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Synthesis, Enzyme Inhibition, and Acid 
Dissociation Constant of 1,4-Naphthoquinone 
Thiazole Hybrid

Research Article

ABSTRACT
In this study, N-((Z)-4-((3r,5r,7r)-adamantan-1-yl)-3-(3-amino-1,4-dioxo-
1,4-dihydronaphthalen-2-yl)thiazol-2(3H)-ylidene)-2,6-difluorobenzamide 3 
was synthesized as a new 1,4-naphthoquinone thiazole hybrid compound by 
reaction of naphthoquinone acyl thiourea compound 2 with 1-((3r,5r,7r)-ada-
mantan-1-yl)-2-bromoethan-1-one in 74% yield and its molecular structure was 
characterized by various analytical techniques such as 1H/13C NMR, FT-IR, and 
HRMS. The inhibition effect of the synthesized compound on butyrylcholinest-
erase (BChE), acetylcholinesterase (AChE), and human carbonic anhydrase 
isoenzymes (hCA I and hCA II) was investigated. The product 3 showed vary-
ing degrees of inhibition 89.92 ± 10.47 nM (against hCA I), 51.60 ± 5.37 nM 
(against hCA II), 68.11 ± 6.58 nM (against AChE), and 126.90 ± 10.99 (against 
BChE). Although 1,4-naphthoquinone thiazole hybrid 3 showed significant en-
zyme activity against the enzymes tested, it showed a higher inhibition activity 
against the AChE enzyme than the standard drug Tacrine. Three acid dissociation 
constants (pKa) values (pKa1= 2.75±0.02, pKa2= 6.79±0.02, pKa3= 10.85±0.02) of 
the product were determined potentiometrically in 0.1 M NaCl ionic strength at 
25.0±0.1 ºC in 25% (v/v) DMSO:water hydro-organic medium. 
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1. Introduction

A ubiquitous family of zinc metalloenzymes known 
as carbonic anhydrases (CAs), features a metal ion 
within their active site [1,2]. Present across various 
living organisms, CA enzymes primarily facilitate 
the reversible transformation of water and carbon di-
oxide into carbonate and a proton [3,4]. These ions 
play a fundamental role in maintaining the acid-base 
equilibrium within living cells. Furthermore, they 
are crucial for processes such as bone resorption, 
calcification, and electrolyte secretion, [5]. Conse-
quently, the inhibition of CAs emerges as a signifi-
cant category of therapeutic agents with the poten-
tial to address diverse physiological disorders. This 
includes conditions such as cancer, epilepsy, edema, 
obesity glaucoma and osteoporosis [6-8].

Alzheimer’s disease (AD) is a persistent neuro-
logical disorder marked by behavioral disturbances, 
cognitive dysfunction, and memory impairment 
limitations in daily activities. AD has been linked 
to a cholinergic deficit in post-mortem brain tis-
sue, marked by a substantial reduction in the levels 
of acetylcholine (ACh) [7,8]. The challenge of AD 
has escalated, especially in developed nations, as 
the elderly population with a longer life expectancy 
continues to grow. ACh, a neurotransmitter crucial 
in the pathology of AD, is primarily regulated by 
acetylcholinesterase (AChE) and, to a lesser extent, 
by butyrylcholinesterase (BChE) [9,10]. Both BChE 
and AChE enzymes are present in the brain, and they 
are identified within neuritic plaques and neurofibril-
lary tangles [11]. The cause of AD remains unknown; 
however, increasing ACh levels through the inhibi-
tion of AChE has been acknowledged as the most 
effective treatment strategy for AD. Consequently, 
AChE and BChE inhibitors have emerged as notable 
alternatives in AD treatment [12]. However, existing 
drugs like Donepezil, Rivastigmine, Galanthamine 
and Tacrine, which exhibit AChE inhibitory activ-
ity, have associated adverse impacts and are effec-
tive primarily against the mild form of AD. Notably, 
there is currently no marketed drug with BChE in-
hibitory effect [13,14].

The thiazole scaffold is among the most studied 
groups of pharmacophores in pharmaceutical chem-
istry, and many drug molecules containing the 
thiazole core are known today [15]. It is known to 
compounds bearing thiazole core exhibit antimi-
crobial [16,17], anticancer [18], antioxidant [19], 

DNA Cleavage [20] etc. as well as CAs [21, 22], 
AChE [21], α-glucosidase [23], BChE [24,25], and 
α-amylase [26] enzyme inhibitory activity. 

The naphthoquinone scaffold is also a popular phar-
macophore group in drug discovery studies. Further-
more, it is known to there are numerous pharmaco-
logically important compounds bearing naphthoqui-
none core such as Doxorubicin and Psychorubrin 
[27,28]. Compounds bearing naphthoquinone core 
exhibit various pharmacologically activities like an-
timicrobial [29,30], anticancer [31], anti-inflamma-
tory [32,33], DNA cleavage [34] activities as well as 
BChE [35,36], AChE [37,38], and CAs [21,38] en-
zyme inhibitory activity. While many drugs currently 
on the market, such as Avapritinib and Berotralstat, 
contain at least one fluorine atom in their molecular 
structure, drugs such as Relugolix and Pemigatinib 
contain a 2,6-fluorophenyl moiety in their molecular 
structure [39]. Furthermore, it is known that whether 
obtained from plants or synthesized, numerous com-
pounds bearing adamantane, a highly symmetrical 
polycyclic structure, exhibit diverse pharmacologi-
cal effects, and the adamantane moiety is frequently 
integrated into the molecular structure of the com-
pounds to enhance their lipophilicity and improve 
their biological properties [40].

Herein, we report the synthesis of N-((Z)-
4-((3r,5r,7r)-adamantan-1-yl)-3-(3-amino-1,4-
dioxo-1,4-dihydronaphthalen-2-yl)thiazol-2(3H)-
ylidene)-2,6-difluorobenzamide 3, and its enzyme 
inhibitory effect, and potentiometric determination 
of pKa values. 

2. Materials and Methods

2.1. Materials and Instrumentation

The reagents used were purchased high grade from 
commercial Merck or Aldrich, and commercially 
available solvents were used without further purifi-
cation. Mattson 1000 FTIR spectrophotometer was 
used to record the Fourier transform infrared (FTIR) 
spectra. Bruker Ultrashield Plus Biospin GmbHt at 
400 MHz was used to record the nuclear magnetic 
resonance (NMR) spectra. Chemical shifts were 
given in parts per million (δ) downfield from TMS 
as internal standard and spectra were determined in 
dimethyl sulfoxide-d6 (DMSO-d6). The following 
abbreviations were used; s = singlet, d = doublet, 
dd = doublet of doublets, and m = multiplet. Agilent 

Hacettepe University Journal of the Faculty of Pharmacy

ISSN: 2458 - 8806235



Technologies 6224 TOF LC/MS was used to record 
the HRMS spectra. Mettler Toledo MP90 device was 
used to determine melting points. To perform pH-
metric titrations, the Titroline 7000 automatic titrator 
with SI-Analytics combined with a glass pH electro-
de, which can be controlled by a computer and con-
tains an automatic microburette, was used.

2.2. Synthesis of compound 2

Compound 2, used as an intermediate in the synthesis 
of the product, was prepared as previously described 
[41] by reacting 2,3-diaminonaphthalene-1,4-dione 
1 and 2,6-difluorobenzoyl isothiocyanate. A solution 
of 2,6-difluorobenzoyl chloride (2 mmol) in acetone 
(15 mL) was added to a stirred solution of the potas-
sium thiocyanate (2 mmol) in acetone (10 mL), and 
the mixture was heated to the reflux temperature. Af-
ter 1 hour, a solution of compound 1 (1 mmol) in ace-
tone (25 mL) was added to the hot mixture and the 
mixture was heated for an additional 18 hours. After 
determining that the reaction was complete by thin 
layer chromatography, acetone was evaporated under 
reduced pressure using a rotary evaporator. The cru-
de mixture was washed sequentially with deionized 
water and diethyl ether.

2.3. General procedure for the synthesis of 
compound 3

To stirred solution of 2 (1 mmol, 0.39 g) in ace-
tone (30 mL) at room temperature, a solution of 
1-((3r,5r,7r)-adamantan-1-yl)-2-bromoethan-1-one 
(1.2 mmol, 0.31 g) in acetone (20 mL) was added 
dropwise, and reaction solution was heated to reflux 
temperature (Scheme 1). It was determined that the 
reaction was completed after 30 hours. The solvent 
was then evaporated under reduced pressure and the 
resulting crude mixture was washed sequentially 
with saturated NaHCO3, water and methanol until 
the desired compound in pure form was obtained. 
The molecular structure of the compound 3 was cha-
racterized by various analytical techniques. Green 
powder. Yield, 0.42 g, 74%. m.p.: 291-293 ºC (de-
comp.). IR (cm-1): υmax 3439, 3289, 3252, 3143, 2912, 
2850, 1685, 1647, 1619, 1585, 1551, 1460, 1436. 
1H NMR (400 MHz, DMSO-d6): δ 8.08 (d, 1H, J = 
7.5 Hz, Ar-H), 8.00 (d, 1H, J = 7.5 Hz, Ar-H), 7.94 
(s, 1H, NH), 7.91-7.88 (m, 1H, Ar-H), 7.83-7.79 (m, 
1H, Ar-H), 7.71 (s, 1H, NH), 7.38-7.30 (m, 1H, Ar-
H), 6.99-6.95 (m, 2H, Ar-H), 6.82 (s, 1H, thiazole 
C-H), 1.90-1.80 (m, 9H, C-H adamantane), 1.63-

1.51 (m, 6H, C-H adamantane). 13C NMR (100 MHz, 
DMSO-d6): δ 181.1 (C=O), 176.8 (C=O), 170.8 
(C=O), 168.0, 159.4 (dd, JFC = 250.7 Hz, 7.2 Hz, 2 
x C-F), 147.7, 147.1, 135.7, 133.0, 132.1, 130.9 (dd, 
JFC = 10.2 Hz, 9.8 Hz, C), 130.0, 126.4, 126.1, 117.9 
(dd, JFC = 19.3 Hz, 19.3 Hz, C), 113.6, 111.9 (dd, JFC 
= 18.9 Hz, 6.0 Hz, 2 x C), 105.1, 40.1 (3 x C), 35.9 
(3 x C), 35.7, 27.7 (3 x C). HRMS (ESI-TOF-MS): 
calcd. for C30H26F2N3O3S [M+H+] 546.1657; found 
546.1657.

2.4. Enzyme inhibition studies

The esterase activity of hCA I and II was assessed 
by employing Verpoorte’s technique [42], which 
involves monitoring the alteration in absorbance at 
348 nm to ascertain the inhibitory impacts of com-
pound 3. The compound’s in vitro effects on AChE 
and BChE activity were examined according to Ell-
man et al.’s approach [43], with spectrophotometric 
analysis conducted at 412 nm using acetylcholine 
iodate (AChI) and butyrylcholine iodate (BChI). 
Standard inhibitors such as Acetazolamide (AAZ) 
and Tacrine (TAC) were utilized. To explore the in 
vitro inhibitory mechanisms of compound 3, kinetic 
assays were conducted with varying substrate and 
chemical concentrations. The resulting data were 
utilized to generate Lineweaver-Burk plots, enabling 
the determination of Ki constants and identification 
of different types of inhibition [44,45].

2.5. Determination of acid dissociation 
constants

The pKa values of compound 3 were determined po-
tentiometrically in 25% (v/v) DMSO:water hydro-
organic medium at 25.0 ±0.1 ºC using a literature 
method [46]. A 1x10-3 M stock solution of compound 
3 in DMSO was prepared. 0.025 M of NaOH, 0.1 M 
of HCl and 1 M of NaCl stock solutions in deionized 
water were prepared were also prepared. A compu-
ter-controlled automatic titrator was used to perform 
potentiometric titrations, and a thermostat was used 
to keep the temperature constant at 25.0 ± 0.1 °C 
using. 10 mL of product 3 stock solution was added 
to the titration cell, followed by DMSO (2.5 mL), 0.1 
M HCl (1 mL), 1 M NaCl (5 mL) stock solutions, 
and deionized water (31.5 mL), respectively, and the 
titration cell lid was closed. Nitrogen gas was then 
passed through the solution and the solution was 
stirred at constant speed throughout the titration. pKa 
values were calculated with the HYPERQUAD com-
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puter program using the data obtained as a result of 
the titration.

3. Results and Discussion

3.1. Synthesis and characterization

New naphthoquinone thiazole hybrid 3 was synthe-
sized by the reacting naphthoquinone acylthiourea 
compound 2, prepared from 2,3-diaminonaphthalene-
1,4-dione 1 using a literature method [41], with 
1-((3r,5r,7r)-adamantan-1-yl)-2-bromoethan-1-one 
in acetone at refluxing temperature in 74% yield 
(Scheme 1). The molecular structure of the desired 
product 3 was fully characterized by 1H / 13C NMR 

(Figures 1 and 2), FT-IR, and HRMS. 1H NMR spect-
rum of 3 (Figure 1), the singlet peak at 6.82 ppm 
belongs to the thiazole proton and the singlet peaks 
at 7.94 ppm and 7.71 ppm belong to the NH2 protons. 
Fifteen protons of the adamantane moiety appear as 
multiple peaks at 1.90-1.80 ppm and 1.63-1.51 ppm. 
In addition, 13C NMR spectrum of 3 (Figure 2), the 
peaks of the three carbonyl carbons in the structure 
of the compound are seen at 181.1 ppm, 176.8 ppm, 
and 170.8 ppm.

3.2. Enzymes inhibition studies

We have synthesized compound 3 in search of anti-
Alzheimer and anti-epileptic agents. Also, we evalu-
ated their anticholinesterase and CAs activities. Com-
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Figure 1. 1H NMR Spectra of 3
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pound 3 showed varying degrees of inhibition 89.92 
± 10.47 nM (against hCA I), 51.60 ± 5.37 nM (against 
hCA II), 68.11 ± 6.58 nM (against AChE) and 126.90 
± 10.99 (against BChE) (Table 1, Figure 3). 

In experiments evaluating the inhibitory effects on 
CA enzymes, AAZ is utilized as a positive control 
and for on cholinergic enzymes, TAC is employed 
as a positive control. An enzymatic inhibition analy-
sis revealed compound 3 inhibited hCA II enzyme 
more than other enzymes and showed the least ef-
fect against BChE. Looking at the results in Table 
1, compound 3 did not exhibit an effective result on 
CAs enzymes compared to the standard (AAZ, Ki: 
20.52±3.17 for hCA I and Ki: 23.77±4.01 for hCA II). 
It exhibited approximately 1.19 times more effec-
tive inhibition of the AChE enzyme than TAC (TAC, 
Ki: 81.21±10.45 for AChE). As with CA enzymes, it 
was not more effective on the BChE enzyme than 
the standard (TAC, Ki: 73.13±13.67 for BChE). Per-
haps this is due to the inability of the amino acids in 
the active structure of the enzymes to interact due 
to steric hindrance caused by the structure of com-
pound 3.

3.3. Acid dissociation constants

The pKa values of 3 calculated by HYPERQUAD 
computer program are given in Table 2. Titration 
curve and the distribution curve of 3 are given in Fig-
ures 4A and 4B, respectively. Three pKa values for 
compound 3 could be determined, and the pKa1, pKa2, 
and pKa3 values were found as 2.75±0.02, 6.79±0.02, 
and 10.85±0.02, respectively (Table 2). Since 
1,4-naphthoquinones behave like naphthalene-1,4-
diol because of delocalization, the pKa value in the 
DMSO:water hydro-organic medium is expected to 
be above 10 [33,34]. The pKa value of the NH2 group 
bonding to the naphthoquinone moiety was reported 
in the range of 5.25 ± 0.02-7.27 ± 0.02 by Nural et al. 
[34]. The pKa of N-(thiazol-2-yl)methanimine moi-
ety was reported in the range of 2.46-2.85 by Altun 
et al. [47]. In addition, the pKa value of the nitrogen 
atom of the imino form of thiazoles was reported in 
the range of 4.16-3.36 by Öğretir et al. [48]. It can 
be said that the pKa1 (2.75±0.02), pKa2 (6.79±0.02), 
and pKa3 (10.85±0.02) may be related to protonated 
imino nitrogen, NH2, and carbonyl oxygen of naph-
thoquinone moiety, respectively.
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4. Conclusions

In summary, we have demonstrated the synthesis of 
new 1,4-naphthoquinone thiazole hybrid 3, and its 
potentiometric determination of pKa values in 25% 
(v/v) DMSO:water hydro-organic medium (I= 0.1 M 
NaCl) at 25.0±0.1 ºC. It is thought that the three de-
termined pKa values are related to the imino nitrogen, 
NH2 and carbonyl oxygen of the naphthoquinone 
group. The research focused on assessing the inhibi-
tory effects of compound 3 on hCA I, II isoenzymes, 

AChE, and BChE. The compound investigated in 
this study exhibited substantial inhibition of enzyme 
activities at low nanomolar concentrations. Except 
for the AChE enzyme, compound 3 did not exhibit 
more effective inhibition than the standards in other 
enzymes. Compared to this result, it can be used as 
a precursor agent in the treatment of AD by adding 
more effective groups.

Table 1. The inhibition data of compound 3 for studied enzymes 

Compound 
ID

hCA I hCA II AChE BChE

Ki
(nM) R2 Ki

(nM) R2 Ki
(nM) R2 Ki

(nM) R2

3 89.92 ± 10.47 0.9815 51.60 ± 5.37 0.9864 68.11 ± 6.58 0.9823 126.90 ± 10.99 0.9861

AAZ [21] a 20.52±3.17 0.9812 23.77±4.01 0.9891 - - - -

TAC [21] b - - - - 81.21±10.45 0.9788 73.13±13.67 0.9788

a Acetazolamide. b Tacrine.
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Figure 4. Titration curve (A) and Distribution curve (B) of 3 (25.0±0.1 °C, I= 0.1 M NaCl, DMSO:water hydro-organic medi-
um 25:75 v/v)
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