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FINANCIAL MARKETS: CLASSICAL AND BAYESIAN 
APPROACH TO UNIVARIATE VOLATILITY MODELS 

Tuğçe ACAR KARA* 

Abstract  

There are two different approaches to the development of statistics. These are 
the "Classical" and the "Bayesian" approaches. We encounter the concept of 
"objectivity", which in the classical approach refers to ignoring prior information 
about the process being measured. However, in the presence of prior information 
about the process under consideration, there is a loss of information because 
the existing information is ignored. Since the parameters are not random in the 
classical approach, no probability statements can be made about the 
parameters. The Bayesian approach takes into account prior information about 
the process and takes a more disciplined approach to uncertainty. It is therefore 
an approach derived from Bayes' theorem.  The Bayesian approach treats 

parameters as probabilistic and random variables. There are no assumptions to 
be made as in the classical approach. Given this information, the aim is to 
evaluate the univariate volatility models under the Classical and Bayesian 
approaches.  Volatility, which corresponds to uncertainty in the financial 
markets, also represents the risk of the financial asset.  Therefore, it is expected 
that it will be beneficial to evaluate the effect of both approaches on the analysis 
of volatility models. 

Keywords: Financial Markets, Volatility Models, Classical Approach, 

Bayesian Approach. 
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Finansal Piyasalar: Tek Değişkenli Volatilite Modellerine 

Klasik ve Bayesyen Yaklaşım 

Öz  

İstatistiğin gelişiminde iki farklı yaklaşım vardır. Bunlar "Klasik" ve "Bayesci" 
yaklaşımlardır. Klasik yaklaşımda, ölçülen süreçle ilgili ön bilgilerin göz ardı 
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edilmesini ifade eden "objektiflik" kavramı karşımıza çıkar. Ancak, söz konusu 
süreçle ilgili ön bilgilerin varlığında, mevcut bilgiler göz ardı edildiği için bir bilgi 
kaybı söz konusudur. Parametreler rastgele olmadığından, parametreler 
hakkında olasılık ifadeleri yapılamaz. Bayesci yaklaşım, süreçle ilgili ön 
bilgileri dikkate alır ve belirsizliğe daha disiplinli bir yaklaşım getirir. Bu 
nedenle Bayes teoreminden türetilmiş bir yaklaşımdır.  Bayesci yaklaşım, 
parametreleri olasılıksal ve rastgele değişkenler olarak ele alır. Klasik 
yaklaşımda olduğu gibi sağlanması gereken varsayımlar yoktur. Bu bilgiler 
ışığında amaç, tek değişkenli volatilite modellerini Klasik ve Bayesyen 
yaklaşımlar altında değerlendirmektir.  Finansal piyasalarda belirsizliğe 
karşılık gelen volatilite, aynı zamanda finansal varlığın riskini de temsil 
etmektedir.  Dolayısıyla her iki yaklaşımın volatilite modellerinin analizine etkisi 
açısından değerlendirilmesinin faydalı olacağı beklenmektedir. 

Anahtar Kelimeler: Finansal Piyasalar, Volatilite Modelleri, Klasik 

Yaklaşım, Bayes Yaklaşımı.   

JEL Kodu: C01, C11, E44 

1. INTRODUCTION 

 Financial asset movements in the financial markets 

include upward and downward changes. Although the financial 

series are stationary on average, they are not stationary in 

variance. Here we come across with the concept of volatility. The 

concept we call volatility means that variance changes over 

time. Considering that this concept meets uncertainty, volatility 

is also expressed as the total risk of any financial asset. The 

high volatility of the financial asset tells us how risky the asset 

is. High volatility means that the index is risky and that the 

return index is spread over a wide range of values. This means 

that the index price will change significantly in a short period of 

time (Karolyi, 2001:2). In general, returns on financial assets 

have three main characteristics. These are the leptokurtic 

feature, the volatility cluster and the leverage effect. Leptokurtic 

means that financial series are thick in the tails and pointed at 

the end. While the thickness in the tails corresponds to the 

points where there are excessive movements in the financial 

series, excessive pointedness means that the periods are more 

likely to have extreme situations, i.e. highly volatile movements. 

Mandelbrot (1963) found that large changes in the returns of 

financial assets are followed by large changes and small 

changes are followed by small changes (Mendelbrot, 1963: 394). 

This situation is known as a volatility cluster in the financial 

markets. On the other hand, the high rate of depreciation of 
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financial assets over time creates greater volatility than the 

same level of appreciation and increases the risk level of the 

financial asset. In addition, market participants react differently 

to positive and negative market news. Accordingly, news with a 

negative impact on financial markets creates more volatility 

than news with a positive impact. Therefore, the direction of the 

price change has an asymmetric effect on volatility. We can say 

that the asymmetric effect must be present for the leverage 

effect to be present. One of the characteristic features of 

financial time series is that the conditional variance changes 

over time. Models that take into account the concept of 

heteroskedasticity are called "autoregressive conditional 

heteroskedasticity models". The models are divided into 

univariate and multivariate volatility models. While univariate 

volatility models ensure that the volatility of a particular 

financial asset is reported independently of the returns of other 

financial assets, multivariate volatility models also take into 

account the time dependence between the financial market and 

the assets. ARCH and GARCH models, which can be used to 

model the volatility of a single financial asset, are inadequate for 

multivariate structures. In particular, the fact that the financial 

markets of many countries are interconnected and 

interdependent means that the financial assets traded in the 

financial markets are also interconnected and interdependent. 

Multivariate structures enable more rational decisions in 

areas such as asset pricing, portfolio selection, option pricing 

and risk management. While univariate ARCH-GARCH models 

include conditional variances, multivariate structures include 

conditional variances and covariances include dynamic 

relationships. The differentiation of the models by name is 

related to the parameterization techniques used. Furthermore, 

these models have two characteristics as symmetric and 

asymmetric autoregressive heteroskedasticity models. In 

symmetric conditional variance models, the effect of positive 

and negative news on volatility is treated as equal. In 

asymmetric models, this effect occurs at a different level. 

Accordingly, Engle (1982) firstly analyzed the UK inflation rate 

data and showed that the variance of the error term is not fixed 

(Engle, 1982: 987). In the study in question, it was determined 
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that the estimation errors vary depending on the prediction 

errors of the previous period. He proposed autoregressive 

conditional variance model (ARCH Model) to calculate 

conditional volatility. On the other hand, there are two different 

approaches to the development of statistics. These are the 

"Classical" and the "Bayesian" approaches. In particular, the 

importance of being able to obtain information about the 

distribution of variables makes the Bayesian approach 

attractive. Accordingly, the study aims to examine the 

univariate volatility models within the framework of the classical 

and Bayesian approaches. The study will also contribute to the 

literature by guiding the selection of a better model that takes 

into account future fluctuations with applications in financial 

markets. It is believed that it would be beneficial to make an 

assessment in terms of the differences and advantages over the 

classical approach to the subject, rather than the 

methodological differences in the Bayesian approach. Volatility, 

which corresponds to uncertainty in the financial markets, also 

represents the risk of the financial asset.  Therefore, it is 

believed that it will be useful to show the effect of both 

approaches on the analysis of volatility models. In the study, 

following the introduction, univariate symmetric and 

asymmetric autoregressive heteroskedasticity models are 

analysed, and then how these models are handled in the 

Bayesian approach and the similarities and differences between 

them are examined. 

2. UNIVARIATE SYMMETRIC AUTOREGRESSIVE 
CONDITIONAL HETEROSKEDASTİCİTY MODELS 

Models commonly used in research areas such as financial 

markets, risk management, equities and exchange rates model 

the volatility of financial assets. They are symmetric in that the 

effects of positive and negative shocks are treated equally. The 

model structures are ARCH, ARCH-M, GARCH and GARCH-M, 

as described below. 

2.1. ARCH and ARCH-M Models 

The ARCH model is based on the basic logic of explaining 

the model with the previous periods of the square of the 
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residuals. Therefore, the prediction of variance in the next 

period depends on the information available in the previous 

periods [9]. Bt-1, is a linear function of past returns and 

information in (t-1) time. In order to model volatility correctly, it 

is important to use the information of previous periods in the 

calculation of the conditional average and variance of financial 

returns. The conditional mean and variance of a financial return 

(rt) obtained by using past period information are as follows; 

μt= E (rt| Bt-1 )                                                              (1) 

σt
2 = Var (rt | Bt-1) = E [ (rt - μt )2 | Bt-1]                          (2) 

Here, the ARCH (p) model with the most general expression 

for the return of a financial asset is as follows;   

ARCH (p): σt
2 = α0 + α1 εt-1

2 + α2 εt-2
2 + ………. + αpεt-p

2       (3) 

Errors are derived from an average model. Considering 

that the mean model is a simple AR(1) process in the form of Yt 

= θYt -1 + εt, εt ~N ( 0, 𝜎𝑡
2) the error terms must be Gaussian.   

If we make inference from ARCH (1) model, 

ARCH(1): σt
2 = α0+α1εt-1

2                                                 (4) 

In the ARCH model, parameter estimates are made using 

the maximum likelihood method. The α1 parameter is the 

ARCH(1) parameter. It should be 0< α1 < 1. The fact that this 

parameter is close to 1 indicates that volatility is continuous 

(with a permanent effect), in other words, the presence of the 

volatility cluster. The fact that the parameter is less than 1 

indicates that the ARCH model satisfies the stationary 

condition. 

Engle (1982) suggested first testing for the ARCH effect, i.e. 

the presence of conditional variance in variance modelling. If 

there is no ARCH effect in the residual, then the use of the ARCH 

model would be incorrect. 

The implementation of the ARCH test is as follows: 

A model is established with the square of the residues 

obtained Yt = θYt -1 + εt over the appropriate average equation of 

AR (1). 
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With the help of the R2 value obtained from the εt
2 = β0 + β 

1 εt-1
2 + β 2 εt-2

2 + ………. + βp εt-p
2 + ut  model, the test statistic is 

calculated as nR2. Here, the test statistic has a p degrees of 

freedom ℵ2distribution. The null hypothesis is that there is no 

ARCH effect present. 

In general, the ARCH effect in ARCH (1) does not require 

long delays to be considered. For this reason, in practice, it is 

generally applied via ARCH (1). 

Since the conditional variance (σt
2) or square root is 

included in the mean equation, the model is called ARCH in 

Mean. 

Average equation is as follows; 

Yt = θYt-1+φσt
2+εt,εt ~ 𝑁(0, 𝜎𝑡

2)                                         (5)  

Model is as follows; 

 ARCH-M(p) = σt
2 = α0 + α1 εt-1

2 + α2 εt-2
2 + ………. + αp εt-p

2 

(6) 

Also, the parameter φ in the average equation is the risk 

premium coefficient that changes over time. 

Although the ARCH model has a parametric structure in 

estimating volatility and has produced some empirical results 

on financial asset returns, it also has some weaknesses. These 

weaknesses are as follows: 

i. The ARCH model is only used to determine the 

behaviour of the conditional variance. It is ineffective in 

explaining the changes in the financial series (Degiannakis and 

Xekalaki, 2015: 272). 

ii. Since the shocks of the previous period are included in 

the model with their squares, positive and negative shocks are 

assumed to have the same effect on volatility.  However, it is well 

known that the prices of financial assets in financial markets 

can react differently to these shocks. 

iii.  Since the ARCH model tends to react slowly to large 

shocks to financial returns, it can predict volatility more than it 

does. 
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iv. The excess of variables that are significant in the delay 

number of the error term square in the ARCH model increases 

the number of parameters to be estimated (Çil, 2015: 449). 

2.2. GARCH and GARCH-M Models 

The Generalised ARCH (GARCH) model was developed by 

Bollerslev (1986) to overcome the implementation difficulties of 

the ARCH model. The main limitation of the ARCH model is that 

it requires many lags to capture the effect of past returns on 

today's volatility. Bollerslev (1986) developed the GARCH model 

by including the ARCH model's own lag in the volatility 

equation. 

For the GARCH model, as in the ARCH model, rt denotes 

the logarithmic return and εt = rt – μ, shock at time t. The 

GARCH (p,q) model used to capture the volatility in the financial 

return series with εt = zt .σt is as follows: 

GARCH(p,q): σt
2 = α0+∑ 𝛼𝑖𝜀2

𝑡−𝑖
𝑝
𝑖=1 +∑ 𝛽𝑖𝜎2

𝑡−𝑖
𝑞
𝑖=1                  (7) 

The random variable array with zt~ 𝑁(0,1)expresses the 

degree of the parameter GARCH, that is, the degree of the 

conditional variance (σt
2 ),  while the parameter p expresses the 

degree of the ARCH and the past period of the residues. 

GARCH(1,1): σt
2 = α0+𝛼1𝜀2

𝑡−1+𝛽1𝜎2
𝑡−1                             (8) 

In the GARCH (1,1) model, the parameter α0 indicates the 

long-run volatility, 𝛼1 indicates the size of the shocks arriving in 

the series, and the parameter 𝛽1 indicates the effect of past 

volatility on today's volatility. In the equation, the response of 

the series to shocks is equal to the value of the parameter 𝛼1. 

The size of the parameter 𝛽1, which indicates the volatility lag, 

means that the shocks in the series last for a long time. 

For example, if 𝛼1= 0.30 and 𝛽1= 0.60, one unit of 

unexpected return changes cause the volatility to increase by 

0.30 units, when the volatility of the previous period increases 

by one unit, the volatility of the next period increases by 0.60. 

For the significance of the GARCH model, α0, 𝛼1 and  𝛽1> 0 

must be 0. 
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Also, 𝛼1 + 𝛽1<1 condition must be fulfilled for covariance 

stationarity. (Covariance Stationary: It means that the mean 

and variance of the stochastic process does not change over 

time. Besides, it requires that the correlation, which is the 

indicator of the relationship between x (t) and x (t + h), depends 

on the h parameter, that is, the distance between processes and 

not on time.) 

The GARCH model also uses the maksimum likelihood 

method for parameter estimations. 

3. UNIVARIATE ASYMMETRIC AUTOREGRESSIVE 
CONDITIONAL HETEROSKEDASTICITY MODELS 

3.1. Exponential GARCH (EGARCH) and Threshold GARCH 

(TARCH) Model 

The main disadvantage of ARCH and GARCH models is 

that the variance effect is assumed to be constant 

(Çil,2015:461). However, the reaction to negative news in 

financial markets is greater than the reaction to positive news. 

In other words, the fall in stock prices causes more volatility in 

financial markets than the rise in prices. The reason for this is 

that the company is seen as more risky because of the increase 

in the ratio of debt to equity, known as the leverage effect. The 

leverage effect was first introduced by Black (1976) (Black, 

1976:177-181). 

The EGARCH model developed by Nelson (1991) to capture 

this asymmetry is as follows (Nelson, 1991:347-370): 

ln(𝜎𝑡
2) = α0+∑ 𝛽𝑖𝑙𝑛(𝜎2

𝑡−𝑖
)

𝑝
𝑖=1 +∑ 𝛼𝑖 |

𝜀𝑡−𝑖

𝜎𝑡−𝑖
|

𝑝
𝑖= +∑ 𝛾𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖

𝑝
𝑖=1             (9) 

As seen from the equation, the conditional variance of a 

time series in the EGARCH model is a nonlinear function of its 

past values, the lagged values and sign of the residues. The term 
𝜀𝑡−𝑖

𝜎𝑡−𝑖
  in the equation is standardized error terms.  

The use of standardised errors instead of past values of the 

error terms in the EGARCH model provides information on the 

size and persistence of the shock. If  ∑ 𝛽𝑖
𝑝
𝑖=1 < 1, the process is 

covariance stationary. Since the conditional variance is modeled 

linearly in the EGARCH model, there are no non-negative 

constraints imposed on the parameters for the GARCH model to 
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be positive, so the model does not restrict the parameters 𝛼𝑖 and 

𝛽𝑖. 

Let's examine the parameters on the EGARCH (1,1) model 

,for the term 
𝜀𝑡−𝑖

𝜎𝑡−𝑖
 ;                                     

ln(𝜎𝑡
2) = α0+𝛽1𝑙𝑛(𝜎2

𝑡−1
)+𝛼1 |

𝜀𝑡−1

𝜎𝑡−1
|+𝛾1

𝜀𝑡−1

𝜎𝑡−1
                         (10) 

If this term is positive, the effect of shocks on conditional 

variance is equal to(𝛼1 + 𝛾1). If the  ratio is negative, the effect 

of shocks on conditional variance will be (𝛼1-𝛾1) (Enders, 2009: 

156). The most important concept that distinguishes this model 

from other models is the parameter 𝛾1. The statistically 

significant 𝛾1  parameter indicates the presence of asymmetric 

volatility. While 𝛾1 < 0 indicates the presence of leverage effect, 

𝛾1 = 0 means that the positive shock ( 𝜀𝑡−1 > 0) and negative 

shock (𝜀𝑡−1 < 0) have the same effect on volatility. 

The main feature of this model is that a dummy variable 

expressing the threshold is added to the conditional variance 

model based on a threshold for the residual of the mean model. 

The conditional variance equation of the TARCH model is as 

follows:  

σt
2 = α0+∑ 𝛽𝑖𝜎2

𝑡−𝑖
𝑝
𝑖=1 +∑ (𝛼𝑖𝜀2

𝑡−𝑗 +  𝛾𝑗𝐷𝑗,𝑡−𝑗𝜀2
𝑡−𝑗) 

𝑞
𝑗=1            (11) 

TARCH(1,1): σt
2 = α0+𝛽1𝜎2

𝑡−1+𝛼1𝜀2
𝑡−1 +  𝛾1𝐷𝑡−1𝜀2

𝑡−1      (12) 

In here, 𝜀2
𝑡−1 is the residues obtained from the average 

equation. 

𝐷𝑡−1 =  {
1       𝜀𝑡−1 < 0
0      𝜀𝑡−1 ≥ 0

 

Also, the statistically significant 𝛾1 parameter indicates the 

presence of asymmetric effect. 

4. BAYESIAN ARCH and GARCH VOLATILITY MODELS 

Classical ARCH and GARCH models have been mentioned 

in the previous section. These are models that can be treated 

using a Bayesian approach. The Bayesian approach takes into 

account prior information about the process and takes a more 

disciplined approach to uncertainty. It provides an advantage 

by utilising prior knowledge of parameters and better 

performance in model comparison. The approach involves prior 
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knowledge and posterior distribution. The posterior 

probabilities are calculated using the first and likelihood 

probabilities.  This process includes the steps of the Bayesian 

approach. The process is followed in the Bayesian forecasting of 

ARCH-GARCH models. Therefore, in this section, we will 

discuss Bayesian ARCH and GARCH models, and the ARCH 

model will be mentioned primarily within the Bayesian 

approach, as it forms the basis of the GARCH model. 

4.1. Bayesian ARCH Models 

Bayesian extraction of ARCH models was first developed 

by Geweke (1986a, 1986b) (Geweke, 1988: 73). In Bayesian 

prediction, it is easier to achieve constraints such as stationary 

assumption in classical ARCH models. It's well known that in 

the Bayesian method, inference is made via the similarity 

function. The likelihood function is a concept that plays a role 

in the calculation of the prior distribution in the Bayesian 

approach and is used in the calculation of the probability 

depending on the parameters. It is also critical for algorithm 

performance (Thornton 2007: 598).  Markov Chain Monte Carlo 

(MCMC) provides flexibility in finding the last probability 

distribution of both model parameters and functions, since the 

similarity function is not linear with respect to the parameters, 

optimising of the similarity function is difficult. MCMC is a class 

of simulations in Bayesian statistics and is a powerful tool for 

calculating integrals in high-dimensional problems for which no 

analytical solution exists (Chernozhukov and Hong, 2003: 294).  

Accordingly, let’s determine the similarity function for the 

ARCH model in the Bayesian Approach. 

Let's assume that the mean model is the simple AR (1) 

model in the form of Yt = θYt -1 + εt. In this  case, it is expressed 

as ARCH (p): σt
2 = α0 + α1 εt-1

2 + α2 εt-2
2 + ………. + αp εt-p

2. Here, 

conditional similarity function of Yt with the variation εt~N(0, 

1),it is expressed as ᶩ (θ; y, ℑ0 ) = ∏ 𝑓(𝑦𝑡 
𝑇
𝑡=1 ǀ ℑ𝑡−1, 𝜃)  [12]. 𝜃′ = ( α0 

, α1 , ……. αp), y = ( y1,y2,…….yT)  , ℑ0  = ( y0,y-1,…….y1-p) are the 

vector of the initial conditions. 𝑓(𝑦𝑡 ǀℑ𝑡−1, 𝜃) is the conditional 

probability density function. Each conditional probability 

density function has a normal distribution with an average of 
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zero and variance of σt
2. Similarity function when initial 

observations are taken as initial conditions; 

 

ᶩ(θ;y,ℑ0)∝ ∏ (𝜎𝑡
2)−1/2𝑇

𝑡=1 exp ( −
1

2
∑

𝑦𝑡
2

𝜎2
𝑇
𝑡=1 )                         (13) 

Engle (1982) proposed a linear decreasing structure for the 

αi coefficients of the ARCH (p) model (from (p+1) to 2) in order to 

reduce the number of parameters. In this case,  

ARCH(p) : σt
2  = α0 + 2α ∑

𝑝+1−𝑗

𝑝(𝑝+1)

𝑝
𝑗=1 𝑦2

𝑡−𝑗
equation replace         

ARCH(p): σt
2= α0 + α1 εt-1

2 + α2 εt-2
2 + ………. + αp εt-p

2 equation. 

Since it is ∑
𝑝+1−𝑗

𝑝(𝑝+1)

𝑝
𝑗=1 𝑦2

𝑡−𝑗 =0.5,  
𝑝+1−𝑗

𝑝(𝑝+1)
> 0, ∀𝑗 ≤ 𝑝, the 

stationary condition is similarly provided with α <1. 

The inequality constraints required to provide the 

positivity constraint and the stationary condition, expressed as 

0≤α<1 when estimating the model with the maximum likelihood 

method, make the solution very difficult. In the Bayesian 

approach, values that don't confirm the inequalities are rejected 

by simulating the final probability distribution. In this way, the 

condition of inequality is satisfied. However, if the rejected 

values are too many, problems will arise because the process 

will not be stationary (Bauwens and Lubrano, 1999:208). 

In the general ARCH (p) model, if p is greater than 1, the 

Monte Carlo method can be used. Since numerical integration 

is used, any initial probability density function can be chosen. 

4.2. Bayesian GARCH Models 

Bayesian GARCH models were developed by Kleibergen 

and Van Dijk (1993) and Bauwens and Lubrano (1998) 

(Bauwens and Lubrano, 1988: 23). For the Bayesian estimation 

of the GARCH model, the likelihood function, the pre-

distributions of the parameters and the final distribution 

calculated within the framework of the Bayes rule should be 

specified. At this point, it is necessary to make a distribution 

assumption for the return errors, and the expression "mixture 

of normal distributions" is generally used for the GARCH model. 
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The mixture of normal distributions is a concept proposed 

for thick tails and asymmetry. The mixture of normals is 

determined by changing either the variance or the mean of a 

normally distributed random variable. If only the normal 

variance is changed, the distribution obtained refers to the scale 

mixture of normals, and if both the mean and variance are 

changed, it is expressed as the position scale mixture of 

normals.  In this respect, the Student t distribution better 

captures the nature of the distribution of the data when it comes 

to returns. So let's first look at the similarity function for the 

GARCH model. The similarity function of the ARCH model was 

expressed as; 

ᶩ(θ;y,ℑ0)∝ ∏ (𝜎𝑡
2)−1/2𝑇

𝑡=1 exp ( −
1

2
∑

𝑦𝑡
2

𝜎𝑡
2

𝑇
𝑡=1 )                         (14) 

In this notation, under the conditional normality 

hypothesis, the similarity function can be written for GARCH 

(1,1) process by adding changes in 𝜎𝑡
2. 

If εt ~t ( 0, 1,1/(v-2),v) is similarity function;  

ᶩ(θ;y,ℑ0)∝ ∏ [ Г (
(𝑣+1)

2

𝑇
𝑡=1 /  Г(

𝑣

2
)] ((𝑣 − 2)𝜎𝑡

2)
2

[1 +
𝑦𝑡

2

(𝑣−2)𝜎𝑡
2]−(𝑣+1)/2  (15)      

If εt ~t ( 0, 1,1/v,v) is  similarity function;  

ᶩ(θ;y,ℑ0)∝ ∏ [ Г (
(𝑣+1)

2
𝑇
𝑡=1 /  Г(

𝑣

2
)] ((𝑣)𝜎𝑡

2)
2

[1 +
𝑦𝑡

2

𝑣𝜎𝑡
2]−(𝑣+1)/2 (16)         

In many applications of Bayesian GARCH models, the 

numerical computational methods of the models are more 

important than the determination of the first distribution for the 

parameters, because there are limitations in the choice of the 

first probability distributions and the computations are done 

numerically (Rachev et.al., 2008: 203). 

Bollerslev et al. (1992) model GARCH (1,1) with Student-t 

residues (Student-GARCH (1,1)), 

yt = εt.√𝜎𝑡
2      εt / ℑt-1 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 (0,1, 𝑣), Variance can be 

stated as (Bollerslev et.al., 1992: 5);   

𝜎𝑡
2=α0+𝛼1𝜀2

𝑡−1+𝛽1𝜎2
𝑡−1                                                (17) 

Here t = 1, 2, ………..is T. As mentioned earlier, the 

Student t distribution reflects the leptrophicity in the financial 

series better than the normal distribution due to its thick tails. 
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Depending on the past information (ℑt-1 ), Student t is 

distributed with yt , 0 average  𝜎𝑡
2v/(v-2)  variance (v>2 ). 

The parameters of the variance equation are constrained 

to α0 ≥0 , 𝛼1 > 0 and 𝛽1 ≥ 0 to ensure that 𝜎𝑡
2 is positive. Last 

probability function with T observation number, 

Shown as 𝜑(𝜃/𝑦) ∝ 𝜑(𝜃)Ι (𝜃/𝑦) (Bauwens and 

Lubrano,1988: 25).  

Here 𝜑(𝜃) denotes the marginal probability density, and Ι 

(𝜃/𝑦)denotes the similarity function. 𝜃  ( α0, α1, 𝛽1, v) shows the 

parameter vector. 𝜑(𝜃), the first probability density function 

must satisfy the positivity constraint on parameters and the 

condition 𝛽1 < 1.  Besides, 𝛽1 < 1 condition is necessary for weak 

and strong stasis. 

An important feature of Bayesian inference is that the final 

probability density function can be integrated. Here we 

encounter the integral because of the concept of the probability 

density function, because here are the values corresponding to 

each point. This leads us to the concept of area and thus to the 

expression integral. If you use an integrable first probability 

density function, or a particular first probability density 

function, and if the similarity function also makes sense for 

some parameter values, then the last probability function can 

also be integrated. Failure to integrate the last probability 

function may be due to the inability to integrate the first 

probability function. Therefore, sufficient initial information is 

required for the degrees of freedom of v to ensure that the final 

probability function converges sufficiently to zero in the tail 

region and that the integral can be obtained. 

In the Bayesian ARCH - GARCH model estimation, the 

Metropolis - Hastings algorithm, Importance Sampling and 

Griddy - Gibbs Sampler are used. The M-H algorithm is one of 

the MCMC algorithms. Due to the repetitive structure of the 

variance equation in models, the conjugate process between the 

likelihood function and the predistribution cannot be 

performed. Sampling is done from the parameter vector, which 

contains all parameters together (Rachev et.al., 2008: 208). 

Simulation is then performed by adding additional input 

parameters such as the v (degrees of freedom) parameter. 
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Griddy Gibbs sampling is a special form of Gibbs sampling 

and developed by Geman and Geman (1984) (Geman and 

Geman, 1984: 721). The basic idea in this sampling is that if it 

is possible to express conditionally every coefficient to the 

others, it is possible to achieve the desired accurate common 

distribution by looping these conditional expressions. Griddy 

Gibbs sampling is carried out by evaluating the univariate 

conditional final density in the system to which the parameter 

value belongs. Therefore, in order to apply the Gibbs sampler, 

all of the last probability density functions must be analytically 

known. This sampling is a combination of the known Gibbs 

sampling and a standard numerical computation and was first 

used by Bauwens and Lubrano to estimate the parameters of 

the GARCH models. The Gibbs sampler can be applied by 

applying the dimensionless deterministic integral rule to each 

coordinate of the last probability density function. The approach 

should be followed up by creating all the conditional densities 

in order to obtain random samples from the common final 

probability distribution. Significance sampling is a version of 

rejection sampling with greater emphasis on "major regions". In 

this case, points that do not reflect the target distribution are 

not discarded, instead they are given less weight. With the 

significance sampling, it is aimed to increase the accuracy of the 

estimator by reducing the variance and by giving more weight 

to the simulations that are important. In the significance 

sampling, the last probability density function is brought closer 

to the importance function to obtain random shots. Bayesian 

calculation requires the obtaining of E[g(θ)] = 
∫ g(θ)φ(θ)dθ

∫ φ(θǀy)dθ
 .  

Here φ (θ / y) is the kernel of the last probability density 

function and g (.) Is an integrable function. The integrals in the 

statement above are based on the expected values according to 

the significance function (I (θ)) can be stated as; 

∫ φ(θǀy)dθ = ∫
𝜑(𝜃ǀ𝑦)

𝐼(𝜃)
𝐼(𝜃)𝑑(𝜃) = EI {

𝜑(𝜃ǀ𝑦)

𝐼(𝜃)
}. Sample mean can 

be stated as;  

EI{
𝜑(𝜃ǀ𝑦)

𝐼(𝜃)
}≈

1

𝑁
∑

𝜑(𝜃𝑖ǀ𝑦)

𝐼(𝜃𝑖)
𝑁
𝑖=1                                                    (18) 

The convergence of the estimate is obtained by limiting the 

weighting function φ (θ/y)/I(θ). The small coefficient of variation 
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of this ratio increases the sensitivity. It is very difficult to find a 

good importance function for this method. The choice is often 

based on the Student t-density, which is easy to simulate. 

Student's density can determine the tail thickness of the 

degrees of freedom parameter, so it is more flexible. If there is 

no specific information about the tails of the final probability 

distribution function, it is determined by trying the v selection. 

Since GARCH models need to be truncated to ensure the 

positivity constraint of the student t function, significance 

sampling is not suitable for these models (Saçıldı Saçaklı, 2011: 

96).  

4. CONCLUSION 

Methods that have been used for a long time on issues 

such as financial assets, risk management, exchange rates, 

where parameters are assumed to be fixed and inferences are 

made based on data, belong to the classical approach. On the 

other hand, the Bayesian approach is the approach in which the 

parameters are considered random, uses prior knowledge and 

makes probabilistic inferences about the parameters. These 

approaches provide useful tools for different needs in the 

financial field and take volatility into account when determining 

the risk of financial assets. Therefore, determining the difference 

between the two approaches plays an important role in 

determining what purpose the Bayesian approach will serve, 

such as whether it works well in small samples. Therefore, 

identifying the similarities and differences between both 

approaches will contribute to the literature in guiding the 

selection of a better model that takes into account future 

fluctuations with applications in financial markets. It is thought 

that it would be beneficial to make an assessment in terms of 

the differences and advantages over the classical approach to 

the subject, rather than the methodological differences in the 

Bayesian approach. The theory shows that expected utility 

maximization provides the basis for rational decision making, 

and Bayes' theorem explores ways of combining beliefs in the 

light of changing evidence. The aim is to create a set of rules 

and procedures through a disciplined approach to uncertainty. 

Maximization of the likelihood function used in ARCH - GARCH 

model estimation should be ensured by a constrained 
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optimization technique. The model parameters must be positive 

to provide a positive conditional variance and the covariance 

must be stationary. The optimization process is subject to some 

inequality constraints which make the process difficult. The 

optimization becomes difficult to converge when the actual 

parameter values are not close to the bounds of the parameter 

space, or when the process is closer to a non-stationary state. 

Also, since it is difficult to obtain the optimal covariance matrix, 

some approaches should be taken to obtain reliable results. In 

classical applications of ARCH-GARCH models, the focus is not 

directly on the parameters of the model, but on the possible 

complex non-linear functions of the parameters. When the 

models are treated by the Bayesian approach, these difficulties 

disappear. First, the constraints considered appropriate for the 

model parameters can be incorporated into the model with 

appropriate predistributions. Secondly, Monte-Chain Monte-

Carlo (MCMC) can be used to study the combined final 

distributions of the model parameters. This approach avoids the 

local maxima encountered in maximum likelihood estimation of 

the regime-modified GARCH model. Nonlinear distributions of 

model parameters can be easily achieved by simulating from the 

combined final distribution. Therefore, while constraints such 

as the constancy constraint are difficult assumptions to achieve 

according to the classical approach, this difficulty disappears in 

the Bayesian approach and solutions are provided for many 

assumptions and constraints made outside the framework of 

the stationary state. 

 

Etik Beyanı: Bu çalışmanın tüm hazırlanma süreçlerinde etik 

kurallara uyulduğunu yazar beyan eder. Aksi bir durumun 

tespiti halinde Akademik İzdüşüm Dergisinin hiçbir sorumluluğu 

olmayıp, tüm sorumluluk çalışmanın yazarına aittir.  

Destek ve Teşekkür: Bu araştırmanın hazırlanmasında 

herhangi bir kurumdan destek alınmamıştır.  

Katkı Oranı Beyanı: Araştırmanın tüm süreci makalenin beyan 

edilen tek yazarı tarafından gerçekleştirilmiştir. 
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Çatışma Beyanı: Araştırmada herhangi bir çıkar çatışma 

beyanı bulunmamaktadır.  
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CLASSICAL AND BAYESIAN APPROACH TO 
UNIVARIATE VOLATILITY MODELS 

Extended Summary  

Aim: 

Global developments, including economic, political and social 

developments in recent years, directly affect exchange rates and 

other financial instruments in financial markets and cause 

significant volatility in their return changes. At this point, the 

concept of volatility becomes important. Volatility, which 

corresponds to uncertainty in financial markets, also represents 

the risk of the financial asset. Volatility estimates are used 

extensively in asset management, portfolio management and 

derivative product pricing and are very important. The 

constraints in the applications of classical ARCH - GARCH 

models are eliminated in the Bayesian approach, and solutions 

are provided to many assumptions and restrictions outside the 

scope of the stationarity condition. In this regard, the aim of the 

manuscript is to compare the Classical and Bayesian volatility 

models theoretically and to clarify the approach by discussing 

the advantages of the Bayesian approach, since the necessity of 

choosing the right econometric forecasting method directly 

affects the reliability of the results to be obtained.  

Research Questions: 

The research questions that this manuscript aims to answer 

are; - What are the basic characteristics of financial asset 

returns? What does the concept of volatility in financial markets 

mean and why is it important? What are the characteristics of 

univariate symmetric and asymmetric autoregressive 

conditional variance models in the classical approach and 

volatility models in the Bayesian approach? What are the 

disadvantages of the classical approach and the advantages of 

the Bayesian approach over the classical approach? 

Method(s):  

In this manuscript, classical and Bayesian approaches to 

volatility models are discussed, taking into account that the 
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choice of appropriate econometric method is crucial for the 

reliability of the results in model estimations. 

Findings and Discussion:  

The maximisation of the likelihood function used in ARCH - 

GARCH model estimation is achieved by a constrained 

optimisation technique. To ensure a positive conditional 

variance, the model parameters must be positive and the 

covariance must be stationary. The optimisation process is 

subject to some inequality constraints, which complicates the 

process. If the actual parameter values are not close to the 

boundaries of the parameter space or if the process is closer to 

the non-stationary state, the convergence of the optimisation 

becomes difficult. Moreover, since it is difficult to obtain the 

optimal covariance matrix, some approximations must be 

adopted for reliable results.  In classical applications of ARCH - 

GARCH models, the focus is not directly on the parameters of 

the model, but on the possible complex nonlinear functions of 

the parameters. These difficulties are eliminated when the 

models are handled with a Bayesian approach. Firstly, 

constraints that are deemed appropriate for the model 

parameters can be included in the model with appropriate prior 

distributions. Furthermore, the Monte Chain Monte Carlo 

(MCMC) process can be used to investigate the joint final 

distributions of the model parameters. With this approach, local 

maxima encountered in the Maximum Likelihood estimation of 

the regime-switched GARCH model can be avoided. Nonlinear 

distributions of the model parameters can be easily obtained by 

simulation from the final distribution. Therefore, while 

constraints such as the stationarity constraint are difficult 

assumptions to obtain according to the classical approach, this 

difficulty is eliminated in the Bayesian approach, and many 

assumptions and constraints made outside the scope of the 

stationarity condition are solved. 


