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ABSTRACT
One of the problems encountered in linear regression models is called multicollinearity problem which is an approximately linear
relationship between the explanatory variables. This problem causes the estimated parameter values to be highly sensitive to small
changes in the data. In order to reduce the impact of this problem on the model parameters, alternative biased estimators to the
ordinary least squares estimator have been proposed in the literature. In this study, we propose a new biased estimator that can be
an alternative to existing estimators. The superiority of this estimator over other biased estimators is analyzed in terms of matrix
mean squared error. In addition, two different Monte Carlo simulation experiments are carried out to examine the performance of
the biased estimators under consideration. A numerical example is given to evaluate the performance of the proposed estimator
against other biased estimators.

Mathematics Subject Classification (2020): Primary 62J07, Secondary 62F10

Keywords: Liu estimator, Liu-type estimator, multicollinearity, Ridge estimator

1. INTRODUCTION

Regression analysis is one of the most widely used statistical techniques to explain the statistical relationship between explanatory
and response variables using a model. Let us consider the following linear regression model:

𝑌 = 𝑋𝛽 + 𝜀 (1)

where 𝑌 is an 𝑛 × 1 vector of dependent variables, 𝑋 is an 𝑛 × 𝑝 full column rank matrix of 𝑛 observations on 𝑝 independent
explanatory variables, 𝛽 is a 𝑝 × 1 vector of unknown parameters and 𝜀 is an 𝑛 × 1 vector of random errors which are distributed
as Normal with mean vector 0 and covariance matrix 𝜎2𝐼 . The Ordinary Least Squares (OLS) estimator of 𝛽 is given by

𝛽𝑂𝐿𝑆 = (𝑋 ′𝑋)−1
𝑋 ′𝑌 (2)

where the covariance matrix of 𝛽𝑂𝐿𝑆 is obtained as 𝑐𝑜𝑣
(
𝛽𝑂𝐿𝑆

)
= 𝜎2 (𝑋 ′𝑋)−1. According to the Gauss-Markov Theorem, the

OLS estimator of the parameter vector 𝛽 is the best linear unbiased estimator. In other words, we mean that 𝛽𝑂𝐿𝑆 has the smallest
variance among the class of all unbiased estimators that are linear combinations of the data. However, if there is an approximate
relationship between the explanatory variables close to linear dependence, a biased estimator with a smaller variance may be
found. This situation, i.e. a relationship close to linear dependence between explanatory variables, is called the multicollinearity
problem in regression analysis. In the case of multicollinearity in the model, a very small change in the matrix X results in a very
large change in matrix (𝑋 ′𝑋)−1. Therefore, some values in the parameter vector of the OLS estimator will have a large variance. If
there is multicollinearity in the linear regression model, then the OLS estimator given by (2) is again the best-unbiased estimator.
However, since the variance of the OLS estimator will be very large, it will tend to produce unstable results. Although there are
methods to overcome this situation by reducing the variables, alternative approaches can be used to solve the multicollinearity
problem by keeping all explanatory variables in the model. Another method for solving this problem is to use biased estimators
that can minimize parameter variances. For more detailed information about these proposed biased estimators in linear regression
models, researchers can review the articles Hoerl and Kennard (1970),Liu (1993),Liu (2003),Kibria (2003),Özkale and Kaçıranlar
(2007),Sakallıoğlu and Kaçıranlar (2008),Yang and Chang (2010),Kurnaz and Akay (2015),Kurnaz and Akay (2018),Qasim et al.
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(2020),Lukman et al. (2019),Lukman et al. (2020), Ahmad and Aslam (2022), Zeinal and Azmoun (2023), Üstündağ et al. (2021),
Aslam and Ahmad (2022),Babar and Chand (2022),Dawoud (2022), Qasim et al. (2022), Shewa and Ugwuowo (2023).

There are many biased estimators proposed in the literature to minimize the problems arising from collinearity. Among these
estimators, the Ridge Estimator (RE) proposed by Hoerl and Kennard (1970) and the Liu Estimator (LE) proposed by Liu (1993)
are widely preferred. The RE is defined by

𝛽𝑅𝐸 = (𝑋 ′𝑋 + 𝑘 𝐼)−1
𝑋 ′𝑌, 𝑘 > 0 (3)

where k is a biasing parameter. On the other hand, LE, which combines the advantages of the RE and Stein (1956) estimators, is
defined as follows:

𝛽𝐿𝐸 = (𝑋 ′𝑋 + 𝐼)−1 (
𝑋 ′𝑌 + 𝑑𝛽𝑂𝐿𝑆

)
, 0 < 𝑑 < 1 (4)

where d is a biasing parameter. Stein (1956) defined the Stein estimator as follows: 𝛽𝑆 = 𝑐𝛽𝑂𝐿𝑆 where 0 < 𝑐 < 1.
However, although RE and LE are the first-choice estimators due to collinearity in the linear regression model, these estimators

have several disadvantages. To utilize the advantageous features of both RE and LE, the researchers created estimators with two
biasing parameters k and d. For example, Liu (2003) introduced an estimator that is dependent on k and d as follows:

𝛽𝐿𝑇𝐸 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (
𝑋 ′𝑌 − 𝑑𝛽∗

)
, 𝑘 > 0, −∞ < 𝑑 < ∞ (5)

where 𝛽∗ can be any estimator of 𝛽. The estimator in (5) is known as the Liu-type estimator. The OLS method is used to produce
this estimator after adding

(
−𝑑

/
𝑘1/2

)
𝛽∗ = 𝑘1/2𝛽+ 𝜀′ to the model (1). As an alternative, Özkale and Kaçıranlar (2007) developed

the following Two-parameter Estimator (TPE):

𝛽𝑇𝑃𝐸 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (
𝑋 ′𝑌 + 𝑘𝑑𝛽𝑂𝐿𝑆

)
, 𝑘 > 0, 0 < 𝑑 < 1, (6)

where k and d are two biasing parameters. The TPE is a general estimator which includes the OLS, RE, and LE as special cases.
Kurnaz and Akay (2015) presented a general Liu-type estimator as an alternative to the estimators previously introduced. This

estimator includes estimators (2), (3), (4), (5), and (6) as special cases as follows:

𝛽𝑁𝐿𝑇𝐸 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (
𝑋 ′𝑌 + 𝑓 (𝑘) 𝛽∗

)
, 𝑘 > 0 (7)

where 𝛽∗ is any estimator of 𝛽 and 𝑓 (𝑘) is a continuous function of the biasing parameter k. Similarly, NLTE is obtained by
augmenting 𝑓 (𝑘 )

𝑘1/2 𝛽
∗ = 𝑘1/2𝛽 + 𝜀′ to (1) and then using OLS method. For example, if 𝑓 (𝑘) = −𝑘 and 𝛽∗ = 𝛽𝑂𝐿𝑆 , the KL estimator

given by Kibria and Lukman (2020) is obtained. The KL estimator, which is a special case of the estimator (7), is defined as
follows:

𝛽𝐾𝐿 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (𝑋 ′𝑋 − 𝑘 𝐼) 𝛽𝑂𝐿𝑆 , 𝑘 > 0 (8)

where k is a biasing parameter. On the other hand, Qasim et al. (2022) proposed the Two-step shrinkage (TSS) estimator in the
presence of multicollinearity as follows:

𝛽𝑇𝑆𝑆 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (𝑋 ′𝑋 − 𝑘𝑑𝐼) 𝛽𝑂𝐿𝑆 , 𝑘 > 0, 0 ≤ 𝑑 < 1 (9)

where k and d are two biasing parameters. Note that this estimator given in (9) can be obtained by taking 𝑓 (𝑘) = −𝑘𝑑 and
𝛽∗ = 𝛽𝑂𝐿𝑆 in (7). On the other hand, when we take 𝑓 (𝑘) = 𝑘

𝑑
where 𝑑 ∈ 𝑅 − {0} and 𝛽∗ = 𝛽𝐿𝐸 in (7), a new two-parameter

estimator proposed by Üstündağ et al. (2021) is obtained as follows:

𝛽𝑆𝑇𝑂 = (𝑋 ′𝑋 + 𝑘 𝐼)−1
(
𝑋 ′𝑌 + 𝑘

𝑑
𝛽𝐿𝐸

)
, 𝑘 > 0, 𝑑 > 1 (10)

where k and d are two biasing parameters. Furthermore, Sakallıoğlu and Kaçıranlar (2008) proposed another biased estimator
based on RE which is given by

𝛽𝑆𝐾 = (𝑋 ′𝑋 + 𝐼)−1 (
𝑋 ′𝑌 + 𝑑𝛽𝑅𝐸

)
, 𝑘 > 0, −∞ < 𝑑 < ∞ (11)

where k and d are two biasing parameters. This estimator given in (11) is a general estimator that includes the OLS, RE, and LEs
as special cases. Also, this estimator is obtained by augmenting the equation 𝑑𝛽𝑅𝐸 = 𝛽 + 𝜀′ to (1) and using the OLS method.
Also, Yang and Chang (2010) proposed a new biased estimator based on RE as follows:

𝛽𝑌𝐶 = (𝑋 ′𝑋 + 𝐼)−1 (𝑋 ′𝑋 + 𝑑𝐼) 𝛽𝑅𝐸 , 𝑘 > 0, 0 < 𝑑 < 1 (12)

where k and d are two biasing parameters. The estimator given in (12) is obtained by augmenting (𝑑 − 𝑘) 𝛽𝑅𝐸 = 𝛽 + 𝜀′ to (1) and
using the OLS method. Also, the YC estimator is a general estimator that includes OLS, RE, and LE as special cases.

On the other hand, Idowu et al. (2023) modified the LE provided by (4). They used the KL estimator provided by (8) in place of
the OLS estimator in LE. The estimator is called LKL by Idowu et al. (2023) is given as follows:

𝛽𝐿𝐾𝐿 = (𝑋 ′𝑋 + 𝐼)−1 (𝑋 ′𝑋 + 𝑑𝐼) 𝛽𝐾𝐿 , 𝑘 > 0, 0 < 𝑑 < 1 (13)
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where k and d are two biasing parameters.
One of the common features of the estimators we consider is that they are defined based on Ridge, Liu, or Liu-type estimators

with a modification on these estimators. Another important point here is that all estimators we have considered depend on the OLS
estimator. Therefore, to reduce the problems that may arise due to collinearity, a new estimator is obtained by replacing the OLS
estimator with a more powerful estimator. The estimators obtained in this case usually depend on the biasing parameters k and d.

In the literature, there are many estimators for linear regression models based on the biasing parameters k and d. Some of these
estimators are as follows: LTE, SK, YC, TSS, TPE, STO, and LKL estimators. However, one of the major problems for these
estimators is that it is also difficult to find optimal estimates of these biasing parameters (Liu (2003)), (Özkale and Kaçıranlar
(2007)), (Sakallıoğlu and Kaçıranlar (2008)), (Yang and Chang (2010), (Ahmad and Aslam (2022)), (Aslam and Ahmad (2022)),
(Qasim et al. (2022)), (Shewa and Ugwuowo (2023)). Therefore, our first objective in this study is to achieve a new estimator
with a single biasing parameter by modifying the existing estimators. Another objective is to investigate the performance of this
estimator with other estimators through different simulation studies.

The article is organized as follows. In Section 2, the proposed biased estimator is introduced. In Section 3, the proposed estimator
is compared with the NLTE under the MMSE sense. Two Monte Carlo simulation studies are designed to evaluate the performances
of the considered estimators in Section 4. In Section 5, the performance evaluation of all considered estimators is given in the
Portland cement data. Finally, some conclusions are given in Section 6.

2. A NEW BIASED ESTIMATOR

In recent years, researchers have focused especially on the KL estimator proposed by Kibria and Lukman (2020). In the literature,
they have proposed new estimators based on the KL estimator Dawoud (2022), Idowu et al. (2023), Shewa and Ugwuowo (2023).
In this study, in order to take the performance of the KL estimator one step further, the RE estimator will be used instead of the
OLS estimator in the KL estimator. In other words, the KL estimator is obtained by augmenting −

√
𝑘𝛽𝑂𝐿𝑆 =

√
𝑘𝛽 + 𝜀′ to (1) and

then using the OLS method. As an alternative to this constraint, let us consider the constraint as follows: −2
√
𝑘𝛽𝑅𝐸 =

√
𝑘𝛽 + 𝜀′ .

In this case, the estimator is obtained as follows:

𝛽𝐾𝐿𝑅 = (𝑋 ′𝑋 + 𝑘 𝐼)−1 (𝑋 ′𝑋 − 𝑘 𝐼) (𝑋 ′𝑋 + 𝑘 𝐼)−1
𝑋 ′𝑌, 𝑘 > 0 (14)

where k is a biasing parameter. This estimator given in (14) is called KLR. Let us consider the following objective function:

𝐿 (𝛽) = (𝑦 − 𝑋𝛽)′ (𝑦 − 𝑋𝛽) +
( (
𝛽 − 𝛽𝐾𝐿𝑅

) ′ (
𝛽 − 𝛽𝐾𝐿𝑅

)
− 𝑐

)
(15)

where 𝛽𝐾𝐿𝑅 is the KLR estimator given in (14). When Equation (15) is differentiated with respect to 𝛽, the following equation is
obtained:

(𝑋 ′𝑋 + 𝐼) 𝛽 = 𝑋 ′𝑌 + 𝛽𝐾𝐿𝑅 . (16)

Solving the system given in (16) with respect to the parameter 𝛽, yields the following estimator:

𝛽𝐿𝐾𝐿𝑅 = (𝑋 ′𝑋 + 𝐼)−1 (
𝑋 ′𝑌 + 𝛽𝐾𝐿𝑅

)
, 𝑘 > 0

𝛽𝐿𝐾𝐿𝑅 = (𝑋 ′𝑋 + 𝐼)−1
(
(𝑋 ′𝑋) + (𝑋 ′𝑋 + 𝑘 𝐼)−1 (𝑋 ′𝑋 − 𝑘 𝐼) (𝑋 ′𝑋 + 𝑘 𝐼)−1 (𝑋 ′𝑋)

)
(𝑋 ′𝑋)−1 𝑋 ′𝑌

(17)

where k is a biasing parameter. We can obtain the estimator given in (17) estimator by augmenting 𝛽𝐾𝐿𝑅 = 𝛽 + 𝜀′ to model (1)
and using the OLS method.

We rewrite the model (1) in canonical form

𝑌 = 𝑍𝛼 + 𝜀 (18)

where 𝑍 = 𝑋𝑄, 𝛼 = 𝑄′𝛽 and 𝑄 is the orthogonal matrix. The columns of the orthogonal matrix Q are the eigenvectors of 𝑋 ′𝑋 .
Then 𝑍 ′𝑍 = 𝑄′𝑋 ′𝑋𝑄 = Λ = 𝑑𝑖𝑎𝑔

(
𝜆1, 𝜆2, ..., 𝜆𝑝

)
where 𝜆1 ≥ 𝜆2 ≥ ... ≥ 𝜆𝑝 ≥ 0 are the ordered eigenvalues of 𝑋 ′𝑋 . For model

(18), we can rewrite the proposed estimators in canonical form as follows:

�̂�𝐿𝐾𝐿𝑅 = (Λ + 𝐼)−1
(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
�̂�𝑂𝐿𝑆 (19)

where �̂�𝑂𝐿𝑆 = Λ−1𝑍 ′𝑦.
We compute the biasing vector and variance-covariance matrix of the estimator �̂�𝐿𝐾𝐿𝑅:
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𝑣𝑎𝑟 (�̂�𝐿𝐾𝐿𝑅) = 𝑐𝑜𝑣

(
(Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
�̂�𝑂𝐿𝑆

)
= 𝜎2 (Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
Λ−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
(Λ + 𝐼)−1

𝑏𝑖𝑎𝑠 (�̂�𝐿𝐾𝐿𝑅) = 𝐸 (�̂�𝐿𝐾𝐿𝑅) − 𝛼 = 𝐸

[
(Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
�̂�𝑂𝐿𝑆

]
− 𝛼

=

(
(Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
− 𝐼

)
𝛼

The MMSE and SMSE of an estimator 𝛽 are defined as:

𝑀𝑀𝑆𝐸
(
𝛽
)
= 𝑣𝑎𝑟

(
𝛽
)
+

[
𝑏𝑖𝑎𝑠

(
𝛽
) ] [

𝑏𝑖𝑎𝑠
(
𝛽
) ] ′

𝑆𝑀𝑆𝐸
(
𝛽
)
= 𝑡𝑟

(
𝑀𝑀𝑆𝐸

(
𝛽
) )

= 𝑡𝑟
(
𝑣𝑎𝑟

(
𝛽
) )
+ 𝑏𝑖𝑎𝑠

(
𝛽
) ′
𝑏𝑖𝑎𝑠

(
𝛽
)
.

(20)

where 𝑣𝑎𝑟
(
𝛽
)

is the variance-covariance matrix and 𝑏𝑖𝑎𝑠
(
𝛽
)
= 𝐸

(
𝛽
)
− 𝛽 is the biasing vector.

Let 𝛽1 and 𝛽2be any two estimators of parameter 𝛽. Then, 𝛽2 is superior to 𝛽1 with respect to the MMSE criterion if and only
if 𝑀𝑀𝑆𝐸

(
𝛽1

)
− 𝑀𝑀𝑆𝐸

(
𝛽2

)
is a positive definite (pd) matrix. If 𝑀𝑀𝑆𝐸

(
𝛽1

)
− 𝑀𝑀𝑆𝐸

(
𝛽2

)
is a non-negative definite matrix,

then 𝑆𝑀𝑆𝐸
(
𝛽1

)
− 𝑆𝑀𝑆𝐸

(
𝛽2

)
≥ 0. But, the reverse is not always true (Theobald (1974)). Because of the relation of 𝛼 = 𝑄′𝛽;

𝛽𝑂𝐿𝑆 , 𝛽𝑅𝐸 , 𝛽𝐿𝐸 , 𝛽𝑁𝐿𝑇𝐸 , 𝛽𝑆𝐾 (𝑘, 𝑑) , 𝛽𝑌𝐶 (𝑘, 𝑑) and 𝛽𝐿𝐾𝐿𝑅 (𝑘) have the same mean squared error values as �̂�𝑂𝐿𝑆 , �̂�𝑅𝐸 , �̂�𝐿𝐸 ,
�̂�𝑁𝐿𝑇𝐸 , �̂�𝑆𝐾 (𝑘, 𝑑) , �̂�𝑌𝐶 (𝑘, 𝑑), and �̂�𝐿𝐾𝐿𝑅 (𝑘), respectively.
In general, the theorems used to compare the two biased estimators are given below.

Theorem 2.1. Farebrother (2022): Let A be a positive definite matrix, namely 𝐴 > 0, and c be a nonzero vector. Then, 𝐴− 𝑐𝑐′ > 0
if and only if 𝑐′𝐴−1𝑐 < 1.

Theorem 2.2. Trenkler and Toutenburg (1990): Let 𝛽𝑙 = 𝐵𝑙𝑌, 𝑙 = 1, 2 be two homogeneous linear estimators of 𝛽 and C be a posi-

tive definite matrix, where 𝐵1𝐵
′
1−𝐵2𝐵

′
2. Then 𝑀𝑀𝑆𝐸

(
𝛽1

)
−𝑀𝑀𝑆𝐸

(
𝛽2

)
> 0 iff 𝑏𝑖𝑎𝑠

(
𝛽2

) ′ (
𝜎2𝐶 + 𝑏𝑖𝑎𝑠

(
𝛽1

)
𝑏𝑖𝑎𝑠

(
𝛽1

) ′ )−1
𝑏𝑖𝑎𝑠

(
𝛽2

)
<

1.

3. SUPERIORITY OF THE PROPOSED ESTIMATOR

In this section, the proposed estimator is compared with OLS, RE, LE, and KL estimators based on the MMSE sense. However,
a more general theorem is given here by considering the NLTE which includes OLS, RE, LE, and KL estimators. To compare
KLKR and NLTE estimators, let us first calculate the MMSE matrices of both estimators.

The MMSE of �̂�𝑁𝐿𝑇𝐸 = 𝐴1𝑌 and �̂�𝐿𝐾𝐿𝑅 = 𝐴2𝑌 are given as follows:

𝑀𝑀𝑆𝐸 (�̂�𝑁𝐿𝑇𝐸) = 𝑣𝑎𝑟 (�̂�𝑁𝐿𝑇𝐸) + 𝑏𝑖𝑎𝑠 (�̂�𝑁𝐿𝑇𝐸) 𝑏𝑖𝑎𝑠 (�̂�𝑁𝐿𝑇𝐸)
′

= 𝜎2𝐴1𝐴
′
1 + (𝐴1𝑍 − 𝐼) 𝛼𝛼′ (𝐴1𝑍 − 𝐼)′

= 𝜎2 (Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼) Λ−1 (Λ + 𝑓 (𝑘) 𝐼) (Λ + 𝑘 𝐼)−1

+ ( 𝑓 (𝑘) − 𝑘)2 (Λ + 𝑘 𝐼)−1 𝛼𝛼′ (Λ + 𝑘 𝐼)−1

(21)

𝑀𝑀𝑆𝐸 (�̂�𝐿𝐾𝐿𝑅) = 𝑣𝑎𝑟 (�̂�𝐿𝐾𝐿𝑅) + 𝑏𝑖𝑎𝑠 (�̂�𝐿𝐾𝐿𝑅) 𝑏𝑖𝑎𝑠 (�̂�𝐿𝐾𝐿𝑅)
′

= 𝜎2𝐴2𝐴
′
2 + (𝐴2𝑍 − 𝐼) 𝛼𝛼′ (𝐴2𝑍 − 𝐼)′

= 𝜎2 (Λ + 𝐼)−1
(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
Λ−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
(Λ + 𝐼)−1

+
(
(Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
− 𝐼

)
𝛼𝛼′

(
(Λ + 𝐼)−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
− 𝐼

)
(22)

Then, we can give the following theorem:

Theorem 3.1. Let be 𝑘 > 0 and
��𝜆 𝑗 + 𝑓 (𝑘)

�� (𝜆 𝑗 + 1
) (
𝜆 𝑗 + 𝑘

)
> 𝜆 𝑗

��� (𝜆 𝑗 + 𝑘
)2 + 𝜆 𝑗 − 𝑘

��� where 𝑗 = 1, 2, ..., 𝑝 + 1. Then,
𝑀𝑀𝑆𝐸 (�̂�𝑁𝐿𝑇𝐸) − 𝑀𝑀𝑆𝐸 (�̂�𝐿𝐾𝐿𝑅) > 0 if and only if

𝑏𝑖𝑎𝑠 (�̂�𝑁𝐿𝑇𝐸)
′
[
𝜎2 (

𝐴1𝐴
′
1 − 𝐴2𝐴

′
2
)
+ 𝑏𝑖𝑎𝑠 (�̂�𝐿𝐾𝐿𝑅) 𝑏𝑖𝑎𝑠 (�̂�𝐿𝐾𝐿𝑅)

′
]−1

𝑏𝑖𝑎𝑠 (�̂�𝑁𝐿𝑇𝐸) < 1 (23)

where 𝑏𝑖𝑎𝑠 (�̂�𝑁𝐿𝑇𝐸) = ( 𝑓 (𝑘) − 𝑘) (Λ + 𝑘 𝐼)−1 𝛼.
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Proof. Using (21) and (22), we obtain

𝑣𝑎𝑟 (�̂�𝑁𝐿𝑇𝐸) − 𝑣𝑎𝑟 (�̂�𝐿𝐾𝐿𝑅) = 𝜎2 [
𝐴1𝐴

′
1 − 𝐴2𝐴

′
2
]

= 𝜎2 [
(Λ + 𝑘 𝐼)−1 (Λ + 𝑓 (𝑘) 𝐼) Λ−1 (Λ + 𝑓 (𝑘) 𝐼) (Λ + 𝑘 𝐼)−1

− (Λ + 𝐼)−1
(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
Λ−1

(
Λ + (Λ + 𝑘 𝐼)−1 (Λ − 𝑘 𝐼) (Λ + 𝑘 𝐼)−1 Λ

)
(Λ + 𝐼)−1

]
= 𝜎2 𝑑𝑖𝑎𝑔

{
(𝜆 𝑗+ 𝑓 (𝑘 ))2

𝜆 𝑗 (𝜆 𝑗+𝑘)2 −
𝜆 𝑗

(
(𝜆 𝑗+𝑘)2+𝜆 𝑗−𝑘

)2

(𝜆 𝑗+1)2 (𝜆 𝑗+𝑘)4

} 𝑝+1

𝑗=1

.

We can observe that 𝐴1𝐴
′
1 − 𝐴2𝐴

′
2 > 0 if and only if

(
𝜆 𝑗 + 𝑓 (𝑘)

)2 (
𝜆 𝑗 + 1

)2 (
𝜆 𝑗 + 𝑘

)2 − 𝜆2
𝑗
(
(
𝜆 𝑗 + 𝑘

)2 + 𝜆 𝑗 − 𝑘)2 > 0 where
𝑗 = 1, 2, ..., 𝑝 + 1. Therefore, 𝐴1𝐴

′
1 − 𝐴2𝐴

′
2 is the pd matrix. By Theorem 2.2, the proof is completed.

4. SELECTION OF BIASING PARAMETER

In general, the performance of estimators depends on the biasing parameters. There are many techniques for estimating biasing
parameters. However, among researchers, values that can minimize the SMSE function are often suggested as estimators of the
biasing parameter. Firstly, to find the optimal biasing parameter k, we take the derivative of ℎ (𝑘) = 𝑆𝑀𝑆𝐸

(
𝛽𝐿𝐾𝐿𝑅

)
with respect

to k where 𝑆𝑀𝑆𝐸
(
𝛽𝐿𝐾𝐿𝑅

)
is given as follows:

𝑆𝑀𝑆𝐸
(
𝛽𝐿𝐾𝐿𝑅

)
=

𝑝+1∑︁
𝑗=1

(
𝜆 𝑗

(
𝜆 𝑗 + 𝑘

)2 +
(
𝜆 𝑗 − 𝑘

)
𝜆 𝑗

)2
𝜎2

𝜆 𝑗
(
𝜆 𝑗 + 1

)2 (
𝜆 𝑗 + 𝑘

)2 +
(
𝜆 𝑗

(
𝜆 𝑗 + 𝑘

)2 +
(
𝜆 𝑗 − 𝑘

)
𝜆 𝑗(

𝜆 𝑗 + 1
) (
𝜆 𝑗 + 𝑘

)2 − 1

)2

𝛼2
𝑗

Then, we find ℎ′ (𝑘) as follows differentiating ℎ (𝑘) with respect to k:

ℎ′ (𝑘) =
𝑝+1∑︁
𝑗=1

2𝜆 𝑗
(
𝑘 − 3𝜆 𝑗

) (
−𝑘𝛼2

𝑗

(
𝑘 + 3𝜆 𝑗

)
+ 𝜎2

(
(−1 + 𝑘) 𝑘 + (1 + 2𝑘) 𝜆 𝑗 + 𝜆2

𝑗

))
(
1 + 𝜆 𝑗

)2 (
𝑘 + 𝜆 𝑗

)5

When it is accepted ℎ′ (𝑘) = 0, we have:

𝑘1 = 3𝜆 𝑗

𝑘2 =
𝜎2−2𝜎2𝜆 𝑗+3𝛼2

𝑗
𝜆 𝑗−

√︃
𝜎4−8𝜎4𝜆 𝑗+10𝜎2𝛼2

𝑗
𝜆 𝑗−8𝜎2𝛼2

𝑗
𝜆2
𝑗
+9𝛼4

𝑗
𝜆2
𝑗

2
(
𝜎2−𝛼2

𝑗

)
𝑘3 =

𝜎2−2𝜎2𝜆 𝑗+3𝛼2
𝑗
𝜆 𝑗+

√︃
𝜎4−8𝜎4𝜆 𝑗+10𝜎2𝛼2

𝑗
𝜆 𝑗−8𝜎2𝛼2

𝑗
𝜆2
𝑗
+9𝛼4

𝑗
𝜆2
𝑗

2
(
𝜎2−𝛼2

𝑗

)
where 𝑖 = 1, 2, ..., 𝑝+1. Unfortunately, the k value depends on𝜎2 and𝛼2

𝑗
. For practical purposes, we replace them with their unbiased

estimators �̂�2 and �̂�2
𝑗

to find the estimators of the biasing parameter k. Based on the simulation results, we can use the following

estimators to estimate the biasing parameter k: �̂�𝐿𝐾𝐿𝑅 𝐼 =
3 max(𝜆 𝑗)

𝑝
, �̂�𝐿𝐾𝐿𝑅 𝐼𝐼 = 3 𝑚𝑒𝑑𝑖𝑎𝑛

(
𝜆 𝑗

)
, �̂�𝐿𝐾𝐿𝑅 𝐼𝐼𝐼 = �̂�2(∏𝑝+1

𝑗=1 �̂�
2
𝑗

) 1
𝑝+1

where

�̂�2 =

∑𝑛
𝑖=1 (𝑦𝑖− �̂�𝑖 )

2

𝑛−𝑝−1 .

5. THE MONTE CARLO SIMULATION STUDIES

In this section, the performance of the proposed biased estimator is compared with other existing estimators using two different
Monte Carlo simulation designs. In the first design, we investigated the effects of sample size (𝑛), the degree of the collinearity
(𝜌), the number of explanatory variables (𝑝), and the variance

(
𝜎2) on the performances of OLS, RE, LE, LTE, SK, YC, KL,

TSS, STO, LKL, and LKLR estimators. In the second simulation design, we examined RE, LE, KL, and LKLR performances
for each of 𝑛, 𝑝, 𝜌, and 𝜎2 values at certain values of k. For both simulation designs, we generate the explanatory variables by
following McDonald and Galarneau (1975) and Kibria (2003) as

𝑥𝑖 𝑗 =

(
1 − 𝜌2

)1/2
𝑢𝑖 𝑗 + 𝜌𝑢𝑖 𝑝+1, 𝑖 = 1, 2, .., 𝑛, 𝑗 = 1, 2, ..., 𝑝 (24)

where 𝑢𝑖 𝑗 are independent standard normal pseudo-random numbers. 𝜌 is specified so that the correlation between any two
variables is given by 𝜌2. These variables are standardized such that 𝑋 ′𝑋 is a correlation matrix. Investigations are conducted on
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Table 1.The EMSE values of the estimators for the model when 𝑝 = 4.

𝜎2 𝑛 𝜌 OLS RE LE YCI YCII SK LTE KL TSS TPE STO LKL LKLRI LKLRII LKLRIII

1 50 0.8 7.73 1.455 0.962 4.417 3.178 2.898 3.058 4.386 7.387 3.104 338.930 4.386 0.644** 0.632* 0.883***
5 50 0.8 37.874 5.058 4.35 21.046 15.353 13.585 14.322 21.185 35.526 14.056 469.622 21.185 2.949** 2.935* 3.802***

10 50 0.8 74.525 8.791 8.385 40.745 29.257 25.808 27.145 41.073 69.530 26.512 5596.336 41.073 5.655** 5.630* 7.02***
1 50 0.9 17.546 2.339 0.633 9.476 6.847 6.179 6.426 9.485 16.794 6.466 22.261 9.485 0.392** 0.275* 0.486***
5 50 0.9 84.246 7.491 2.725 44.749 32.293 28.924 29.885 44.912 78.449 29.6144357299.439 44.912 1.764** 1.348* 1.868***

10 50 0.9 174.597 13.952 5.543 94.22 67.023 60.561 62.517 94.497 162.223 61.774 761.113 94.497 3.588*** 2.738* 3.568**
1 50 0.95 39.226 3.87 0.44 20.961 15.063 13.596 14.051 21.005 37.523 14.045 43.351 21.005 0.302* 0.328** 0.368***
5 50 0.95 196.097 13.716 1.914 104.112 74.761 67.173 69.443 104.3 182.348 69.066 423.743 104.3 1.375* 1.675** 1.704***

10 50 0.95 413.446 26.2 3.705 225.051 163.637146.813 152.39 225.5 384.367 151.422 56193.545 225.5 2.617* 3.213*** 2.964**
1 100 0.8 8.749 1.487 0.867 4.833 3.413 3.119 3.235 4.789 8.313 3.305 168.014 4.789 0.556** 0.511* 0.73***
5 100 0.8 43.477 5.28 3.927 23.714 16.744 15.269 15.649 23.771 40.315 15.479 150.473 23.771 2.553** 2.436* 3.121***

10 100 0.8 88.483 9.815 7.809 48.594 34.656 31.326 32.189 48.788 81.857 31.732 10580.962 48.788 5.024** 4.784* 6.248***
1 100 0.9 18.385 2.316 0.618 9.773 6.936 6.32 6.501 9.768 17.498 6.558 39.603 9.768 0.39** 0.272* 0.435***
5 100 0.9 91.472 8.055 2.701 48.369 34.702 31.355 32.02 48.448 84.475 31.810 859.464 48.448 1.745*** 1.286* 1.725**

10 100 0.9 188.796 15.185 5.451 102.537 72.716 66.116 67.663 102.714 174.134 67.057 2450.396 102.714 3.56*** 2.645* 3.438**
1 100 0.95 34.568 3.559 0.484 18.518 13.351 12.01 12.454 18.554 33.1 12.456 57.270 18.554 0.319** 0.285* 0.375***
5 100 0.95 168.844 11.045 2.01 90.465 64.932 57.955 60.116 90.679 157.235 59.742 2785.722 90.679 1.392*** 1.360* 1.383**

10 100 0.95 338.382 20.712 4.089 181.26 129.603116.701 120.421 181.718 314.091 119.547 3498.758 181.718 2.879** 2.881*** 2.853*
1 200 0.8 8.405 1.469 0.859 4.589 3.234 2.963 3.078 4.549 7.987 3.149 772.531 4.549 0.556** 0.516* 0.739***
5 200 0.8 42.94 5.009 4.005 23.356 16.556 14.94 15.398 23.432 39.881 15.228 330.363 23.432 2.619** 2.510* 3.195***

10 200 0.8 85.782 9.478 7.802 46.688 32.904 29.733 30.638 46.879 79.325 30.147 4292.141 46.879 5.054** 4.846* 6.073***
1 200 0.9 16.174 2.16 0.662 8.6 6.11 5.568 5.728 8.585 15.385 5.783 41.577 8.585 0.41** 0.294* 0.468***
5 200 0.9 84.006 7.882 2.974 45.71 32.927 29.939 30.554 45.76 77.806 30.355 465.148 45.76 1.897** 1.405* 1.963***

10 200 0.9 167.663 14.1 5.887 91.208 65.68 59.698 60.985 91.367 154.677 60.403 611.768 91.367 3.778** 2.858* 3.78***
1 200 0.95 28.83 3.187 0.518 15.428 11.019 10.025 10.28 15.442 27.526 10.302 74.288 15.442 0.331** 0.259* 0.348***
5 200 0.95 139.313 10.602 2.199 73.591 52.831 47.801 48.904 73.712 128.824 48.608 3536.723 73.712 1.495*** 1.283* 1.455**

10 200 0.95 286.894 19.693 4.397 153.373 109.879 98.912 101.520 153.66 264.558 100.755 471.594 153.66 2.993*** 2.568* 2.915**

four distinct sets of correlations that correspond to 𝜌 = 0.8, 0.9 and 0.95. The response variable is generated by

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + ... + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖 , 𝑖 = 1, 2, . . . , 𝑛

where 𝜀𝑖 ∼ 𝑁
(
0, 𝜎2) and 𝛽0 is equal to zero. The values of 𝜎2 are 1, 5, and 10 for various comparisons of the error term. For

each set of explanatory variables, the parameter vector 𝛽 is chosen as the normalized eigenvector corresponding to the largest
eigenvalue of 𝑋 ′𝑋 so that 𝛽′𝛽 = 1. The sample sizes n are 50, 100, and 200. The number of explanatory variables is chosen as
𝑝 = 4, 8, and 12.

For the simulation and application sections, we use the estimator proposed by Kibria (2003) to estimate the parameter k in
RE, as follows: �̂�𝑅𝐸 = �̂�2(∏𝑝+1

𝑗=1 �̂�
2
𝑗

) 1
𝑝+1

where �̂�2 =

∑𝑛
𝑖=1 (𝑦𝑖− �̂�𝑖 )

2

𝑛−𝑝−1 . Based on the results given by Qasim et al. (2020), we use the best

estimation of d in LE as 𝑑𝐿𝐸 = max ©«0,min ©« �̂�2
𝑗
− �̂�2

max
(
�̂�2
�̂� 𝑗

)
+�̂�2

max

ª®¬ª®¬. Moreover, we used the best estimators and iterative techniques

recommended by Liu (2003), Özkale and Kaçıranlar (2007), Sakallıoğlu and Kaçıranlar (2008), Yang and Chang (2010), Huang
and Yang (2014), Kibria and Lukman (2020), Üstündağ et al. (2021), Qasim et al. (2022), Idowu et al. (2023) to determine the
estimates of the biasing parameters for the LTE, SK, YC, KL, TSS, STO, TPE, and LKL estimators.

The performance of the estimated MSEs (EMSEs) is used as a basis for comparing the proposed estimators, which are calculated
for an estimator 𝛽 of 𝛽 as

𝐸𝑀𝑆𝐸
(
𝛽
)
=

1
𝑁

𝑁∑︁
𝑟=1

(
𝛽𝑟 − 𝛽

) ′ (
𝛽𝑟 − 𝛽

)
(25)

where
(
𝛽𝑟 − 𝛽

)
is the difference between the estimated and true parameter vectors at rth replication and N is the number

of replications. The experiment was repeated 2000 times for each case of n, p, 𝜎2, and 𝜌 by creating response variables. The
computations were performed in R programming language. The results are given in Tables 1-3 where the first, second, and third
best EMSE values in each row are indicated by the signs (*), (**), and (***).

In all 81 scenarios in Tables 1-3, the proposed estimator outperformed all other available estimators according to the EMSE
criterion. However, all considered estimators exhibited different behaviors in different scenarios. The following observations can
be obtained from Tables 1-3:

1. When the number of variables in the model is gradually increased while keeping 𝜌, n, and 𝜎2 constant, an increase is
observed in the EMSE values of all estimators in general. However, this increase is much lower in the proposed estimator.

2. When the correlation 𝜌 between the variables in the model is increased while keeping n, p, and 𝜎2 constant, the EMSE values
of some estimators increased while the EMSE values of some estimators systematically decreased. The EMSE of the proposed
estimator tends to decrease as the correlation coefficient increases.
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Table 2.The EMSE values of the estimators for the model when 𝑝 = 8.

𝜎2 𝑛 𝜌 OLS RE LE YCI YCII SK LTE KL TSS TPE STO LKL LKLRI LKLRII LKLRIII

1 50 0.8 17.927 1.901 1.615 10.916 5.893 5.524 5.87 10.975 17.701 5.902 7751.854 10.975 0.966** 0.950* 1.186***
5 50 0.8 89.699 7.356 7.997 53.873 29.153 27.141 28.682 54.309 87.72 28.115 56086.283 54.309 4.827** 4.756* 5.610***

10 50 0.8 177.684 13.807 15.598 105.388 57.253 52.721 56.191 106.26 173.343 54.862 4699.803 106.26 9.382** 9.241* 10.812***
1 50 0.9 41.839 3.719 1.065 25.14 13.327 12.367 13.389 25.312 41.371 13.231 27424.305 25.312 0.570** 0.320* 0.576***
5 50 0.9 206.925 13.664 5.103 123.075 65.337 59.351 65.216 124.027 202.052 64.073 17058.325 124.027 2.739*** 1.531* 2.432**

10 50 0.9 412.283 25.184 10.189 245.835 130.042117.648 129.814 247.748 401.849 127.342 10383.83 247.748 5.530*** 3.176* 4.754**
1 50 0.95 93.092 7.164 0.666 56.037 30.042 27.194 30.369 56.422 92.182 29.828 510.059 56.422 0.371** 0.353* 0.524***
5 50 0.95 459.191 24.519 3.156 277.59 147.993131.557 148.453 279.665 449.73 145.97 565.976 279.665 1.772** 1.700* 1.912***

10 50 0.95 917.846 45.27 6.246 551.874 291.829258.909 293.122 555.681 896.501 288.224 2039.893 555.681 3.512*** 3.393* 3.455**
1 100 0.8 24.214 2.32 1.384 14.402 7.547 7.074 7.554 14.48 23.922 7.546152315.676 14.48 0.771** 0.650* 0.866***
5 100 0.8 123.027 9.379 6.943 73.791 38.853 36.518 38.553 74.252 120.277 37.947 8893.613 74.252 3.853** 3.249* 4.176***

10 100 0.8 244.546 16.161 13.779 146.193 76.354 71.107 75.404 147.09 238.722 74.086 6325.787 147.09 7.649** 6.472* 8.049***
1 100 0.9 37.573 3.45 1.061 22.402 11.361 11.022 11.334 22.445 37.105 11.365 2624.188 22.445 0.561*** 0.273* 0.469**
5 100 0.9 194.263 13.369 5.364 117.333 60.514 58.269 60.176 117.596 189.324 59.737 6023.231 117.596 2.868*** 1.414* 2.148**

10 100 0.9 386.218 26.721 10.581 232.783 121.565117.205 120.897 233.363 375.623 119.85 11982.27 233.363 5.612*** 2.715* 4.449**
1 100 0.95 69.842 5.487 0.709 41.58 20.968 20.245 20.912 41.705 69.033 20.833 553.66 41.705 0.384*** 0.191* 0.256**
5 100 0.95 359.95 22.867 3.521 218.104 112.674108.295 112.261 218.593 351.106 111.435 706.995 218.593 1.931*** 0.975* 1.209**

10 100 0.95 716.945 40.935 6.949 431.688 223.182213.159 222.355 432.848 697.615 220.667 1132.808 432.848 3.829*** 1.975* 2.289**
1 200 0.8 17.411 1.884 1.591 10.496 5.377 5.245 5.366 10.5 17.132 5.493 24916.018 10.5 0.912** 0.866* 1.067***
5 200 0.8 88.456 7.555 7.965 53.407 27.722 26.929 27.416 53.526 86.118 27.25 1506.584 53.526 4.589** 4.380* 5.231***

10 200 0.8 177.523 14.336 15.978 107.477 55.476 53.841 54.734 107.653 172.516 54.213 1215.601 107.653 9.220** 8.804* 10.45***
1 200 0.9 40.78 3.737 1.04 24.526 12.633 12.329 12.596 24.552 40.305 12.638 55943.504 24.552 0.551*** 0.240* 0.427**
5 200 0.9 201.348 13.602 5.054 120.901 61.766 59.923 61.307 121.119 196.316 60.954 1500.696 121.119 2.710*** 1.195* 1.866**

10 200 0.9 409.144 26.535 10.183 245.851 126.485122.861 125.571 246.342 398.247 124.691 825.275 246.342 5.428*** 2.368* 3.712**
1 200 0.95 75.512 5.908 0.703 45.297 23.2 22.203 23.202 45.427 74.645 23.093 171.987 45.427 0.384*** 0.221* 0.274**
5 200 0.95 380.004 23.253 3.476 228.965 117.798113.149 117.327 229.502 370.325 116.474 4790.433 229.502 1.934*** 1.108* 1.223**

10 200 0.95 753.565 41.767 6.857 451.33 229.927221.459 228.576 452.452 732.852 226.918 1004.939 452.452 3.796*** 2.139* 2.252**

Table 3.The EMSE values of the estimators for the model when 𝑝 = 12.

𝜎2 𝑛 𝜌 OLS RE LE YCI YCII SK LTE KL TSS TPE STO LKL LKLRI LKLRII LKLRIII

1 50 0.8 36.987 2.821 2.182 23.621 11.626 10.354 11.637 23.865 36.751 11.434 297772.445 23.865 1.206** 1.134* 1.403***
5 50 0.8 181.743 11.791 10.837 115.281 56.311 50.591 55.959 116.44 179.451 54.33 6352.978 116.44 6.019** 5.678* 6.724***

10 50 0.8 359.223 22.14 21.439 226.952 109.898 98.497 109.114 229.446 354.314 105.785 36819.019 229.446 11.937** 11.268* 13.324***
1 50 0.9 101.156 6.493 1.236 64.183 30.847 26.135 31.514 64.93 100.689 30.597 25701.481 64.930 0.623*** 0.277* 0.587**
5 50 0.9 504.845 26.812 6.173 321.946 156.031131.887 158.225 325.534 499.227 153.804 188521.021 325.534 3.121*** 1.388* 2.349**

10 50 0.9 1023.08 51.434 12.291 653.041 316.387263.471 320.556 660.2551010.527 311.849 5239.590 660.255 6.206*** 2.743* 4.713**
1 50 0.95 162.466 10.121 0.902 103.233 50.001 41.96 51.299 104.375 161.757 49.694 718183.886 104.375 0.459** 0.411* 0.719***
5 50 0.95 816.49 40.696 4.435 515.358 245.943203.666 250.67 520.759 807.093 243.701 10870.123 520.759 2.262** 2.036* 2.762***

10 50 0.95 1634.04 81.385 9.0391043.321 501.717417.399 510.4341053.8021613.713 496.017 12131.320 1053.802 4.620** 4.095* 5.652***
1 100 0.8 32.046 2.643 2.227 20.287 9.363 8.959 9.364 20.385 31.819 9.398 8129.905 20.385 1.192** 1.081* 1.300***
5 100 0.8 160.081 10.991 11.079 101.783 47.11 44.972 46.948 102.207 157.865 46.311 3839.132 102.207 5.970** 5.427* 6.343***

10 100 0.8 320.861 20.747 22.252 204.985 94.66 90.554 94.2 205.84 316.083 92.86388772.183 205.84 11.983** 10.897* 12.690***
1 100 0.9 80.278 5.873 1.342 51.14 23.535 22.366 23.737 51.347 79.841 23.512 46913.183 51.347 0.667*** 0.228* 0.409**
5 100 0.9 395.126 22.718 6.544 250.47 114.084107.973 114.771 251.494 389.874 113.33 1915.609 251.494 3.266*** 1.125* 1.742**

10 100 0.9 803.981 46.594 13.376 514.05 236.623224.291 237.897 515.851 792.452 234.817 4297.482 515.851 6.694*** 2.329* 3.744**
1 100 0.95 142.346 9.444 0.909 90.366 41.55 38.237 42.151 91.012 141.738 41.353 2048.883 91.012 0.457*** 0.306* 0.423**
5 100 0.95 709.597 38.951 4.464 448.784 208.094188.448 210.461 452.13 701.586 206.643 946.410 452.13 2.281*** 1.593* 1.840**

10 100 0.95 1429.302 70.908 8.882 903.696 418.151376.611 422.328 909.7871411.304 414.951 2386.412 909.787 4.493*** 3.114* 3.381**
1 200 0.8 32.059 2.627 2.222 20.415 9.35 9.113 9.354 20.47 31.803 9.452 7463.637 20.470 1.177** 1.039* 1.235***
5 200 0.8 158.478 10.304 10.911 100.461 45.229 44 45.137 100.726 155.998 44.809 8605.372 100.726 5.795** 5.124* 5.953***

10 200 0.8 314.225 19.312 21.62 198.306 88.923 86.551 88.606 198.833 308.752 87.761 27821.477 198.833 11.457** 10.126* 11.752***
1 200 0.9 71.274 5.27 1.422 45.459 20.749 19.923 20.892 45.581 70.877 20.792 485542.076 45.581 0.703*** 0.231* 0.407**
5 200 0.9 347.253 20.583 6.95 221.085 99.149 95.303 99.532 221.68 342.463 98.6116795816.344 221.680 3.457*** 1.159* 1.822**

10 200 0.9 710.097 39.336 14.265 453.976 205.42197.836 205.874 455.257 699.539 203.932 306580.259 455.257 7.107*** 2.401* 3.650**
1 200 0.95 134.639 8.946 0.87 85.746 38.286 36.883 38.54 85.943 133.913 38.279 2037.410 85.943 0.439*** 0.319** 0.303*
5 200 0.95 670.351 36.382 4.317 423.068 189.037182.964 189.833 423.85 660.96 188.341 663.181 423.850 2.185*** 1.566** 1.281*

10 200 0.95 1381.718 69.995 8.804 884.071 396.959381.753 398.948 886.4311360.706 395.945 5310.917 886.431 4.451*** 3.242** 2.565*
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Table 4.The estimated parameter values and the estimated variance values of the estimators

𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝑣𝑎𝑟
(
𝛽
)

𝑆𝑀𝑆𝐸
(
𝛽
)

𝛽𝑂𝐿𝑆 62.4054 1.5511 0.5102 0.1019 –0.1441 4912.0902

𝛽𝑅𝐸

(
�̂�𝑅𝐸 = 1.4250

)
0.1003 2.1725 1.1568 0.7435 0.4882 0.0673 5.07197

𝛽𝐿𝐸

(
𝑑𝐿𝐸 = 0

)
0.1230 2.1781 1.1552 0.7473 0.4871 0.0715 5.06501

𝛽𝐿𝑇𝐸

(
�̂�𝐿𝑇𝐸 = 1.4250, 𝑑𝐿𝑇𝐸 = − 0.6291

)
27.6066 1.8982 0.8713 0.4602 0.2091 959.5019 961.0631

𝛽𝑆𝐾

(
�̂�𝑆𝐾 = 1.4250, 𝑑𝑆𝐾 = 493.7504

)
26.4790 8.5996 –0.6618 5.2740 –0.7883 878.0997 2620.2491

𝛽𝑌𝐶 𝐼
(
�̂�1 = 0.0015, �̂�1 = 0.9992

)
27.6068 1.9090 0.8688 0.4680 0.2075 959.5030 961.0595

𝛽𝑌𝐶 𝐼𝐼
(
�̂�2 = 0.0008, �̂�2 = 0.7206

)
27.6067 1.9052 0.8697 0.4653 0.2080 959.5027 961.0598

𝛽𝑇𝑆𝑆

(
�̂�𝑇𝑆𝑆 = 0.5509 × 10−3 , 𝑑𝑇𝑆𝑆 = 0.7920

)
27.6068 1.9091 0.8688 0.468 0.2075 959.5030 961.05953

𝛽𝐿𝐾𝐿

(
�̂�𝐿𝐾𝐿 = 0.4714 × 10−3 , 𝑑𝐿𝐾𝐿 = 1

)
27.6068 1.9091 0.8688 0.468 0.2075 959.5030 961.0595

𝛽𝑇𝑃𝐸

(
�̂�𝑇𝑃𝐸 = 37.9673, 𝑑𝑇𝑃𝐸 = 0.4420

)
27.6046 1.6898 0.9184 0.3167 0.2396 959.5464 962.9542

𝛽𝑆𝑇𝑂

(
�̂�𝑆𝑇𝑂 = 29.4052, 𝑑𝑆𝑇𝑂 = 49148.7380

)
62.3251 1.2323 0.5835 –0.1196 –0.0962 4900.1245 4904.0676

𝛽𝐾𝐿

(
�̂�𝐾𝐿 = 0.4714 × 10−3

)
27.6068 1.9091 0.8688 0.468 0.2075 959.5030 961.0595

𝛽𝐿𝐾𝐿𝑅

(
�̂�𝐿𝐾𝐿𝑅 𝐼 = 26805.7236

)
0.1230 2.1780 1.1552 0.7473 0.4872 0.0715 5.0651

𝛽𝐿𝐾𝐿𝑅

(
�̂�𝐿𝐾𝐿𝑅 𝐼𝐼 = 2429.8562

)
0.1230 2.1775 1.1554 0.7471 0.4872 0.0714 5.0655

𝛽𝐿𝐾𝐿𝑅

(
�̂�𝐿𝐾𝐿𝑅 𝐼𝐼𝐼 = 1.4250

)
0.0701 2.1918 1.1527 0.7574 0.4857 0.0659 5.0606

3. The impact of model variance on the performance of estimators is quite high. In scenarios where n, p, and 𝜌 are kept constant
and the variance is increased, it is observed that the EMSE values of all existing estimators, including our proposed estimator,
increase. However, the dramatic increase in model variance does not significantly reduce the performance of the proposed estimator.

4. It is observed that the change in the number of observations n does not have a significant effect on the estimators. The
EMSE values of all estimators, including the proposed estimator, do not change significantly when the number of observations is
increased.

As a result, the proposed LKLR estimator is not significantly affected by an increase in model variance, correlation between
variables, or the number of variables in the model.

In the second simulation scheme, we investigate the performances of RE, LE, KL, and LKLR for each 𝑛, 𝑝, 𝜌, and 𝜎2. The
purpose of this simulation is to examine the performances of RE, LE, KL, and LKLR at various values of the biasing parameter
k according to EMSE values given in (25). The biasing parameter k is not estimated in the second simulation scheme. Only the
EMSE values obtained by increasing k values in the range [0.1, 1] by 0.1 are compared. We only consider the cases 𝜌 = 0.8, 0.9,
𝑛 = 50, 200, and 𝑝 = 4, 12, and 𝜎2 = 1, 10. Depending on these n, 𝜌, p, and 𝜎2 values, the explanatory variables are generated
according to equation (24). For every value of 𝑘 , the simulation is run 2000 times. The results are collectively presented graphically
in Figures 1 and 2.
Figures 1 and 2 clearly show the effects of varying the biasing parameter between 0.1 and 1 on the EMSE values of the estimators.
According to Figures 1 -2 , we can obtain the following results depending on each

(
𝑛, 𝜌, 𝑝, 𝜎2) .

1. The RE tends to decrease as k increases. But the decrease is lagging behind the other estimators for small values of the
parameter k.

2. The EMSE values of LE have the best EMSE value at small values of the biasing parameter d, while it is observed that there
is an increase with increasing values of d.

3. The EMSE values of the KL estimator first decrease and then increase as k values increase.
4. The proposed LKLR estimator has smaller EMSE values with increasing correlation between variables.

6. NUMERICAL EXAMPLE

In this section, we reconsider the dataset on Portland cement data which was analyzed by Hald (2022), Liu (2003), Sakallıoğlu and
Kaçıranlar (2008), Yang and Chang (2010), Kurnaz and Akay (2018). In this data, the following four compounds are independent
variables: tricalcium aluminate (𝑥1), tetracalcium silicate (𝑥2), tetracalcium alumino ferrite (𝑥3), and dicalcium silicate (𝑥4). The
dependent variable 𝑦 is the heat evolved in calories per gram of cement. We fit a linear regression model with an intercept to the
data. Then, the eigenvalues of 𝑋 ′𝑋 are 𝜆1 = 44676.2059, 𝜆2 = 5965.4221, 𝜆3 = 809.9521, 𝜆4 = 105.4187, and 𝜆5 = 0.0012. The
condition number is approximately 3.66 × 107, therefore the matrix 𝑋 is quite ill-conditioned.

The numerical results are summarized in Table 4. In addition, �̂�𝑂𝐿𝑆 is substituted for 𝛼 in order to calculate SMSE values.
From Table 4, it can be observed that the estimated variance values and the SMSE values of LKLR I, LKLR II, and LKLR III
yield appropriate results compared to other existing estimators.
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Figure 1.The EMSE values of RE, LE, KL, and LKLR as a function k and d where 𝑝 = 4
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Figure 2.The EMSE values of RE, LE, KL, and LKLR as a function k and d where 𝑝 = 12
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7. CONCLUSION

In this study, a new biased estimator called LKLR is proposed in the presence of multicollinearity. This estimator has one biasing
parameter as an alternative to estimators with two biasing parameters. New estimators are proposed to estimate the biasing parameter
of the LKLR estimator. Simulation results show that the LKLR estimator performs better than standard estimators. In particular,
�̂�𝐿𝐾𝐿𝑅 𝐼𝐼 gave better results than other proposed biasing parameter estimators. We also examined the overall performance of other
estimators with a single biasing parameter when 𝑘 is in the range [0.1, 1]. Furthermore, the performance of the LKLR on Portland
data is analyzed together with other existing estimators. Based on the results, a more robust estimator is obtained for increasing
variance, variables, correlation, and number of observations than estimators with two biasing parameters. Finally, the LKLR is
recommended when there is multicollinearity in the linear regression models.
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