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Gökçen Altun 1,†,

1Department of Econometrics, Ankara Hacı Bayram Veli University, Ankara, Türkiye
†gokcen.altun@hbv.edu.tr

Article Information

Keywords: Goodness-of-fit test
statistics; Independence model;
Power-divergence family; Small
sample

AMS 2020 Classification: 62Q05

Abstract

The family of power-divergence (PD) test statistic contains many well-known test statistics used in
the analysis of the contingency tables under the independence model. In this work, we compare the
various test statistics for the independence model. The type-I and type-II errors of the test statistics
are obtained and compared via simulation study considering the different degree of freedoms and
sample sizes. According to the simulation results, we recommend the PD(0.4) test statistic for
the small sample size based on its power and type-I error rates. Two applications are given to
demonstrate the usefulness of the PD(0.4) test statistic over the chi-square test statistic contingency
tables.

1. Introduction

The chi-square test was developed by [1] to evaluate the association or difference between categorical variables. The chi-square
test is commonly used in social and medical sciences to test the dependence structures of the levels of the categorical variables.
The results of the chi-square test are misinterpreted by the researchers because of the lack of statistical knowledge [2]. Besides,
the application of the chi-square test is very problematic for the small sample sizes which is ignored in many researches. It is
well-known that the test statistic of the chi-square test follows the χ2 distribution. However, the asymptotic approximation
is only valid for the non-sparse contingency tables and large sample sizes. Working with the less observations than needed
reduces the power of the test. Therefore, to obtain the higher power value, one should work with required sample size based on
the dimension of the contingency table [3, 4]. The determination of the sample size is done based on four inputs: type-I error,
type-II error or power, effect size and degree of freedom (df). The type-I and type-II errors are the pre-determined inputs [5].

When the contingency tables have large number of cells, the frequencies of each cell may be very small or has zero frequencies.
So, the contingency tables with large numbers of row and column variables yields the less observations in the cells. In this
case, these contingency tables are called as sparse contingency tables [6]. The sparse contingency tables occur when the the
values of 0 and 1 in many cells of the contingency table and the total number of cells are higher than the sample size [7, 8].
Besides, the sparseness index (SI) is useful to determine the sparse contingency tables. The SI is defined as

SI =
n

RC
,

where n is the sample size R is the number of rows and C is the number of columns in the contingency tables.

There are various studies in the literature for the comparison of goodness-of-fit test statistics in small samples. [9] performed
a study to find a clear answer about what is the minimum value of the expected frequency and sample size to achieve the
reasonable approximation to the χ2 distribution. [10] implemented a simulation study to compare the χ2, G2 and [11] test
statistic for 13 contingency tables. [10] found that the χ2 and Cressie and Read statistics can be used for smaller sample
sizes than suggested by [9]. Several rule of thumb were suggested by researchers for χ2 approximation of the Pearson and
likelihood ratio test statistics. [9] suggested that minimum cell expectation should be higher than 5t5/t where t5 is the number
of cells where the expected frequency is smaller than 5 and t is the total number of cells of the corresponding contingency
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table. [12] suggested that the sample size should be higher than 4 or 5 times t. [13] showed that the χ2 statistic is much more
appropriate than G2 statistic for the small sample size. Recently, [14] performed a comprehensive simulation study to asses the
small sample accuracy of the seven members of the power-divergence statistics for testing both independence and homogeneity
in contingency tables. The results of the study of [14] showed that G2 statistic rejects the null hypothesis too often in both
sparse and non-sparse contingency tables. They suggested the non-asymptotic variant of χ2 statistic removes the deficiency of
the Pearson χ2 statistic for sparse contingency tables. [15] investigated the determination of the power divergence parameter
under quasi-independence model. More recently, [16] studied the asymptotic properties of T 2 test statistic under the symmetry
model and concluded that the approximation of the T 2 test statistic to χ2 distribution is only valid for very large sample sizes.
While the chi-square approach gives healthy results in tables with a degree of freedom greater than 1 and a maximum of 20 %
of the expected frequencies below 5, this approach is weak in the sparse contingency table [7].

A general class of the test statistics was proposed by [11] and called as power-divergence (PD) family of statistics. The PD
statistics contains Pearson’s χ2, likelihood ratio statistic G2, Freeman-Tukey’s T 2, modified likelihood ratio statistics GM2 and
Neyman’s modified χ2 as its sub-models. Note that these test statistics follow χ2 distribution [12, 17, 18]. This study compares
the members of the PD test statistic using the different values of the parameter λ based on the independence model. The type-I
and power values of the test statistics are compared with simulation studies for different dimensions of the contingency tables.
The goal of the simulation study is to find the most powerful test statistic for the independence model considering the sample
sizes, type-I and type-II errors.

The other sections of the study is designed as follows. Firstly, the independence model is given in Section 2. The PD family
of statistics is given in Section 3. The comparison of the test statistics via simulation studies is presented in Section 4. The
recommended test statistic and Freeman-Halton (FH) test statistic is compared in Section 5. The power comparison of the most
powerful test statistic and χ2 test statistic based on the real datasets is given in Section 6. The future work and conclusions of
the presented study are given in Section 7.

2. Independence model

In the analysis of contingency tables, either ”row and column variables are independent of each other” or ”the constant levels
of one of the variables do not differ between the other variable levels” are tested according to the researcher’s purpose. The
total chi-square of the calculations for the entire R×C table is divided into row, column and relationship components as follows

χ
2
T = χ

2
R +χ

2
C +χ

2
RC. (2.1)

In two dimensional tables, the independence hypothesis is expressed with (2.2)

H0 : pi j = pi.p. j, i = 1,2,3, ...,R; j = 1,2,3, ...,C. (2.2)

The probability density function for the observed frequencies (ni j) is as follows

P
(

ni j
∣∣ pi j,n

)
=

n!
∏
i, j

ni j!
∏
i, j

pi j
ni j . (2.3)

Substituting pi j = pi.p. j in (2.3), we have
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Equality of ni j = npi j + ei j is written instead of n in (2.5). When the natural logarithm is taken using the Stirling series
expansion in (2.5), the three terms on the right side of the equation (2.5) follows approximately the chi-square distribution (see
[19].

X2
T =

R

∑
i=1

C

∑
j=1

(ni j−npi.p. j)
2

npi.p. j
. (2.6)

The quantity in (2.6) follows the chi-square distribution with (RC-1) degrees of freedom. The first part on the right side of the
equation is given by
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X2
R = ∑

i

(ni.−npi.)
2

npi.
, (2.7)

which follows the chi-square distribution with R-1 df. The second part is given by

X2
C = ∑

j

(n. j−np. j)
2

np. j
,

which follows the chi-square distribution with C-1 df. The third part is the test statistic calculated for the independence
hypothesis which is given by

X2
RC = ∑

i
∑

j

(ni j−ni.n. j/n)2

ni.n. j/n
.

The df can be extracted using the relation given in (2.1). So, the df of the independence model is (R−1)(C−1). The likelihood
estimates of expected values ei j under independence model is ei j = ni.n. j/n.

3. Power-divergence family

The PD family of statistics, PD(λ ), is given by

PD(λ ) =
2

λ (λ +1)

R

∑
i=1

C

∑
j=1

ni j

[(
ni j

ei j

)λ

−1

]
, (3.1)

where i = 1,2,3, ...,R, j = 1,2,3, ...,C and λ ∈ ℜ. When the λ = 0 and λ = −1, the equation (3.1) is not valid. So, the
limiting cases of (3.1) for λ = 0 and λ =−1 are given as follows
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respectively. As given in Section 1, the PD family of statistics contains various known test statistics as its sub-models.

• PD(1) reduces the Pearson’s χ2 test statistics

• PD(0) reduces the likelihood ratio G2 test statistics

• PD(-1/2) reduces the Freeman Tukey’s T 2 test statistics

• PD(2/3) reduces the Cressie Read test statistic C2

4. Simulation studies

Simulation studies are performed to evaluate the performance of the test statistics for the independence model. The multinomial
distribution is used to generate contingency tables. The below probability matrices are used to obtain type-I errors of the test
statistics. The probability matrices are generated by assuming that null hypothesis, H0 is true.

3x3 contingency table 3x4 contingency table 3x5 contingency table

0.10 0.06 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.09 0.06 0.09
0.15 0.09 0.06 0.06 0.06 0.04 0.04 0.02 0.02 0.06 0.04 0.06
0.25 0.15 0.10 0.21 0.21 0.14 0.14 0.05 0.05 0.15 0.10 0.15

Table 1: Probability matrices used to detect type-I errors for R = 3 and C = 3,4,5
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4x4 contingency table 4x5 contingency table

0.02 0.03 0.01 0.04 0.02 0.02 0.06 0.04 0.06
0.04 0.06 0.02 0.08 0.03 0.03 0.09 0.06 0.09
0.06 0.09 0.03 0.12 0.03 0.03 0.09 0.06 0.09
0.08 0.12 0.04 0.16 0.02 0.02 0.06 0.04 0.06

Table 2: Probability matrices used to detect type-I errors for R = 4 and C = 4,5

5x5 contingency table

0.01 0.01 0.03 0.02 0.03
0.01 0.01 0.03 0.02 0.03
0.03 0.03 0.09 0.06 0.09
0.02 0.02 0.06 0.04 0.06
0.03 0.03 0.09 0.06 0.09

Table 3: Probability matrix used to detect type-I errors for R = 5 and C = 5

Also, the below matrices are used to obtain power of the test statistics.

3x3 contingency table 3x4 contingency table 3x5 contingency table

0.03 0.11 0.06 0.01 0.04 0.01 0.04 0.09 0.01 0.04 0.12 0.04
0.2 0.03 0.07 0.09 0.03 0.07 0.01 0.07 0.04 0.03 0.01 0.05

0.15 0.22 0.13 0.15 0.3 0.05 0.2 0.1 0.12 0.15 0.05 0.08

Table 4: Probability matrices used to detect powers for R = 3 and C = 3,4,5

4x4 contingency table 4x5 contingency table

0.05 0.01 0.03 0.01 0.1 0.05 0.01 0.02 0.02
0.01 0.02 0.1 0.07 0.1 0.1 0.05 0.03 0.02
0.1 0.02 0.08 0.1 0.1 0.1 0.05 0.03 0.02

0.15 0.04 0.1 0.11 0.1 0.05 0.01 0.01 0.03

Table 5: Probability matrices used to detect powers for R = 4 and C = 4,5

5x5 contingency table

0.015 0.015 0.04 0.01 0.02
0.02 0.02 0.015 0.03 0.015
0.02 0.04 0.07 0.09 0.08
0.03 0.04 0.03 0.07 0.03
0.04 0.06 0.06 0.09 0.05

Table 6: Probability matrix used to detect powers for R = 5 and C = 5

These probability matrices are generated by assuming that the alternative hypothesis, H1 is true. The row and column marginal
probabilities are degenerated to create the departure from the independence model. The significance level α is determined as
0.05. The interpretation of the simulation results are done based on the 0.06 value. The test statistics having the type-I error
above the 0.06 value are considered as inappropriate. The simulation replication is determined as N = 10,000.

Table 7 shows the effect sizes of the contingency tables used for the power calculation. Note that the effect sizes of the
contingency tables used for the type-I error is zero. As reported in Table 7, the small and moderate effect sizes are used to
compare the power values of the test statistics.
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Effect size Dimension

3x3 3x4 3x5 4x4 4x5 5x5

w 0.4341 0.3328 0.4691 0.3328 0.2564 0.2642

Table 7: The effect sizes of the contingency tables used for the power calculation.

4.1. Type-I error

Figure 1 displays the simulation results for the 3x3 contingency table. We also consider the sparseness index to analyze the
behaviours of the test statistics for the small sample sizes. When the indicator SI is below 5 value, we call this contingency
table as sparse table. So, the contingency table is called as sparse table if the number of observations is below 45 for the R = 3
and C = 3. This value is plotted in the figures vertically. According to the findings in Figure 1, we evaluate the convergence of
the test statistics to χ2 distribution. From Figure 1, we observe that T 2, G2, PD(0.1), PD(0.2) and PD(0.3) are above the 0.06
value which is evidence that these test statistics do not converge to χ2 distribution. When the sample size is above 150, all test
statistics work well, except T 2.

Figure 1: Type-I errors of the test statistics for R=3 and C=3.

Figure 2 displays the simulation results for the 3x4 contingency table. From these results, the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) test statistics do not converge the χ2 distribution for both sparse and non-sparse contingency tables. The vertical
line represents the sample size for the sparseness index which is 60. Additionally, the convergence of the G2 statistic to χ2

distribution needs high sample sizes for R = 3 and C = 4 contingency tables. The C2 performs better than the G2 statistic. All
test statistics converge to the χ2 distribution when the sample size is higher than 150, except T 2 statistic.

Figure 2: Type-I errors for R=3 and C=4.
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Figure 3 displays the simulation results for the 3x5 contingency table. Again, the same test statistics fail to converge the χ2

distribution. Here, the vertical line is 75 for the sample size of sparseness index. The G2 needs higher sample sizes to converge
to χ2 distribution for R = 3 and C = 5.

Figure 3: Type-I errors for R=3 and C=5.

The interpretation of the results of the 4x4, 4x5 and 5x5 contingency tables are similar to the previous simulation results. The
results of these contingency tables are plotted in Figure 4. The vertical lines of the figures are 80, 120 and 125, respectively.
From these figures, we conclude the convergence of the G2 to χ2 distribution is not valid for the small sample sizes.

The below findings are observed based on the simulation results of the test statistics for type-I errors.

• The convergence of the G2 statistic to χ2 distribution is very problematic for small sample sizes (see [20])

• The C2 statistic performs better than G2 statistic.

• The convergence of the T 2 statistic to χ2 distribution is only valid for the large sample sizes and it cannot be used for
any small sample size.

• The dimension of the contingency table effects the convergence of the statistics.

• More sample size is needed for the high dimensional contingency tables.

So, end of the simulation study for the type-I errors of the test statistics, we eliminate the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) statistics since they do not converge well to χ2 distribution. In the second step, we compare the power results of the
test statistics converges well to χ2 distribution.

Additionally, we compare the p-values of the test statistics for R=3, C=3 and n = 50. Let FX be the distribution of the test
statistic X under the null hypothesis. If FT is continious, the p-value is distributed as U(0,1) [21]. The distribution of the
p-values for test statistics are evaluated via Kolmogorov-Smirnov (KS) test. The histograms of the p-values of the test statistics
with the p-values of KS test are displayed in Figure 5. From these figures, it is clear that the distribution of the p-values of the
T 2, G2, PD(0.1), PD(0.2) and PD(0.3) test statistics do not follow the U(0,1) distribution since their p-values are lower than
0.05. It is evidence that these test statistics do not perform well for small sample sizes.
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Figure 4: Type-I errors for (top-left) R=4 and C=4, (top-right) R=4 and C=5 and (bottom) R=5 and C=5

The below findings are observed based on the simulation results of the test statistics for type-I errors.

• The convergence of the G2 statistic to χ2 distribution is very problematic for small sample sizes (see [20])

• The C2 statistic performs better than G2 statistic.

• The convergence of the T 2 statistic to χ2 distribution is only valid for the large sample sizes and it cannot be used for
any small sample size.

• The dimension of the contingency table effects the convergence of the statistics.

• More sample size is needed for the high dimensional contingency tables.

So, end of the simulation study for the type-I errors of the test statistics, we eliminate the T 2, G2, PD(0.1), PD(0.2) and
PD(0.3) statistics since they do not converge well to χ2 distribution. In the second step, we compare the power results of the
test statistics converges well to χ2 distribution.

Additionally, we compare the p-values of the test statistics for R=3, C=3 and n = 50. Let FX be the distribution of the test
statistic X under the null hypothesis. If FT is continious, the p-value is distributed as U(0,1) [21]. The distribution of the
p-values for test statistics are evaluated via Kolmogorov-Smirnov (KS) test. The histograms of the p-values of the test statistics
with the p-values of KS test are displayed in Figure 5. From these figures, it is clear that the distribution of the p-values of the
T 2, G2, PD(0.1), PD(0.2) and PD(0.3) test statistics do not follow the U(0,1) distribution since their p-values are lower than
0.05. It is evidence that these test statistics do not perform well for small sample sizes.
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Figure 5: The distribution of p-values for the test statistics under R=3 and C=3 and n = 50

4.2. Power of test

Now, we examine the power results of each test statistics which are the members of the power-divergence family. The
contingency tables are generated using the probability matrices given in Section 4.1. According to the results of the type-I
errors of the test statistics, T 2, G2, PD(0.1), PD(0.2) and PD(0.3) do not converge the χ2 distribution. Although the power of
test results are reported for all test statistics, T 2, G2, PD(0.1), PD(0.2) and PD(0.3) are not considered in evaluation of the
power results.

Figure 6 displays the power results of the test statistics for 3x3 contingency table. As seen from these Figure, T 2 has the
highest power value among others. However, since it does not converge the χ2 distribution, its power result is not meaningful.
Similarly, the power results of the G2, PD(0.1), PD(0.2) and PD(0.3) statistics are also not meaningful. After eliminating
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these test statistics, the most powerful test statistics is PD(0.4) for 3x3 contingency table. Vertical lines of the Figure 6 shows
the minimum required sample size to achieve the 0.80 and 0.90 power values. The minimum sample size is 60 for the power
0.80 and minimum sample size is 75 for the power 0.90.

Figure 6: Power results under R=3 and C=3.

Figure 7 displays the power results of the test statistics for 3x4 contingency tables. These results are also in favour of the
PD(0.4) test statistics. The minimum sample size for the powers 0.80 and 0.90 are 65 and 80, respectively.

Figure 7: Power results under R=3 and C=4.

Similarly, Figure 8 displays the power results of the test statistics for 3x5 contingency table. The most powerful test statistic is
PD(0.4). As in previous results, the PD(0.4) test statistics has the highest power among others. The minimum sample size for
the powers 0.80 and 0.90 are 70 and 90, respectively.
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Figure 8: Power results under R=3 and C=5.

Figure 9 displays the power results of the test statistics for 4x4 contingency table. PD(0.4) is again the most powerful test
statistic among others. From these results, we conclude that the minimum required sample size is 130 to achieve at least 0.80
power and required sample size is 150 to achieve at least 0.90 power.

Figure 9: Power results under R=4 and C=4.

Figure 10 displays the power results of the test statistics for 4x5 contingency table. Results show that PD(0.4) has the highest
power. According to the vertical lines, the required sample size is 160 for the power 0.80 and 195 for the power 0.90.
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Figure 10: Power results under R=4 and C=5.

In a similar vein, Figure 11 displays the power results of the test statistics for 5x5 contingency table. Again, PD(0.4) has the
highest value of the power results. The required sample size is 280 for the power 0.80 and 350 for the power 0.90. As seen
from these results, once the dimension of the contingency table increases, the required sample size increases to reach higher
power values.

Figure 11: Power results under R=5 and C=5.

Table 8 shows the minimum required sample sizes for the contingency tables to reach the minimum 0.80 and 0.90 power values.
As seen these results, the required sample size is an increasing function of the dimension of the contingency table. Therefore,
higher dimension needs more sample size. The determined effect sizes for each table dimension are reported in Table 7.

Table dimensions Power

0.8 0.9

3x3 60 75
3x4 65 80
3x5 70 90
4x4 130 150
4x5 160 195
5x5 280 350

Table 8: Minimum required sample sizes for the powers 0.8 and 0.9

As given in Section 1, the sample size is function of type-I error, power, df and effect size (see, Section 5). The powers are
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calculated by considering the different values of the effect size, df and sample sizes for the fixed type-I error 0.05. The results
are given in Table 9. From these results, it is seen that when the effect size is low, the required sample size should be large to
obtain the high power. Also, when the df is high, the sample size should be large to obtain the high power. Under these results,
if Table 8 is revisited, the sample sizes given in this table are determined based on the high effect sizes.

Sample size (df=4) w=0.05 w=0.15 w=0.30 w=0.50 Sample size (df=6) w=0.05 w=0.15 w=0.30 w=0.50

50 0.056 0.113 0.358 0.820 50 0.055 0.100 0.303 0.758
100 0.063 0.189 0.663 0.989 100 0.060 0.161 0.589 0.980
150 0.069 0.272 0.852 1.000 150 0.065 0.229 0.796 0.999
200 0.076 0.358 0.943 1.000 200 0.071 0.303 0.911 1.000
250 0.083 0.443 0.980 1.000 250 0.076 0.378 0.965 1.000
500 0.121 0.773 1.000 1.000 500 0.106 0.705 1.000 1.000

Sample size (df=8) w=0.05 w=0.15 w=0.30 w=0.50 Sample size (df=9) w=0.05 w=0.15 w=0.30 w=0.50

50 0.054 0.092 0.267 0.706 50 0.054 0.089 0.253 0.683
100 0.058 0.143 0.534 0.968 100 0.058 0.137 0.510 0.962
150 0.063 0.202 0.747 0.998 150 0.062 0.192 0.725 0.998
200 0.067 0.267 0.879 1.000 200 0.066 0.253 0.863 1.000
250 0.072 0.334 0.948 1.000 250 0.070 0.317 0.939 1.000
500 0.097 0.650 1.000 1.000 500 0.094 0.626 1.000 1.000

Table 9: The calculated powers for the different values of the effect size, df and sample sizes

5. Comparison of PD(0.4) and Fisher-Freeman-Halton exact test statistics

It is well-known that the Fisher exact test is used for R=2 and C=2 contingency tables when more than 20% of cells have
expected frequencies less than 5. However, when the table dimension is larger than 2×2, the FH test is used [22]. In this
section, we compare the empirical type-I error rates of the PD(0.4) and the FH test statistics based on the simulation study.
The same probability matrices given in Section 4 are used. The type-I errors of the PD(0.4) and FH test statistics are reported
graphically in Figures 12, 13 and 14. As seen from these figures, it is observed that the PD(0.4) and FH produce similar results
in terms of their type-I error rates. Both test statistics can be used for sparse and non-sparse contingency tables. The obtained
type-I errors of the PD(0.4) and FH test statistics are below the desired value, 0.05. Also, the empirical power values of the
PD(0.4) and FH test statistics are reported in Figures 15, 16 and 17. PD(0.4) and FH test statistics produce similar results for
their power values, as in type-I error rates.

Figure 12: Type-I errors of the PD(0.4) and FH test for R=3 and C=3(left) and R=3 and C=4 (right)
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Figure 13: Type-I errors of the PD(0.4) and FH test for R=3 and C=5(left) and R=4 and C=4 (right)

Figure 14: Type-I errors of the PD(0.4) and FH test for R=4 and C=5(left) and R=5 and C=5 (right)

Figure 15: Power values of the PD(0.4) and FH test for R=3 and C=3(left) and R=3 and C=4 (right)
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Figure 16: Power values of the PD(0.4) and FH test for R=3 and C=5(left) and R=4 and C=4 (right)

Figure 17: Power values of the PD(0.4) and FH test for R=4 and C=5(left) and R=5 and C=5 (right)

6. Power comparison of the PD(0.4) and χ2 test statistics via real data application

The sample size determination is an important step of any field work. Before collecting the data, the researcher should know
how many observations is needed to reach the desired power value. The sample size is a function of three parameters. These
are effect size, type-I error and power to detect H1 hypothesis.

Let PD(0.4)c be the calculated value of the PD(0.4) test statistic which is calculated by

PD(0.4)c =
2

0.4(0.4+1)

R

∑
i=1

C

∑
j=1

[(
ni j

ei j

)0.4

−1

]
,

where ni j and ei j are the observed and expected frequencies, respectively . When the null hypothesis (H0) is true, the test
statistic is distributed as χ2 distribution with (R−1)(C−1) df. The null hypothesis is rejected when PD(0.4)c > χ2

(R−1)(C−1),α
where α is the significance level which is called as type-I error. When the null hypothesis is not true, the distribution of
PD(0.4)c follows the non-central χ2 distribution with non-centrality parameter λ and df (R−1)(C−1). The non-centrality
parameter λ is a function of n and effect size w. We have the following equation to calculate the parameter λ (see [3])

λ = nw2. (6.1)

The effect size is calculated by w =
√

PD(0.4)c
/

n. So, replacing w in (6.1), we have λ = PD(0.4)c. So, the power of the
PD(0.4)c test statistic can be obtained by
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Power = 1−Pr
(

χ
2
(R−1)(C−1),λ (PD(0.4)c)< χ

2
(R−1)(C−1),α

)
. (6.2)

The power of the χ2 test statistic can be easily computed by changing the PD(0.4)c in (6.2) with the test statistic value of the
χ2. In the remaining part of these section, we analyze two data sets to compare the PD(0.4) with χ2 test statistics. Note that
the calculated power values in the remaining part of this section are empirical powers.

6.1. Pneumonia data

To compare the power value of the PD(0.4) and χ2 test statistics, we use the data set on the vaccination program for the
pneumonia patients. The data can be found in the work of [23]. Also, the data set is given in Table 10. Here, the research
question is that Does the vaccine protect the individuals from the pneumococcal pneumonia disease?.

Health outcome Unvaccinated Vaccinated

Sick with pneumococcal
pneumonia 23 5

Sick with non-pneumococcal
pneumonia 8 10

No pneumonia 61 77

Table 10: The data set for vaccination program

The data is analyzed using the PD(0.4) and χ2 test statistics. Obtained results are given in Table 11. The significance level α is
selected 0.05 for both test statistics. According to the Table 11, both of the test statistics reject the null hypothesis. However,
the power value of the PD(0.4) test statistic is higher than the χ2 test statistic. So, we recommend the usage of the PD(0.4) test
statistic to obtain higher power value than those of the χ2 test statistic.

Test statistics Value df p-value Power

χ2 13.649 2 0.001 0.921
PD(0.4) 14.095 2 < 0.001 0.930

Table 11: Results of the test statistics for the pneumonia data

6.2. Epidemiological data

The second data is on the obesity risk of children based on their race. The data set can be found in [24]. Here, the research
question is that Does the obesity risk differ by the race?. To answer this question, we analyze the data set given in Table 12
with PD(0.4) and χ2 test statistics.

Risk Black White Others

At risk 185 140 90
Not at risk 80 17 23

Table 12: Epidemiological data for the children

The obtained results are given in Table 13. Based on the results in Table 13, since the power of PD(0.4) is higher than the χ2,
we recommend the PD(0.4) test statistic to analyze the current data set.

Test statistics Value df p-value Power

χ2 21.595 2 < 0.001 0.991
PD(0.4) 22.386 2 < 0.001 0.992

Table 13: Results of the test statistics for the epidemiological data

7. Conclusion

We compare the various members of the PD family as well as different values of λ using the extensive simulation study
based on the different settings such as dimensions of the contingency tables, type-I error, sample sizes and powers. When the
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parameter λ = 0.4, the test statistic reaches the maximum value of the power. Also, we compare the PD(0.4) test statistic with
χ2 test statistics based on the power values. Two applications to the real datasets show that PD(0.4) provides higher powers
than the χ2 test statistic. As a future work, we plan to develop the web-tool to calculate the required sample size and displays
the results of the PD(0.4) test statistic.
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