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Abstract 

 

In the study, red, yellow, and green lights at traffic lights were detected in real-world conditions and in real 

time. To adapt to real-world conditions, A data set was prepared from traffic lights in different locations, 

lighting conditions, and angles. A total of 5273 photographs of different traffic lights and different burning 

lamps were used in the data set. Additionally, grayscale, bevel, blur, variability, added noise, changed image 

brightness, changed color vibrancy, changed perspective, and resized and changed position have been added 

to photos. With these additions, the error that may occur due to any distortion from the camera is minimized. 

Four different YOLO architectures were used to achieve the highest accuracy rate on the dataset. As a result, 

the study obtained the highest accuracy at 98.3% in the YOLOV8 architecture, with an F1-Score of 0.939 

and mAP@.5 value of 0.977. Since the work will be done in real time, the number of frames per second 

(FPS) must be the highest. The highest FPS number was 60 in the YOLOv8 architecture. 
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1. Introduction 

In recent years, electric vehicles have come to the fore 

again. The most important reason is that technology is 

advancing rapidly, and fossil fuels are losing their appeal 

[1]. Another reason is that electric vehicles are 

environmentally friendly [2]. Internal combustion 

engines have carbon emissions. Although efforts are 

made to reduce these rates, they remain high. Carbon 

emissions exceed the acceptable level with the increased 

number of vehicles. For this reason, it has accelerated the 

search for cleaner automobiles globally [3]. With the 

rapid development of technology, the concept of 

driverless vehicles has been added to electric vehicles. 

Electric vehicles have a very suitable structure for 

autonomous vehicles [4]. Mechanical control in an 

electric vehicle is minimal. It is mainly controlled 

electrically. In an electric vehicle, many controls, such as 

vehicle movement, braking, charging, and steering 

control, are performed by electrical signals. For this 

reason, it facilitates software-based control [5]. Artificial 

intelligence is used in many areas. One of these is electric 

vehicles. Electric vehicles can recognize their 

surroundings through sensors around the car. Thanks to 

sensors, vehicles can be developed as driverless [6]. The 

first way to get information from the environment of an 

electric and autonomous vehicle is through cameras and 

sensors. The use of sensors produced with the advanced 

technology used today in autonomous vehicles is also 

efficient and active [7-13]. The most important example 

of this is traffic lights. More than detecting traffic lights 

by cameras is required. The condition of the lights is also 

essential for autonomous drivers. There are many studies 

on the detection of traffic lights [14-20]. 

 

Many different deep-learning architectures are used to 

detect traffic lights. YOLO architecture provides good 

results in detecting traffic lights. They focused on 

specific features such as shape, color, and texture to 

detect traffic lights. In the study, hand-made features 

were added to the system to prevent sensor and 

atmospheric noise. Bosch small traffic light dataset was 

used as the dataset. As a result of the study, 55.7% mAP 

result was obtained. As a result of the study, only a traffic 

light was detected [21]. Multi Backbone Network 

(MBBNet) is a different architecture used for traffic light 

detection. MBBNet consists of three co-convolution 

modules. These are normal, residual, and DenseNet 

highway modules. With the study conducted, an accuracy 

of 0.94 was achieved. The size of the work is 1.35 MB. 

With this small size, it has achieved low power 

consumption, high resolution, and 14 FPS speed [22]. 
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Using an accurate data set to detect traffic lights may be 

appropriate sometimes. Obtaining an actual data set is 

high in terms of time and cost. More accurate data is 

needed for this dataset. Somewhat unrealistic computer 

graphics were used. In this way, the data set was fast and 

cost-effective. As a result of the study, it was compared 

with the studies obtained with the actual data set; in the 

study in which the data set was prepared using computer 

graphics, a 4% higher accuracy rate was obtained [23]. 

Traffic lights are always working. For this reason, an 

effort was made to detect traffic lights during the day and 

at night. He used color features to detect traffic lights. 

The data set used two types of traffic lights: those 

illuminated by traditional bulbs and LED lights. Bayesian 

methane was used to filter the captured images. As a 

result of the study, an accuracy of 99.4% was achieved 

[24]. The regression method is a different method of 

detecting traffic lights. In this method, they used images 

taken from cameras mounted on vehicles. With this 

image, they detected small traffic lights with a focus 

regression deep learning architecture consisting of an 

encoder-decoder. In their study, they used the Bosch 

small traffic lights and LISA large traffic lights dataset. 

The study conducted with a small data set reached a 

maximum accuracy rate of 42%. The study was 

conducted with a large data set, reaching a maximum 

accuracy rate of 49%. The larger the data set, the higher 

the accuracy rate [25]. Traffic lights are only sometimes 

located in flat places. It is not easy to detect, especially at 

level crossings. Traffic flow is very intense at level 

crossings. They worked on a portable system to detect 

traffic lights at this density. In their study, they used 

DTDNet-Lite architecture to detect traffic lights. 

ResNet18 was used to increase the accuracy rate in their 

studies. VOC 2007 and a customized data set were used 

as the data set [26]. Convolutional Neural Networks and 

Deep Learning can be used to detect traffic lights. It used 

YOLOV5 and AlexNet architectures for traffic light 

detection. It used YOLOV5 architecture to detect and 

identify traffic lights. They then used AlexNet 

architecture to classify images. They created their own 

data sets instead of ready-made ones in their study. The 

data set they created contained low-light images. They 

used the ZeroDCE low light enhancement algorithm on 

the data set for this. As a result of their study, they 

achieved an accuracy of 87.75% [27]. 

 

In literature studies, only traffic lights are detected. More 

than detecting traffic lights is required in autonomous 

driving. In addition to the traffic light, it is also necessary 

to determine which light is on. Thus, autonomous driving 

takes place. In addition, Bosch's small traffic light dataset 

was mainly used in literature studies. The LISA ample 

traffic light dataset is mainly used. Studies carried out 

with this data remain only in simulation. It could be more 

successful in real applications. In real life, traffic lights' 

locations, sizes, shapes, and sizes vary. The data set 

created for autonomous driving should include traffic 

lights in real life. The data set created for this was 

obtained from traffic lights used in real life. While 

creating the data set, the traffic lights' location and height 

were considered. Photos were taken from different 

angles. In addition, a data set was created by taking 

photographs at different light intensities to detect day and 

night. Eight different YOLO architectures were used to 

achieve the highest accuracy rate in the created data set. 

In addition to accuracy, the FPS rate must also be very 

high. When the detection process is real-time, the FPS 

rate must be high as well as accurate. As a result of the 

study, FPS was 60. 

 

2. Materials and Methods 

 

The study was carried out in three stages. In the first 

stage, the data set was prepared. For this purpose, real-

life traffic lights were used. Thus, when the study is 

implemented, it will provide higher compliance in real 

life. The highest accuracy was achieved in the second 

stage using the data set in four different architectures. 

Since the work will be real-time, the FPS rate must also 

be excellent. In the last stage, it has been implemented in 

real life. Figure 1 shows the general structure of the study 

carried out to detect traffic lights. 

 

 
                     a                                          b 

 
                                        c 

 

Figure 1. a) Preparation of the data set b) Study 

implementation in real life. c) Using the data set in eight 

different YOLO architectures [28]. 

 

2.1. Data Set 

 

The first process to perform deep learning operations is 

to create the data set. Data set: Depending on the field in 

which it will be used, it may consist of mathematical 

expressions or visuals. Since traffic lights will be 

detected in real-time within the scope of this study, the 

data set consists of their images. It consists of an image 

matrix for digital processing. This matrix contains values 

between 0-255. With this data set, deep learning was 
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carried out using the Yolo algorithm to find traffic lights 

in a photo, video, or real-time image. For this process, the 

data to be used must first be collected. Data collection 

was achieved through manual photography. There are 

three essential points to consider when collecting images. 

 

Different locations: To find an object in a photo, video, 

or real-time image to be used in machine learning, the 

images of that object to be used in the data set must 

consist of images taken from different angles. This is 

important in minimizing erroneous object detection 

caused by an autonomous vehicle located on the right or 

left side of the road or at different heights when detecting 

traffic lights. 

  

Different lighting conditions and levels: Machine 

learning, performed with a data set consisting of 

photographs taken into account, will facilitate object 

detection in images with light levels that will likely be 

encountered at different times of the day. Thanks to deep 

learning performed with a data set consisting of images 

taken at different distances, the vehicle can detect traffic 

lights from different distances. 

  

Deep learning will be much more efficient because it 

addresses these issues. The data must be labeled after the 

collection process is completed. The labeling process 

enables marking the parts of the image containing 

meaningful pixels belonging to the desired object or 

person. In the study, red, yellow, and green lights of 

traffic lights were labeled. Many changes were made to 

the images that make up the data set, thus increasing their 

compatibility with the natural environment. The work 

carried out will be detected in real time. This will be done 

with images taken from the camera. An error that may 

occur in the camera will make detection difficult. For this 

purpose, all errors that may occur in the camera were 

applied to the photographs in the data set. Figure 2a, 25% 

variability has been added to the positioning and sizing 

of the images that comprise the database. Thus, this 

process was done with the help of the model being more 

durable, depending on the camera position. In Figure 2b, 

the images in the database are grayscale. In Figure 2c, 

+15% and -15% slope has been added to the images. In 

Figure 2d, random Gaussian blurring was performed to 

be more resistant to camera focus. In Figure 2e, +15% 

and -15% variability has been added to the rotations to be 

more resistant to camera roll. In Figure 2f, noise has been 

added to make it more robust against camera artifacts. In 

Figure 2g, +15% and -15% changes were made to the 

image brightness to make the model resistant to lighting 

and camera changes. In Figure 2h, the vividness of the 

colors in the images is randomly adjusted. In Figure 2i, 

perspective variability has been added to make it more 

resistant to camera, subject curtain, and aberration. 

 

 
 

Figure 2a)Sizing and position change, b)Grayscale, 

c)Adding slope, d)Blurring, e)Adding variability, f) 

Adding noise, g)Image brightness change, h)Colour 

vividness change, i)Perspective change. 

 

2.2. YOLO Architecture 

 

As its working principle, YOLO transforms the detection 

process into a regression process. Unlike Fast R-CNN, a 

traditional method, YOLO does not require possible 

areas where the object can be found to detect an object. 

Regression allows bounding box coordinates and 

probabilities to be created simultaneously for each class 

in the image. Instead of processing the image separately 

for each class, the image is looked at only once. After 

viewing the image, bounding box coordinates and 

probabilities for all classes are created. In this way, 

learning which objects are in the image and where 

precisely the objects are in the image is achieved very 

quickly. This significantly shortens the detection time 

compared to traditional object detection systems. Figure 

3 shows the general structure of the YOLO architecture. 



 

Celal Bayar University Journal of Science  
Volume 20, Issue 2, 2024, p 28-36 

Doi: 10.18466/cbayarfbe.1432356                                                                                              A. Karakan 

 

31 

 
 
Figure 3. YOLO architecture 

 

People can perform vision operations quickly and 

accurately. He can easily distinguish objects by looking 

at images. Using high algorithms makes the object 

detection process fast, and a high accuracy rate is 

achieved. In traditional object detection algorithms, an 

extra classification process is performed to classify the 

detected object. Algorithms first identify areas in an 

image where objects are likely to be found. 

Convolutional neural networks designed as classifiers in 

determined areas are run separately for each region to 

detect objects. Although the systems produced provide 

good results, the number of parameters and the required 

processing power increase because the image is 

processed in two separate processes. For this reason, it is 

impossible to use the systems in real-time operating 

systems. The R-CNN algorithm, one of the newest 

approaches designed in this way, first creates potential 

bounding boxes that can be found in an image. Then, 

region-based methods run a classifier on these proposed 

boxes. After classification, operations such as improving 

the confidence values of the generated bounding boxes, 

eliminating the detection of the same object multiple 

times, and reordering the boxes according to other boxes 

in the image are performed. Because each of these 

complex operations is trained separately, the system 

could be faster and easier to optimize. 

  

YOLO has brought new insight into object detection. 

There are bounding boxes in YOLO. This method is not 

available in traditional object detection methods. 

Additionally, he treated all transactions as a single 

regression problem. YOLO detects objects by looking at 

the image once. In this way, detection occurs very 

quickly. Multiple bounding boxes are predicted 

simultaneously with a single convolutional network. 

Class probabilities are estimated for each class with a 

single convolutional network. It has various benefits over 

traditional object detection methods with a single 

convolutional network model. 

 

3. Results and Discussion 

 

Probability model systems are examined under four 

headings. These are true positive (TP), false positive 

(FP), true negative (TN), and false negative (FN) values. 

These occur depending on whether the tag value of the 

tagged data and the prediction result made by the system 

match or not. Assuming that the labeled data is positive, 

the prediction result is TP if it is positive and FN if it is 

negative. Assuming that the labeled data is negative, the 

prediction result is FP if it is positive and TN if it is 

negative. 

  

Precision: Calculated as the ratio of predicted samples of 

true positive results to all predicted positive results. The 

formula for the precision value can be seen in equation 

3.1. 

                              P =
DP

DP+YP 
                                 (3.1) 

 

Sensitivity: Calculate the ratio of true positive results in 

predicted samples to all positive results that should occur. 

The formula for the sensitivity value is shown in equation 

3.2. 

 

                              P =
DP

DP+YP 
                                 (3.2) 

 

F1-Score: It is calculated as the harmonic mean of the 

values given above. The formula for the F-1 score is 

shown in equation 3.3. 

 

                   F1 Skoru = 2 ×
P ×R

P+R 
                              (3.3) 

 

Mean Average Precision (mAP): It is a metric system 

designed to evaluate values such as precision, sensitivity, 

F-1 score from a single point. The formula of the mAP 

value is shown in equation 3.4. 

                      
     

    ∑ 1𝑖𝑗
𝑜𝑏𝑗

  ∑  (𝐴𝑖 (𝐶) −   â𝑖ˆ(𝐶))² 
𝑐 𝐸 𝑐𝑙𝑎𝑠𝑠𝑒𝑠  

S²
𝑖=0         (3.4) 

 

In the YOLO model, each cell produces more than one 

bounding box. In actual positive cases, the box with the 

highest IoU value among the generated bounding boxes 

should be selected to calculate the attenuation value. In 

this way, bounding boxes with low IoU values will be 

eliminated in future generations, and bounding boxes 

with higher IoU values will be produced. To calculate the 

attenuation value, YOLO takes the sum of the square 

errors of the class, localization, and confidence values 

between the bounding boxes, which are the predicted and 

the actual reference values. These values are called loss 

of classification, loss of localization, and loss of trust. 

  

When an object is detected at classification loss, the 

square error of the conditional class probabilities is 

calculated for each class. It is possible to see the 

classification loss equation in Equation 3.5. 
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                    𝑚𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
                              (3.5) 

 

1𝑖
𝑜𝑏𝑗 

      = If there is an object in the cell, it is 1, otherwise 

it is 0. 

𝐴𝑖 (𝐶)    = It means the conditional class probability for 

class c in cell i. 
 

The localization loss calculates the loss value related to 

the location and size of the estimated bounding box. It is 

calculated only for the box detecting the object. It is 

possible to see the localization loss equation in Equation 

3.6. 

 

ƛ𝑐𝑜𝑜𝑟𝑑 ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

[(𝐸𝑖 − Ê𝑖)
2

+ (𝑦𝑖 − ŷ𝑖)2]𝐵
𝑗=0   

    

+ ƛ𝑐𝑜𝑜𝑟𝑑 ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √ŵ𝑖)
2

+𝐵
𝑗=0 

(√ℎ𝑖 − √ĥ𝑖)
2

]                                                          (3.6) 

1𝑖𝑗
𝑜𝑏𝑗 

      = If the bounding box j in cell i is responsible for 

object detection, it is 1, otherwise it is 0. 

 ƛ𝑐𝑜𝑜𝑟𝑑     = It increases the weight of the loss value in the 

bounding box coordinates. 

 

Confidence loss calculates the confidence value of the 

detecting box when the object is detected. It is possible 

to see the loss of trust equation in Equation 3.7 and 3.8.  

 

                ∑   S²
𝑖=0 ∑  1𝑖𝑗

𝑜𝑏𝑗
(𝐶𝑖 − Ĉ𝑖)²   𝐵

𝑗=0                   (3.7) 

 

Ĉ𝑖      = is the confidence value of box j in cell 

1𝑖𝑗
𝑜𝑏𝑗 

    = If the bounding box j in cell i is responsible for 

object detection, it is 1, otherwise it is 0. 

 

Loss of trust if no object is detected in the box: 

 

            ƛ𝑛𝑜𝑜𝑏𝑗 ∑   S²
𝑖=0 ∑  1𝑖𝑗

𝑜𝑏𝑗
(𝐶𝑖 − Ĉ𝑖)²  𝐵

𝑗=0              (3.8) 

 

Ĉ𝑖      = is the confidence value of box j in cell i. 

1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗 

    =  1𝑖𝑗
𝑜𝑏𝑗 

 is the complement value of. 

ƛ𝑛𝑜𝑜𝑏𝑗    = It is used to reduce loss when background is 

detected. 

 

Final loss value; It is the sum of classification, 

localization and loss of confidence values. 

 

 ƛ𝑐𝑜𝑜𝑟𝑑 ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

[(𝐸𝑖 − Ê𝑖)
2

+ (𝑦𝑖 − ŷ𝑖)2]𝐵
𝑗=0   +

 ƛ𝑐𝑜𝑜𝑟𝑑 ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

[(√𝑤𝑖 − √ŵ𝑖)
2

+ (√ℎ𝑖 −𝐵
𝑗=0 

√ĥ𝑖)
2

] +  ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

 𝐵
𝑗=0 +

 ƛ𝑛𝑜𝑜𝑏𝑗 ∑   S2

𝑖=0 ∑  1𝑖𝑗
𝑜𝑏𝑗

(𝐶𝑖 − Ĉ𝑖)
2

 𝐵
𝑗=0 +

  ∑ 1𝑖𝑗
𝑜𝑏𝑗

  ∑  (𝐴𝑖 (𝐶) − â𝑖ˆ(𝐶))² 
𝑐 𝐸 𝑐𝑙𝑎𝑠𝑠𝑒𝑠  

S²
𝑖=0            (3.9) 

 

3.1. YOLOv8 Architecture Results 

 

Firstly, the dataset YOLOV8 architecture was used in the 

study. The training period for identifying the red, yellow, 

and green lights in traffic lights to the YOLOV8 

architecture lasted 3 hours, 7 minutes, and 13 seconds. 

The highest accuracy rate for traffic lights was 99.1% in 

red lights, 98.6% in yellow lights, and 98.6% in green 

lights. The average accuracy rate was 98.3%. Table 1 

shows the results occurring in the YOLOv8 architecture. 

 

Table 1. Results of YOLOv8 architecture 

Class Precision Recall 
F1-

Score 
mAP@.5 

All 0.983 0.903 0.939 0.977 
Red 0.991  0.916 0.943 0.975 
Yellow 0.986 0.893 0.937 0.980 
Green 0.972 0.910 0.939 0.971 

 

The training process was carried out using the data set 

consisting of red, yellow, and green lights in the 

YOLOV8 architecture. The performance values of 

YOLOV8 architecture are Precision 98.3%, Recall 

90.3%, F1-Score 0.939, mAP@.5 0.977, 

mAP@.5:95:0.788. As a result of the YOLOV8 

architecture, the complexity matrix consists of two parts: 

the predicted value and the actual value. Figure 4 shows 

the complexity matrix realized in the system. 

 

 
 
Figure 4. Complexity matrix resulting from YOLOV8 

architecture 

 

3.2. Other Architecture Results 

 

In addition to the YOLOV8 architecture, YOLOV5, 

YOLOV6, and YOLOV7 architectures were also used in 

the study. The same data set was used in YOLOV5, 

YOLOV6, and YOLOV7 architectures. In this way, the 

error rate was tried to be minimized. Different 

mathematical algorithms were used in YOLOV5, 
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YOLOV6, and YOLOV7 architectures. For this reason, 

the results are different. Table 2 shows the average values 

of YOLOV5, YOLOV6, and YOLOV7 architectures. 

 

Table 2. Average results of YOLOV5, YOLOV6, and 

YOLOV7 architectures. 

Class Precision Recall 
F1-

Score 
mAP@.5 

YOLOV5 0.920 0.939 0.932 0.971 

YOLOV6 0.68  0.935 0.962 0.985 

YOLOV7 0.911  0.899 0.911 0.949 

 

Even though the same data set is used in YOLO 

architectures, different results are obtained. The biggest 

reason is that different mathematical algorithms are used 

in each architecture. This varies depending on the size or 

smallness of the data set. However, the most essential 

feature is the usage area. 

  

When the study examined the accuracy, the highest 

accuracy was obtained at 98.30% in the YOLOv8 

architecture. The lowest accuracy was in the YOLOv6 

architecture. The second and third accuracy rates were 

achieved in YOLOv5 and YOLOv7. When the F1 scores 

are examined, the highest rate occurred in the YOLOv6 

architecture. It was later implemented in YOLOv8, 

YOLOv5 and YOLOv7 architectures. 

  

All architectures used in the system used the same 

number of photos and photo sizes. As a result of the 

study, the highest accuracy rate was 0.98 for the 

YOLOv8 architecture. These values are average values. 

There are different accuracy rates for red, yellow, and 

green traffic lights. The reason for this is the differences 

between the lights. Average values were taken in the 

study. An accuracy rate of 0.98 was achieved in the 

YOLOv8 architecture. The lowest accuracy rates were 

0.68 in the YOLOv6 architecture. It was 0.920 and 0.911 

in YOLOv5, and YOLOv7 architectures. The accuracy 

rates of YOLOv5 and YO-LOv8 architectures are close 

to each other. Figure 5 shows one result of the operation 

of the system. 

 

 
 

Figure 5. One result of the operation of the system. 

Since the work will be real-time, the FPS speed must be 

sufficient. In the YOLOv8 architecture, which gives the 

highest accuracy rate, the speed has increased to 60 FPS. 

At this rate, it is sufficient for real-time detection. For this 

reason, a camera has been placed inside the vehicle. Real-

time detection was carried out with images taken from 

the camera.  

  

When the literature studies are examined, many studies 

have been done. In these studies, ready-made data sets 

were only used. In some studies, the most appropriate 

data set for the system was prepared. Table 3 shows the 

comparison of literature studies. 

 

Table 3. Comparison of literature studies. 

Writer 

Number 

of 

Image 

Architectural Precision 

Xie et all.  

[29]  
7000 

Faster R-

CNN 
%97.20 

Boyuk et 

all. [30] 
8726 

Faster R-

CNN 
%75.16 

Kamran 

et all. [31]   
1586 

Faster R-

CNN 
%60.72 

Gupta et 

all. [32] 
6772 

YOLOv3-

Tiny 
%77.00 

Kyrkou et 

all. [33] 
350 Dronet %95.00 

Sun et all. 

[34]   
32 YOLOv5 %93.30 

Yong et 

all. [35] 
755 GoogleNet %73.01 

Mansour 

et all. [36] 
397 

Faster R-

CNN 
%89.21 

Bayram et 

all. [37]   
3008 YOLOv6 %98.30 

Galayol et 

all. [38] 
 YOLOv7 %93.42 

Hassan et 

all. [39] 
 YOLOv6 %55.7 

Ngoc et 

all. [40] 
 YOLOv8 %98.50 

Gao et all. 

[41] 
 YOLOv4 %80.00 

Sarhan et 

all. [42] 
90 YOLOv3 %76.00 

Omar et 

all. [43] 
 YOLOv3 %67.21 

Nui et all. 

[44] 
 YOLOv5 %87.75 

 

As a result of the literature review, it is understood that 

the use of previously made systems in daily life is quite 

difficult. These difficulties have low fps value. For this 

reason, the systems cannot be used in real-time. The 

systems only stopped at traffic lights in certain places. In 

this case, different traffic lights cause the systems to be 



 

Celal Bayar University Journal of Science  
Volume 20, Issue 2, 2024, p 28-36 

Doi: 10.18466/cbayarfbe.1432356                                                                                              A. Karakan 

 

34 

detected at a very low rate or not at all. The data sets used 

in the studies consist of photographs taken at a certain 

time of the day. In real life, traffic lights are encountered 

at different times of the day. 

  

Four of the latest versions of the YOLO architecture were 

used in the study. In this way, the highest accuracy and 

fps rates were determined by comparison. Since YOLO 

architectures only look at the image once and perform the 

detection process, their frame rates are excellent. A speed 

of 60 fps was achieved in the YOLOv8 algorithm. In this 

way, detection can be done very quickly in real-time. 

  

Since the study will be used in real life, the data set must 

be prepared very well. For this purpose, the data set was 

prepared according to three important rules. These 

include different locations, lighting conditions, and 

levels, and finally, different distances. Examples were 

taken from traffic lights in different locations in real life. 

Images of traffic lights were taken under different 

lighting conditions and levels. Images were taken at 

different times of the day. Finally, images were taken 

from different distances. Thanks to these images, a data 

set was created. The more suitable the data set is to real 

life, the more accurate the detection process becomes. 

                            

4. Conclusion 

 

Autonomous devices are increasing in our lives day by 

day. The most important of these is that electric vehicles 

are autonomous. For electric vehicles to be autonomous, 

detecting traffic lights will not be enough. In order for the 

vehicle to move, it is necessary to determine which traffic 

light is on. The study carried out the detection of red, 

yellow, and green lights of traffic lights. For this, 

YOLOv8, YOLOv7, YOLOv6, and YOLOv5 

architectures were used. An accuracy of 98.3% was 

achieved in the YOLOv8 architecture. A speed of 60 fps 

was achieved in the YOLOv8 architecture. Thus, real-

time detection was made. The data set was prepared with 

images obtained from real traffic lights. These images 

were obtained at traffic lights of different shapes. In this 

way, the detection of red, yellow, and green lights in real-

life traffic lights has been achieved at a very high rate. 

  

The locations, shapes, and scales of traffic lights are very 

different. Traffic lights are difficult to detect in real-

world conditions due to their similarity to other objects. 

In addition to these features, detecting traffic lights is not 

sufficient in autonomous driving. It is necessary to 

determine which of the red, yellow, and green lights is on 

at traffic lights. In the study, red, yellow, and green lights 

on traffic lights were detected in real-time. With the study 

conducted, traffic lights were detected in many different 

ways in real life with high accuracy. For autonomous 

driving, detection alone is not enough. The detection 

process needs to be adapted to the autonomous system. 

First of all, a warning system should be added to the 

driver. The driver must be warned audibly and visually. 

In the next work, the vehicle should be enabled to switch 

to autonomous driving and brake automatically. In this 

way, human error will be minimized. 
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