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ABSTRACT

In this paper, a class of hybrid block methods for solving second order ordinary differential equations directly was developed. This
class was obtained by interpolation and collocation techniques. The methods were analyzed based on the qualitative properties of
linear multi-step methods and were found to be zero-stable, consistent and convergent with good region of absolute stability. The
proposed methods were analyzed quantitatively and implemented on second order ordinary differential initial value problems. An
improved performance of the new methods over existing methods in the literature was shown by solving five numerical examples.
The results were presented in tabular form.
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1. INTRODUCTION

Issac Newton discovered a large number of differential equations. He was responsible for large number of this type of equations in
Physic and Mathematics. He is also responsible for the systematic development of model of motion. He has other discoveries like
personal finance, electric circuits, behavior of musical instruments the logistic equation, electric magnetion, quantum chronody-
namics oscillation, among others. A differential equation shows relationship between a function that is unknown and its respective
derivatives. The order of the equation depends on the highest derivative of the the dependent function. Practically, this work
contains extensive qualitative and quantitative analysis of a class of effective numerical methods used in approximating second
order class of differential equations.

The solution of Initial Value Problems(IVPs) in Ordinary Differential Equations (ODEs) of the form

Y = fy,y e y™ 0
y(x0) =170, ¥ (x0) = 115 Y"1 (X0) = Nm-1,

with the interval [xg,x;] has given rise to the methods of one step and multi-step methods. This is majorly attributed to Linear
Multi-step Methods (LMMs). From literature, many scholars look for alternative methods of solving (1) and higher order differential
equations without reducing them to systems of first order differential equations. Authors such as
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The first derivatives of the equations (2) give
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Next, we derive the block for a new one-fifth step hybrid method
In order to get the blocks for derivation of the block methods and to test for the zero stability, we combine equations (5), (6) and
(7) and use their coeflicients in the block form
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After normalizing the equation (8) we obtain
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By rewriting equation (9) explicitly, we get:
1 19 13 1
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Ynads = In T 50 ¥ (81000f" 350077+ * 270007+ + To125/m %
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Substituting y,, 2 of equation (10) into the equations (5), (6) and (7) gives
Yoy = I IR fu 31690f o s+ g )
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2. ANALYSIS OF THE METHODS

The methods have some basic properties which establish their validity. The properties: order error constant, consistency and zero
stability reveal the nature of convergence of the methods.

2.1. Order and Error Constant

We define the truncation error associated with equation (10) by the difference operator

k

L) =Y fagy Gt jh) = gy o+ vjh) = BBy (a4 1) = 2By (x4 ). (12)
Jj=0

where y(x) is an arbitrary test function which is continuously differentiable in the interval expanding (x) in Taylor series about x;,
and collecting like terms in & and y gives

L (y (x)) = Coy(x) + C1hy’ (x) + C2h?y" (x) + C3h3Y (x) + ... + Cppy33hP P yPH (x), (13)

where the coefficient C,,q =0, 1,2, ... are given as
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According to Henrici (1962) method (13) has order pif Co = C1 = C = ...C;, = Cpy1 =0and Cpyp # 0
The Cp42 # 0is called the error constant and C p+2h”+2 yP*2(x) is the principal local truncation error at the point x,,. Using Taylor
series expansion on equations (10) and (11) we get the order of the new proposed block methods respectively as (4, 4,4, 4,4,4)
with error constants as
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2.2. Zero stability of One-fifth Step-length For Second Order Differential Equation

In order to test for zero stability of the block method (10), we consider the matrix difference equation of the form

P Yt = P yim + W2 [Q°Fps1 + Q Fo + hR'], (14)
where
Yiret = Vgt oYt 1 Yo = e e eodnl Fnet = [yt oot 1 Fn = [y ful (15)
The matrices p°, p’, 0°, Q" and RPare the coefficients of equation (10) which defined as follows
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A block method is said to be zero stable if the roots
|(4p° = p'1[=0
are sample with maximum modulus 1.
Now
1 0 0 0 0 1 0 0 -1
‘[ﬁpo—p’](za 01 0l-]loo 1]=[oo0 -1]=0 @1
0 0 1 0 0 1 0 0 -1

implies that A3 — A2 = 0, This gives 1 = 0,0, 1.
Since the root have modulus less than or equal to one and are simple, the method in zero-stable
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2.3. Consistency of One-fifth Step Length For Second Order Differential Equation.

The first and second characteristic polynomials of method (10) are given by Remark
condition (i) is the a sufficient condition for the associated block method to be consistent.
Consistency of the main method (10) The first and second characteristic polynomials of method (10) are given by

1, 3
p(z) =25 + EZO - EZ% (22)
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The method (10) is consistent if it satisfies the condition
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Hence the method is consistent.
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2.4. Convergence

The convergence of the continuous implicit hybrid block method base on the basic properties discussed above with the fundamental
theorem of Dahlquist for the linear multi-step methods. The theorem is stated below without proof.

Theorem 1

The necessary and sufficient condition for a linear multi-step method to be convergent is for it to be consistent and zero stable.

2.5. Region of Absolute Stability of the Block Method

The stability matrix for the method is defined as follows:

M(z) =V +zB(M - zA)U (24)
and the stability function
p(n,2) =det(nl — M(2)). (25)
Then, we represent the block method in form of
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This gives the stability polynomial of the one-fifth step method which was plotted below

91
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Figure 1: Region of Absolute stability of % HBMS

3. NUMERICAL EXAMPLES

In this section, some numerical examples of second order ordinary differential equations are solved. The methods are implemented
directly without using any starting value and with use of Matlab and Maple. The table below shows some notations that were use
to present the numerical and graphical results obtained for some test problems by application of the proposed schemes.

Problem 1: Consider a Linear non-homogeneous test problem

y// — 3y/ + 8€2x,
y(0) =1,

y'(0)=1,h=0.05
Exact solution:
y(x) = —4e* + 3¢ +2.

Problem 2: Consider a specially oscillatory test problem

y// — _/12)7,

y(0) =1,y (0)=2, h=0.01, 1=2
Exact solution:
y(x) = cos2x + sin 2x.
Problem 3:Consider a singular non-homogeneous test problem

’
"

2
+xe’ —y(l+ =)
x

Gy =d-r+ peHr+2)

V(3 =3@+ed)
h =0.003125

Exact solution:
1
y(x) = 2xcosx + 4x sinx + Exex.

Problem 4: We consider a linear homogeneous test problem




Exact solution :
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y(0)=0, y(0)=-1, h=0.1

y(x)=1-¢*

Problem 5: We consider a non-linear non-homogeneous test problem

Exact solution:

Y =x(y)?

1
y(0) =1, y'(0) = 5 h=0.1

y(x)=1+ %ln(

3.1. Tabular Presentation of Numerical Results

2+x
2—x

).

Here we present numerical and errors results for %H BM in tabular form below

Table 1: Numerical Results for Problem 1

X Exact Computed Errorinourmethod | Errorin Areo(2016)
0.0100 | 1.01979867335991 | 1.01979867335989 1.8874E — 14 8.4599F - 14
0.0200 | 1.03918944084761 | 1.03918944084754 7.5939E - 13 3.4861E — 13
0.0300 | 1.05816454641465 | 1.05816454641448 1.7231E - 13 7.8870FE — 13
0.0400 | 1.07671640027179 | 1.07671640027149 3.0509E - 13 1.4004E — 12
0.0500 | 1.09483758192485 | 1.09483758192438 4.7384E — 13 2.1791E - 12
0.0600 | 1.11252084314279 | 1.11252084314211 6.7768E — 13 3.1208E — 12
0.0700 | 1.12975911085687 | 1.12975911085596 9.1704E — 13 42211E - 12
0.0800 | 1.14654548998987 | 1.14654548998868 1.1884E — 12 0.23146FE - 11
0.0900 | 1.16287326621395 | 1.16287326621245 1.4924E — 12 6.8801E — 12
0.1000 | 1.17873590863630 | 1.17873590863448 1.8268E — 12 8.4293F - 12

Table 2: Numerical Results for Problem 2

X Exact Computed Error in our method | Error in Areo(2016)
0.0050 | 1.00513852551049 | 1.00513852547870 3.1790E — 11 1.2349E — 09
0.0100 | 1.01055824175353 | 1.01055824162003 8.4730F - 11 2.6905E - 09
0.0150 | 1.01626544391208 | 1.01626544360366 3.0842E - 10 4.3738E - 09
0.0200 | 1.02226654286653 | 1.02226654230753 5.5900E - 10 6.2921E - 09
0.0250 | 1.02856806714980 | 1.02856806626307 8.8673E - 10 8.9697E — 09
0.0300 | 1.03517666493419 | 1.03517666364109 1.2931E - 09 1.0863E — 08
0.0350 | 1.04209910605025 | 1.04209910426619 1.7841E - 09 1.6463E - 08
0.0400 | 1.04934228403829 | 1.04934228168012 2.3581E - 09
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Table 3: Numerical Results for Problem 3

X Exact Computed Error in our method | Error in Areo(2016)
1.7000 | 10.95785118097658 | 10.95785118071406 2.6252E - 10
1.8000 | 11.63820762976944 | 11.63820762869096 1.0785 - 09 4.0964E — 09
1.9000 | 12.31472912025427 | 12.31472911749325 2.7610E — 09 1.6840E — 08
2.0000 | 12.99859200531184 | 12.99859199968641 5.6254E — 09 0.43121E - 08
2.1000 | 13.70481572693030 | 13.70481571693856 9.9917E - 09 8.7867E — 08
2.2000 | 14.45259109075646 | 14.45259107457567 1.6181E — 08 1.5609E — 07
2.3000 | 15.26561176327774 | 15.26561173877142 2.4506E - 08 3.8289E - 07
2.4000 | 16.17241142639307 | 16.17241139112289 3.5270E - 08 5.5108E — 07
2.5000 | 17.20670978769302 | 17.20670973893582 4.8757E - 08 7.6182E - 07
2.6000 | 18.40777146832744 | 18.40777140309677 6.5231E - 08 1.0192E - 06
Table 4: Numerical Results for Problem 4
X Exact Computed Error in our method | Error in Ramos et al(2016)
0.1000000 | —0.105170918075647710 | —0.105170918075646940 | 7.77156117E — 15 —0.105170918075645880
0.2000000 | —0.221402758160170080 | —0.221402758160166880 | 3.19189120F — 14 5.441E - 07
0.3000000 | —0.349858807576003410 | —0.349858807575995860 | 7.54951657E — 14 9.114E - 07
0.4000 —0.491824697641270790 | —0.491824697641256470 | 1.43218770E — 13 1.329E - 06
0.5000 —0.648721270700128640 | —0.648721270700105430 | 2.32036612F — 13 1.447E - 06
0.6000 —0.822118800390509770 | —0.822118800390473690 | 3.60822483FE — 13 2.435E - 06
0.7000 —1.013752707470477500 | —1.013752707470424700 | 5.28466160F — 13 3.153E -6
0.8000 —1.225540928492468800 | —1.225540928492394400 | 7.43849426F — 13 4.965E — 06
0.9000 —1.459603111156951200 | —1.459603111156850200 | 1.01030295E — 12 4.948F — 06
Table 5: Numerical Results for Problem 5
X Exact Computed Error in our method | Error in Ramos et al(2016)
0.1000000 | 1.050041729278491400 | 1.050041729278491800 | 0.444089210F — 15 1.18393E - 10
0.2000000 | 1.100335347731074900 | 1.100335347731074900 0.000000E — 00 2.3749E - 10
0.3000000 | 1.151140435936465000 | 1.151140435936462300 0.26645E — 14 4.2485FE - 10
0.4000 1.202732554054079200 | 1.202732554054065400 0.13766FE — 13 6.1628E — 10
0.5000 1.255412811882991000 | 1.255412811882949100 0.41966F — 13 1.0233E - 09
0.6000 1.309519604203106100 | 1.309519604203005100 0.10103E — 12 1.4483E - 09
0.7000 1.365443754271389100 | 1.365443754271173500 2.1560E — 013 2.5449E — 09
0.8000 1.423648930193593300 | 1.423648930193167200 0.4261E — 12 3.7221E - 09
0.9000 1.484700278594041300 | 1.484700278593238400 0.80291F — 12 7.3287E — 08

4. DISCUSSION OF RESULTS AND CONCLUSION

In this paper, we developed one-fifth order initial value problems directly with out reducing the system of first order differential
equation. the method that was develop was test by using it to solve numerical examples which are linear,non linear and stiff
initial value problems of second order ordinary differential equation. The table of results of our method is show below comparing
the proposed method with the exalt and the existing method. In the table of result,the first,second and third example solved was
compared with Areo & Rufai (2016) were the fourth and fifth example was compared with Ramos ef al. (2016) the newly develop
method performed better. Overall, in this paper, a class of numerical schemes are developed in which fractions was used as the
step-lengths for second order ordinary differential equations. The resulting methods are consistent and zero stable, therefore it
convergences. The methods have good region of absolute stability. The results of the problem show that the method is effective

and accurate compared with Areo & Rufai (2016) and Ramos et al. (2016) methods.
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