑘, (16)

for the components of the Levi-Civita connection of �̄� .

From Lemma 2.2, we get the following result directly, see also El-Sayied et al. (2020), pp. 3775.

Lemma 2.7. Let (�̄� = 𝑓2𝐽 × 𝑓1 𝑀2, �̄�) be a doubly warped product generalized Robertson-Walker space-time. Then we have

S(𝜕𝑡, 𝜕𝑡) = (−𝑘 ′′ + (𝑘 ′)2)𝑚2 + 𝑓 2
2 Δ𝑙 − �̄�(∇𝑙,∇𝑙), (17)

S(𝜕𝑡,𝑈) = 𝑘
′
𝑈 (𝑙) (𝑚2 − 1), (18)

S(𝑈,𝑉) = 𝑓 2
1 S2 (𝑈,𝑉), (19)

for the non-zero components of the Ricci tensor of �̄� , where 𝑈,𝑉 ∈ 𝔏(𝑀2).

Remark 2.8. The vector field ℎ𝜕𝑡 is a 𝜁1 (Ric)-vector field on (𝐽,−𝑑𝑡2) such that ℎ ∈ 𝐶∞ (𝐽) ⇔ ℎ
′
= 0 on 𝐽. Here, “ ′ ” is the

derivative with respect to “𝑡” on 𝐽.
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Theorem 2.9. Let the vector field 𝜁 = ℎ𝜕𝑡 + 𝜁2 be 𝜁 (Ric) on a doubly warped product GRW space-time of the form (�̄� = 𝑓2

𝐽 × 𝑓1 𝑀2, �̄�) with scalar 𝜇 and 𝑈,𝑉 ∈ 𝔏(𝑀2). Then, the following conditions hold:

𝜇

{
(𝑘 ′′ + (𝑘 ′)2)𝑚2 + 𝑓 2

2 Δ𝑙 − |∇𝑙 |2
}
= (ℎ′ + 𝜁2 (𝑙))�̄�(𝜕𝑡, 𝜕𝑡) (20)

and

𝜇 𝑓 2
1 S2 (𝑈,𝑉) = ℎ𝑘

′
�̄�(𝑈,𝑉) + �̄�(∇2

𝑈
𝜁2, 𝑉) (21)

or 𝜁2 is a 𝜁2 (Ric)-vector field if and only if ℎ𝑘 ′
= 0.

Proof. Let the vector field 𝜁 be 𝜁 (Ric) on �̄�. Then, for all 𝑇,𝑊 ∈ 𝔛(�̄�), 𝜇S(𝑇,𝑊) = �̄�(∇𝑇 𝜁,𝑊). Hence, we get 𝜇S(𝜕𝑡, 𝜕𝑡) =
�̄�(∇𝜕𝑡 𝜁, 𝜕𝑡) for 𝑇 = 𝜕𝑡, 𝑊 = 𝜕𝑡. Using (17), we obtain

𝜇

{
(𝑘 ′′ + (𝑘 ′)2)𝑚2 − 𝑘

′
𝜕𝑡 (𝑙) + 𝑓 2

2 Δ𝑙 − �̄�(∇𝑙,∇𝑙)
}

= �̄�(∇𝜕𝑡 (ℎ𝜕𝑡) + ∇𝜕𝑡 𝜁2, 𝜕𝑡).

Since 𝜕𝑡 (𝑙) = 0, we obtain

𝜇

{
(𝑘 ′′ + (𝑘 ′)2)𝑚2 + 𝑓 2

2 Δ𝑙 − |∇𝑙 |2
}

= �̄�(𝜕 (ℎ)𝜕𝑡 + ℎ∇𝜕𝑡𝜕𝑡 + ∇𝜕𝑡 𝜁2, 𝜕𝑡)

= �̄�(ℎ′
𝜕𝑡 + ℎ 𝑓 2

2 ∇𝑙 + 𝜁2 (𝑙)𝜕𝑡 + 𝑘
′
𝜁2, 𝜕𝑡)

= ℎ
′
�̄�(𝜕𝑡, 𝜕𝑡) + 𝜁2 (𝑙)�̄�(𝜕𝑡, 𝜕𝑡).

Hence, we get

𝜇

{
(𝑘 ′′ + (𝑘 ′)2)𝑚2 + 𝑓 2

2 Δ𝑙 − |∇𝑙 |2
}
= (ℎ′ + 𝜁2 (𝑙))�̄�(𝜕𝑡, 𝜕𝑡), (22)

which proves (20). Since S(𝑈,𝑉) = �̄�(∇𝑈𝜁,𝑉) for 𝑈,𝑉 ∈ 𝔏(𝑀2), using (19), we get

𝜇 𝑓 2
1 S2 (𝑈,𝑉) = �̄�(∇𝑈 (ℎ𝜕𝑡) + ∇𝑈𝜁2, 𝑉)

= �̄�(𝑈 (ℎ)𝜕𝑡 + ℎ∇𝑈𝜕𝑡 + ∇𝑈𝜁2, 𝑉)
= �̄�(ℎ(𝑈 (𝑙)𝜕𝑡 + 𝑘

′
𝑈) + ∇2

𝑈
𝜁2 − �̄�(𝑈, 𝜁2)∇𝑘,𝑉)

= ℎ𝑈 (𝑙)�̄�(𝜕𝑡,𝑉) + ℎ𝑘
′
�̄�(𝑈,𝑉) + �̄�(∇2

𝑈
𝜁2, 𝑉) − �̄�(𝑈, 𝜁2)�̄�(∇𝑘,𝑉)

= ℎ𝑘
′
�̄�(𝑈,𝑉) + �̄�(∇2

𝑈
𝜁2, 𝑉).

(23)

Thus, we have (21) from (23). On the other hand, using (23), we get

𝜇S2 (𝑈,𝑉) = ℎ𝑘
′
𝑔2 (𝑈,𝑉) + 𝑔2 (∇2

𝑈𝜁2, 𝑉). (24)

Then, the vector field 𝜁2 is 𝜁2 (Ric) on 𝑀2 ⇔ the condition ℎ𝑘
′
= 0 is satisfied in (24), i.e. 𝑘 ′

= 0 or ℎ = 0. Hence, �̄� is a GRW
space-time or 𝜁 = 𝜁2, where 𝜁2 is also 𝜁2 (Ric)-vector field on �̄�. The proof is completed.

If a (𝑚2 + 1)−dimensional doubly warped product �̄� = 𝑓1 𝐽 × 𝑓2 𝑀2 has a metric tensor

�̄� = −( 𝑓 2
1 )𝑑𝑡

2 ⊕ ( 𝑓 2
2 )𝑔2,

then it is called a doubly warped product SSS-T, where (𝑀2, 𝑔2) be an 𝑚2−dimensional Riemannian manifold, here 𝑓1 ∈ 𝐶∞ (𝑀2)
and 𝑓2 ∈ 𝐶∞ (𝐽). Also 𝑑𝑡2 is defined as the usual Euclidean metric tensor on 𝐽, where 𝐽 is an open connected interval of R. For
more details about standard static space-times, see Allison (1988)-Besse (2007)). From (2)∼(4), we have:

Lemma 2.10. Let (�̄� = 𝑓1 𝐽 × 𝑓2 𝑀2, �̄�) be a doubly warped product SSS-T. Then we have

∇𝜕𝑡𝜕𝑡 = 2 ¤𝑘𝜕𝑡 + 𝑓 2
1 ∇𝑘, (25)

∇𝑉𝜕𝑡 = ∇𝜕𝑡𝑉 = 𝑉 (𝑘)𝜕𝑡 + 𝜕𝑡 (𝑙)𝑉, (26)

∇𝑈𝑉 = ∇2
𝑈
𝑉 − �̄�(𝑈,𝑉)∇𝑙, (27)

for the components of Levi-Civita connection of �̄� , where 𝑈,𝑉 ∈ 𝔏(𝑀2). Here, “ ¤ ” is the derivative with respect to ∇2.
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From Lemma 2.2, we get the following result directly.

Lemma 2.11. Let (�̄� = 𝑓1 𝐽 × 𝑓2 𝑀2, �̄�) be a doubly warped product SSS-T. Then we have

S(𝜕𝑡, 𝜕𝑡) = −𝑚2 (−𝑙
′ + (𝑙′)2 − 2𝑙 ′ ¤𝑘) + 𝑓 2

1 �̄�(∇𝑘,∇𝑘) + 𝑓 2
1 Δ𝑘, (28)

S(𝜕𝑡,𝑈) = 𝑈 (𝑘) (1 − 𝑙
′
𝑚2), (29)

S(𝑈,𝑉) = 𝑓 2
2 S

2 (𝑈,𝑉), (30)

for the non-zero components of the Ricci tensor of �̄� , where 𝑈,𝑉 ∈ 𝔏(𝑀2).
Theorem 2.12. Let the vector field 𝜁 = ℎ𝜕𝑡 + 𝜁2 be 𝜁 (Ric) on a doubly warped product SSS-T of the form (�̄� = 𝑓1 𝐽 × 𝑓2 𝑀2, �̄�)
with scalar 𝜇. Then, we have

𝜇

{
− 𝑚2

(
− 𝑙

′ + (𝑙′)2 − 2𝑙 ′ ¤𝑘
)
+ 𝑓 2

1

(
|∇𝑘 |2 + Δ𝑘

)}
=

{
¤ℎ + 2ℎ ¤𝑘 + 𝜁2 (𝑘)

}
|𝜕𝑡 |2,

(31)

and

𝜇 𝑓 2
2 S

2 (𝑈,𝑉) = 𝜕𝑡 (𝑙)�̄�(𝑈,𝑉) + �̄�(∇2
𝑈𝜁2, 𝑉) (32)

or the vector field 𝜁2 is 𝜁2 (Ric) on 𝑀2 ⇔ 𝜕𝑡 (𝑙) = 0, namely �̄� is a SSS-T.

Proof. Let the vector field 𝜁 be 𝜁 (Ric) on �̄�. Then, 𝜇S(𝑇,𝑊) = �̄�(∇𝑇 𝜁,𝑊) for all 𝑇,𝑊 ∈ 𝔛(�̄�). It follows that 𝜇S(𝜕𝑡, 𝜕𝑡) =
�̄�(∇𝜕𝑡 𝜁, 𝜕𝑡). Hence, using (28) we get

𝜇

{
− 𝑚2 (−𝑙

′ + (𝑙 ′ )2 − 2𝑙 ′ ¤𝑘) + 𝑓 2
1 �̄�(∇𝑘,∇𝑘) + 𝑓 2

1 Δ𝑘

}
= �̄�(∇𝜕𝑡 (ℎ𝜕𝑡) + ∇𝜕𝑡 𝜁2, 𝜕𝑡)
= �̄�(𝜕𝑡 (ℎ)𝜕𝑡 + ℎ∇𝜕𝑡𝜕𝑡 + ∇𝜕𝑡 𝜁2, 𝜕𝑡)
= ℎ

′
�̄�(𝜕𝑡, 𝜕𝑡) + ℎ�̄�(2 ¤𝑘𝜕𝑡 + 𝑓 2

1 ∇𝑘, 𝜕𝑡) + �̄�(𝜁2 (𝑘)𝜕𝑡 + 𝜕𝑡 (𝑙)𝜁2, 𝜕𝑡)
= ℎ

′
�̄�(𝜕𝑡, 𝜕𝑡) + 2 ¤𝑘ℎ�̄�(𝜕𝑡, 𝜕𝑡) + ℎ 𝑓 2

1 �̄�(∇𝑘, 𝜕𝑡) + 𝜁2 (𝑘)�̄�(𝜕𝑡, 𝜕𝑡) + 𝜕 (𝑙)�̄�(𝜁2, 𝜕𝑡)

=

{
ℎ
′ + 2ℎ ¤𝑘 + 𝜁2 (𝑘)

}
|𝜕𝑡 |2.

Hence, we get (31). Since 𝜇S(𝑈,𝑉) = �̄�(∇𝑈𝜁,𝑉), using (30), we get

𝜇 𝑓 2
2 S2 (𝑈,𝑉) = �̄�(∇𝑈 (ℎ𝜕𝑡) + ∇𝑈𝜁2, 𝑉)

= �̄�(ℎ(𝑈 (𝑙)𝜕𝑡 + ¤𝑘𝑈) + ∇𝑈𝜁2 − �̄�(𝑈, 𝜁2)∇𝑘,𝑉)
= �̄�(ℎ𝑈 (𝑙)𝜕𝑡 + 𝜕𝑡 (𝑙)𝑈,𝑉) + �̄�(∇2

𝑈
𝜁2 − �̄�(𝑈, 𝜁2)∇𝑙, 𝑉)

= 𝜕𝑡 (𝑙)�̄�(𝑈,𝑉) + �̄�(∇2
𝑈
𝜁2, 𝑉),

(33)

for 𝑈,𝑉 ∈ 𝔏(𝑀2). Thus, we have (32) from (33). Then, using (33), we obtain

𝜇S2 (𝑈,𝑉) = 𝜕𝑡 (𝑙)𝑔2 (𝑈,𝑉) + 𝑔2 (∇2
𝑈𝜁2, 𝑉). (34)

Thus, the vector field 𝜁2 is 𝜁2 (Ric) on 𝑀2 ⇔ the condition 𝜕𝑡 (𝑙) = 0 is satisfied in (34), i.e. 𝑙 is constant. It follows that �̄� is a
SSS-T and hence, the proof is completed.
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