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ABSTRACT
In this paper, a class of hybrid block methods for solving second order ordinary differential equations directly was developed. This
class was obtained by interpolation and collocation techniques. The methods were analyzed based on the qualitative properties of
linear multi-step methods and were found to be zero-stable, consistent and convergent with good region of absolute stability. The
proposed methods were analyzed quantitatively and implemented on second order ordinary differential initial value problems. An
improved performance of the new methods over existing methods in the literature was shown by solving five numerical examples.
The results were presented in tabular form.
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1. INTRODUCTION

Issac Newton discovered a large number of differential equations. He was responsible for large number of this type of equations in
Physic and Mathematics. He is also responsible for the systematic development of model of motion. He has other discoveries like
personal finance, electric circuits, behavior of musical instruments the logistic equation, electric magnetion, quantum chronody-
namics oscillation, among others. A differential equation shows relationship between a function that is unknown and its respective
derivatives. The order of the equation depends on the highest derivative of the the dependent function. Practically, this work
contains extensive qualitative and quantitative analysis of a class of effective numerical methods used in approximating second
order class of differential equations.
The solution of Initial Value Problems(IVPs) in Ordinary Differential Equations (ODEs) of the form

𝑦′ = 𝑓 (𝑥, 𝑦, 𝑦′..., 𝑦𝑚−1)
𝑦(𝑥0) = 𝜂0, 𝑦

′ (𝑥0) = 𝜂1, ...𝑦
𝑚−1 (𝑥0) = 𝜂𝑚−1,

(1)

with the interval [𝑥0, 𝑥1] has given rise to the methods of one step and multi-step methods. This is majorly attributed to Linear
Multi-step Methods (LMMs). From literature, many scholars look for alternative methods of solving (1) and higher order differential
equations without reducing them to systems of first order differential equations. Authors such as
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The first derivatives of the equations (2) give
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By evaluating the first derivative equation (2) together with (3) at points 𝑝 = 0, 1
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Next, we derive the block for a new one-fifth step hybrid method
In order to get the blocks for derivation of the block methods and to test for the zero stability, we combine equations (5), (6) and
(7) and use their coefficients in the block form
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After normalizing the equation (8) we obtain
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2. ANALYSIS OF THE METHODS

The methods have some basic properties which establish their validity. The properties: order error constant, consistency and zero
stability reveal the nature of convergence of the methods.

2.1. Order and Error Constant

We define the truncation error associated with equation (10) by the difference operator

L (𝑦 (𝑥, ℎ)) =
𝑘∑︁
𝑗=0
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′′ (𝑥𝑛 + 𝑗 ℎ) − ℎ2𝛽𝑣 𝑗 𝑦
′′ (𝑥𝑛 + 𝑗 ℎ)

]
, (12)

where 𝑦(𝑥) is an arbitrary test function which is continuously differentiable in the interval expanding (𝑥) in Taylor series about 𝑥𝑛
and collecting like terms in ℎ and 𝑦 gives

L (𝑦 (𝑥)) = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦
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3𝑦′ (𝑥) + ... + 𝐶𝑝+33ℎ𝑝+3𝑦𝑝+3 (𝑥), (13)

where the coefficient 𝐶𝑞 , 𝑞 = 0, 1, 2, ... are given as
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𝐶𝑞 =
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According to Henrici (1962) method (13) has order p if 𝐶0 = 𝐶1 = 𝐶2 = ...𝐶𝑝 = 𝐶𝑝+1 = 0 and 𝐶𝑝+2 ≠ 0
The 𝐶𝑝+2 ≠ 0 is called the error constant and 𝐶𝑝+2ℎ

𝑝+2𝑦𝑝+2 (𝑥) is the principal local truncation error at the point 𝑥𝑛. Using Taylor
series expansion on equations (10) and (11) we get the order of the new proposed block methods respectively as (4, 4, 4, 4, 4, 4)
with error constants as (
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2.2. Zero stability of One-fifth Step-length For Second Order Differential Equation

In order to test for zero stability of the block method (10), we consider the matrix difference equation of the form

𝑝0𝑌𝑚+1 = 𝑝
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The matrices 𝑝0, 𝑝
′
, 𝑄0, 𝑄

′ and 𝑅0are the coefficients of equation (10) which defined as follows
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A block method is said to be zero stable if the roots

��[𝜆𝑝0 − 𝑝1]
�� = 0

are sample with maximum modulus 1.
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��� =

��������𝜆
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0 0 −1

�������� = 0 (21)

implies that 𝜆3 − 𝜆2 = 0, This gives 𝜆 = 0, 0, 1.
Since the root have modulus less than or equal to one and are simple, the method in zero-stable
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2.3. Consistency of One-fifth Step Length For Second Order Differential Equation.

The first and second characteristic polynomials of method (10) are given by Remark
condition (i) is the a sufficient condition for the associated block method to be consistent.
Consistency of the main method (10) The first and second characteristic polynomials of method (10) are given by

𝜌(𝑧) = 𝑧
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𝜎(1) = 1
5400

(1)0 + 1
450

(1) 1
15 + 7

1800
(1) 2

15 + 1
2700

(1) 1
5 = 150

and

2!𝜎(1) = 2
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𝜌′′ (1) = 2!𝜎(1) = 1
75

Hence the method is consistent.
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2.4. Convergence

The convergence of the continuous implicit hybrid block method base on the basic properties discussed above with the fundamental
theorem of Dahlquist for the linear multi-step methods. The theorem is stated below without proof.
Theorem 1
The necessary and sufficient condition for a linear multi-step method to be convergent is for it to be consistent and zero stable.

2.5. Region of Absolute Stability of the Block Method

The stability matrix for the method is defined as follows:

𝑀 (𝑧) = 𝑉 + 𝑧𝐵(𝑀 − 𝑧𝐴)𝑈 (24)

and the stability function

𝑝(𝜂, 𝑧) = 𝑑𝑒𝑡 (𝜂𝐼 − 𝑀 (𝑧)). (25)

Then, we represent the block method in form of


𝑦𝑛

− − −
𝑦𝑛+ 3

15

 =


𝐴 𝑈

− − − − − − − − −
𝐵 𝑉



ℎ2 𝑓 (𝑦)

− − −
𝑦𝑖−1

 (26)

𝐴 =


0 0 0 0
97

81000
19

13500
−13

27000
1

10125
28

10125
22

3375
−2

3375
2

10120
13

3000
3

250
3

1000
1

1500

 ,

𝐵 =

[ 97
81000

19
13500

−13
27000

1
10125

28
10125

22
3375

−2
3375

2
10120

]
,

𝑉 =

[
0 1
0 𝐼

]
, 𝑈 =


0 1
0 1
0 1
0 𝐼

 , 𝑓 (𝑦) =


𝑦𝑛

𝑦𝑛+ 1
15

𝑦𝑛+ 2
15

𝑦𝑛+ 3
15


, 𝑌𝑖−1 =

[
𝑦𝑛+ 1

15
𝑦𝑛+ 3

15

]
, 𝑌𝑖+1 =

[
𝑦𝑛+ 1

15
𝑦𝑛+ 3

15

]
,

𝑀 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,

𝐼 =

[
1 0
0 𝐼

]
.

This gives the stability polynomial of the one-fifth step method which was plotted below
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Figure 1: Region of Absolute stability of 1
5 HBMS

3. NUMERICAL EXAMPLES

In this section, some numerical examples of second order ordinary differential equations are solved. The methods are implemented
directly without using any starting value and with use of Matlab and Maple. The table below shows some notations that were use
to present the numerical and graphical results obtained for some test problems by application of the proposed schemes.
Problem 1: Consider a Linear non-homogeneous test problem

𝑦′′ = 3𝑦′ + 8𝑒2𝑥 ,

𝑦(0) = 1,

𝑦′ (0) = 1, ℎ = 0.05

Exact solution:

𝑦(𝑥) = −4𝑒2𝑥 + 3𝑒3𝑥 + 2.

Problem 2: Consider a specially oscillatory test problem

𝑦′′ = −𝜆2𝑦,

𝑦(0) = 1, 𝑦′ (0) = 2, ℎ = 0.01, 𝜆 = 2

Exact solution:

𝑦(𝑥) = cos 2𝑥 + sin 2𝑥.

Problem 3:Consider a singular non-homogeneous test problem

𝑦′′ =
2𝑦′

𝑥
+ 𝑥𝑒𝑥 − 𝑦(1 + 2

𝑥2 )

𝑦( 𝜋
2
) = 4 − 𝜋 + 1

4
(𝑒 𝜋

2 ) (𝜋 + 2)

𝑦′ ( 𝜋
2
) = 𝜋

2
(8 + 𝑒

𝜋
2 )

ℎ = 0.003125

Exact solution:

𝑦(𝑥) = 2𝑥 cos 𝑥 + 4𝑥 sin 𝑥 + 1
2
𝑥𝑒𝑥 .

Problem 4: We consider a linear homogeneous test problem

𝑦′′ = 𝑦′,
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𝑦(0) = 0, 𝑦′ (0) = −1, ℎ = 0.1

Exact solution :

𝑦(𝑥) = 1 − 𝑒𝑥

Problem 5: We consider a non-linear non-homogeneous test problem

𝑦′′ = 𝑥(𝑦′)2

𝑦(0) = 1, 𝑦′ (0) = 1
2
, ℎ = 0.1

Exact solution:

𝑦(𝑥) = 1 + 1
2

ln( 2 + 𝑥

2 − 𝑥
).

3.1. Tabular Presentation of Numerical Results
Here we present numerical and errors results for 1

5𝐻𝐵𝑀 in tabular form below

Table 1: Numerical Results for Problem 1

𝑥 Exact Computed 𝐸𝑟𝑟𝑜𝑟𝑖𝑛𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑 Error in 𝐴𝑟𝑒𝑜(2016)
0.0100 1.01979867335991 1.01979867335989 1.8874𝐸 − 14 8.4599𝐸 − 14
0.0200 1.03918944084761 1.03918944084754 7.5939𝐸 − 13 3.4861𝐸 − 13
0.0300 1.05816454641465 1.05816454641448 1.7231𝐸 − 13 7.8870𝐸 − 13
0.0400 1.07671640027179 1.07671640027149 3.0509𝐸 − 13 1.4004𝐸 − 12
0.0500 1.09483758192485 1.09483758192438 4.7384𝐸 − 13 2.1791𝐸 − 12
0.0600 1.11252084314279 1.11252084314211 6.7768𝐸 − 13 3.1208𝐸 − 12
0.0700 1.12975911085687 1.12975911085596 9.1704𝐸 − 13 4.2211𝐸 − 12
0.0800 1.14654548998987 1.14654548998868 1.1884𝐸 − 12 0.23146𝐸 − 11
0.0900 1.16287326621395 1.16287326621245 1.4924𝐸 − 12 6.8801𝐸 − 12
0.1000 1.17873590863630 1.17873590863448 1.8268𝐸 − 12 8.4293𝐸 − 12

Table 2: Numerical Results for Problem 2

𝑥 Exact Computed Error in our method Error in 𝐴𝑟𝑒𝑜(2016)
0.0050 1.00513852551049 1.00513852547870 3.1790𝐸 − 11 1.2349𝐸 − 09
0.0100 1.01055824175353 1.01055824162003 8.4730𝐸 − 11 2.6905𝐸 − 09
0.0150 1.01626544391208 1.01626544360366 3.0842𝐸 − 10 4.3738𝐸 − 09
0.0200 1.02226654286653 1.02226654230753 5.5900𝐸 − 10 6.2921𝐸 − 09
0.0250 1.02856806714980 1.02856806626307 8.8673𝐸 − 10 8.9697𝐸 − 09
0.0300 1.03517666493419 1.03517666364109 1.2931𝐸 − 09 1.0863𝐸 − 08
0.0350 1.04209910605025 1.04209910426619 1.7841𝐸 − 09 1.6463𝐸 − 08
0.0400 1.04934228403829 1.04934228168012 2.3581𝐸 − 09

93



Istanbul Journal of Mathematics

Table 3: Numerical Results for Problem 3

𝑥 Exact Computed Error in our method Error in 𝐴𝑟𝑒𝑜(2016)
1.7000 10.95785118097658 10.95785118071406 2.6252𝐸 − 10
1.8000 11.63820762976944 11.63820762869096 1.0785 − 09 4.0964𝐸 − 09
1.9000 12.31472912025427 12.31472911749325 2.7610𝐸 − 09 1.6840𝐸 − 08
2.0000 12.99859200531184 12.99859199968641 5.6254𝐸 − 09 0.43121𝐸 − 08
2.1000 13.70481572693030 13.70481571693856 9.9917𝐸 − 09 8.7867𝐸 − 08
2.2000 14.45259109075646 14.45259107457567 1.6181𝐸 − 08 1.5609𝐸 − 07
2.3000 15.26561176327774 15.26561173877142 2.4506𝐸 − 08 3.8289𝐸 − 07
2.4000 16.17241142639307 16.17241139112289 3.5270𝐸 − 08 5.5108𝐸 − 07
2.5000 17.20670978769302 17.20670973893582 4.8757𝐸 − 08 7.6182𝐸 − 07
2.6000 18.40777146832744 18.40777140309677 6.5231𝐸 − 08 1.0192𝐸 − 06

Table 4: Numerical Results for Problem 4

𝑥 Exact Computed Error in our method Error in Ramos et al(2016)
0.1000000 −0.105170918075647710 −0.105170918075646940 7.77156117𝐸 − 15 −0.105170918075645880
0.2000000 −0.221402758160170080 −0.221402758160166880 3.19189120𝐸 − 14 5.441𝐸 − 07
0.3000000 −0.349858807576003410 −0.349858807575995860 7.54951657𝐸 − 14 9.114𝐸 − 07

0.4000 −0.491824697641270790 −0.491824697641256470 1.43218770𝐸 − 13 1.329𝐸 − 06
0.5000 −0.648721270700128640 −0.648721270700105430 2.32036612𝐸 − 13 1.447𝐸 − 06
0.6000 −0.822118800390509770 −0.822118800390473690 3.60822483𝐸 − 13 2.435𝐸 − 06
0.7000 −1.013752707470477500 −1.013752707470424700 5.28466160𝐸 − 13 3.153𝐸 − 6
0.8000 −1.225540928492468800 −1.225540928492394400 7.43849426𝐸 − 13 4.965𝐸 − 06
0.9000 −1.459603111156951200 −1.459603111156850200 1.01030295𝐸 − 12 4.948𝐸 − 06

Table 5: Numerical Results for Problem 5

𝑥 Exact Computed Error in our method Error in Ramos et al(2016)
0.1000000 1.050041729278491400 1.050041729278491800 0.444089210𝐸 − 15 1.18393𝐸 − 10
0.2000000 1.100335347731074900 1.100335347731074900 0.000000𝐸 − 00 2.3749𝐸 − 10
0.3000000 1.151140435936465000 1.151140435936462300 0.26645𝐸 − 14 4.2485𝐸 − 10

0.4000 1.202732554054079200 1.202732554054065400 0.13766𝐸 − 13 6.1628𝐸 − 10
0.5000 1.255412811882991000 1.255412811882949100 0.41966𝐸 − 13 1.0233𝐸 − 09
0.6000 1.309519604203106100 1.309519604203005100 0.10103𝐸 − 12 1.4483𝐸 − 09
0.7000 1.365443754271389100 1.365443754271173500 2.1560𝐸 − 013 2.5449𝐸 − 09
0.8000 1.423648930193593300 1.423648930193167200 0.4261𝐸 − 12 3.7221𝐸 − 09
0.9000 1.484700278594041300 1.484700278593238400 0.80291𝐸 − 12 7.3287𝐸 − 08

4. DISCUSSION OF RESULTS AND CONCLUSION

In this paper, we developed one-fifth order initial value problems directly with out reducing the system of first order differential
equation. the method that was develop was test by using it to solve numerical examples which are linear,non linear and stiff
initial value problems of second order ordinary differential equation. The table of results of our method is show below comparing
the proposed method with the exalt and the existing method. In the table of result,the first,second and third example solved was
compared with Areo & Rufai (2016) were the fourth and fifth example was compared with Ramos et al. (2016) the newly develop
method performed better. Overall, in this paper, a class of numerical schemes are developed in which fractions was used as the
step-lengths for second order ordinary differential equations. The resulting methods are consistent and zero stable, therefore it
convergences. The methods have good region of absolute stability. The results of the problem show that the method is effective
and accurate compared with Areo & Rufai (2016) and Ramos et al. (2016) methods.
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