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FINANCIAL MARKETS: CLASSICAL AND BAYESIAN
APPROACH TO UNIVARIATE VOLATILITY MODELS

Tugce ACAR KARA"

Abstract

There are two different approaches to the development of statistics. These are
the "Classical” and the "Bayesian" approaches. We encounter the concept of
"objectivity”, which in the classical approach refers to ignoring prior information
about the process being measured. However, in the presence of prior information
about the process under consideration, there is a loss of information because
the existing information is ignored. Since the parameters are not random in the
classical approach, no probability statements can be made about the
parameters. The Bayesian approach takes into account prior information about
the process and takes a more disciplined approach to uncertainty. It is therefore
an approach derived from Bayes' theorem. The Bayesian approach treats
parameters as probabilistic and random variables. There are no assumptions to
be made as in the classical approach. Given this information, the aim is to
evaluate the univariate volatility models under the Classical and Bayesian
approaches. Volatility, which corresponds to uncertainty in the financial
markets, also represents the risk of the financial asset. Therefore, it is expected
that it will be beneficial to evaluate the effect of both approaches on the analysis
of volatility models.

Keywords: Financial Markets, Volatility Models, Classical Approach,
Bayesian Approach.

JEL Codes: CO1, C11, E44

Finansal Piyasalar: Tek Degiskenli Volatilite Modellerine
Klasik ve Bayesyen Yaklasim

Oz

Istatistigin gelisiminde iki farkli yaklasim vardir. Bunlar "Klasik" ve "Bayesci"
yaklasimlardir. Klasik yaklasimda, dlctilen stiregle ilgili 6n bilgilerin gz ardt
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edilmesini ifade eden "objektiflik” kavrami karsimiza ¢ikar. Ancak, s6z konusu
stirecle ilgili én bilgilerin varliginda, mevcut bilgiler g6z ardt edildigi icin bir bilgi
kaybt sbéz konusudur. Parametreler rastgele olmadigindan, parametreler
hakkinda olasilik ifadeleri yapilamaz. Bayesci yaklasim, stirecle ilgili 6n
bilgileri dikkate alir ve belirsizlige daha disiplinli bir yaklasim getirir. Bu
nedenle Bayes teoreminden tiiretilmis bir yaklasimdw. Bayesci yaklasim,
parametreleri olasiliksal ve rastgele degiskenler olarak ele alir. Klasik
yaklasimda oldugu gibi saglanmast gereken varsayimlar yoktur. Bu bilgiler
isiginda amag, tek degiskenli volatilite modellerini Klasik ve Bayesyen
yaklasumlar altinda degerlendirmektir.  Finansal piyasalarda belirsizlige
karsuik gelen volatilite, aynt zamanda finansal varligin riskini de temsil
etmektedir. Dolayisiyla her iki yaklasumn volatilite modellerinin analizine etkisi
acisindan degerlendirilmesinin faydali olacag: beklenmektedir.

Anahtar Kelimeler: Finansal Piyasalar, Volatilite Modelleri, Klasik
Yaklasim, Bayes Yaklasimu.

JEL Kodu: C0O1, C11, E44

1. INTRODUCTION

Financial asset movements in the financial markets
include upward and downward changes. Although the financial
series are stationary on average, they are not stationary in
variance. Here we come across with the concept of volatility. The
concept we call volatility means that variance changes over
time. Considering that this concept meets uncertainty, volatility
is also expressed as the total risk of any financial asset. The
high volatility of the financial asset tells us how risky the asset
is. High volatility means that the index is risky and that the
return index is spread over a wide range of values. This means
that the index price will change significantly in a short period of
time (Karolyi, 2001:2). In general, returns on financial assets
have three main characteristics. These are the leptokurtic
feature, the volatility cluster and the leverage effect. Leptokurtic
means that financial series are thick in the tails and pointed at
the end. While the thickness in the tails corresponds to the
points where there are excessive movements in the financial
series, excessive pointedness means that the periods are more
likely to have extreme situations, i.e. highly volatile movements.
Mandelbrot (1963) found that large changes in the returns of
financial assets are followed by large changes and small
changes are followed by small changes (Mendelbrot, 1963: 394).
This situation is known as a volatility cluster in the financial
markets. On the other hand, the high rate of depreciation of
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financial assets over time creates greater volatility than the
same level of appreciation and increases the risk level of the
financial asset. In addition, market participants react differently
to positive and negative market news. Accordingly, news with a
negative impact on financial markets creates more volatility
than news with a positive impact. Therefore, the direction of the
price change has an asymmetric effect on volatility. We can say
that the asymmetric effect must be present for the leverage
effect to be present. One of the characteristic features of
financial time series is that the conditional variance changes
over time. Models that take into account the concept of
heteroskedasticity are called "autoregressive conditional
heteroskedasticity models". The models are divided into
univariate and multivariate volatility models. While univariate
volatility models ensure that the volatility of a particular
financial asset is reported independently of the returns of other
financial assets, multivariate volatility models also take into
account the time dependence between the financial market and
the assets. ARCH and GARCH models, which can be used to
model the volatility of a single financial asset, are inadequate for
multivariate structures. In particular, the fact that the financial
markets of many countries are interconnected and
interdependent means that the financial assets traded in the
financial markets are also interconnected and interdependent.

Multivariate structures enable more rational decisions in
areas such as asset pricing, portfolio selection, option pricing
and risk management. While univariate ARCH-GARCH models
include conditional variances, multivariate structures include
conditional variances and covariances include dynamic
relationships. The differentiation of the models by name is
related to the parameterization techniques used. Furthermore,
these models have two characteristics as symmetric and
asymmetric autoregressive heteroskedasticity models. In
symmetric conditional variance models, the effect of positive
and negative news on volatility is treated as equal. In
asymmetric models, this effect occurs at a different level.
Accordingly, Engle (1982) firstly analyzed the UK inflation rate
data and showed that the variance of the error term is not fixed
(Engle, 1982: 987). In the study in question, it was determined
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that the estimation errors vary depending on the prediction
errors of the previous period. He proposed autoregressive
conditional variance model (ARCH Model) to calculate
conditional volatility. On the other hand, there are two different
approaches to the development of statistics. These are the
"Classical" and the "Bayesian" approaches. In particular, the
importance of being able to obtain information about the
distribution of variables makes the Bayesian approach
attractive. Accordingly, the study aims to examine the
univariate volatility models within the framework of the classical
and Bayesian approaches. The study will also contribute to the
literature by guiding the selection of a better model that takes
into account future fluctuations with applications in financial
markets. It is believed that it would be beneficial to make an
assessment in terms of the differences and advantages over the
classical approach to the subject, rather than the
methodological differences in the Bayesian approach. Volatility,
which corresponds to uncertainty in the financial markets, also
represents the risk of the financial asset. Therefore, it is
believed that it will be useful to show the effect of both
approaches on the analysis of volatility models. In the study,
following the introduction, univariate symmetric and
asymmetric autoregressive heteroskedasticity models are
analysed, and then how these models are handled in the
Bayesian approach and the similarities and differences between
them are examined.

2. UNIVARIATE SYMMETRIC AUTOREGRESSIVE
CONDITIONAL HETEROSKEDASTICITY MODELS

Models commonly used in research areas such as financial
markets, risk management, equities and exchange rates model
the volatility of financial assets. They are symmetric in that the
effects of positive and negative shocks are treated equally. The
model structures are ARCH, ARCH-M, GARCH and GARCH-M,
as described below.

2.1. ARCH and ARCH-M Models

The ARCH model is based on the basic logic of explaining
the model with the previous periods of the square of the
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residuals. Therefore, the prediction of variance in the next
period depends on the information available in the previous
periods [9]. Bwi1, is a linear function of past returns and
information in (t-1) time. In order to model volatility correctly, it
is important to use the information of previous periods in the
calculation of the conditional average and variance of financial
returns. The conditional mean and variance of a financial return
(r¢ obtained by using past period information are as follows;

pe= E (I“t| Bt1) (1)
o2 =Var (r: | Be.1) = E [ (rt - 1¢)2 | Bi1] (2)

Here, the ARCH (p) model with the most general expression
for the return of a financial asset is as follows;

ARCH (p): 0= ao + a1 €12 + Q2 €22 + .eoeneeees + apeep? (3)

Errors are derived from an average model. Considering
that the mean model is a simple AR(1) process in the form of Y
= 0Y:.1+ &, & ~N (0, 0,2) the error terms must be Gaussian.

If we make inference from ARCH (1) model,
ARCH(1): 012 = aotai&-12 (4)

In the ARCH model, parameter estimates are made using
the maximum likelihood method. The a: parameter is the
ARCH(1) parameter. It should be O< a; < 1. The fact that this
parameter is close to 1 indicates that volatility is continuous
(with a permanent effect), in other words, the presence of the
volatility cluster. The fact that the parameter is less than 1
indicates that the ARCH model satisfies the stationary
condition.

Engle (1982) suggested first testing for the ARCH effect, i.e.
the presence of conditional variance in variance modelling. If
there is no ARCH effect in the residual, then the use of the ARCH
model would be incorrect.

The implementation of the ARCH test is as follows:

A model is established with the square of the residues
obtained Y: = OY:.1 + &; over the appropriate average equation of
AR (1).
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With the help of the R2 value obtained from the 2= 30 +
1812 + Boga?+ i, + Bp e-p2 + Uur model, the test statistic is
calculated as nR2. Here, the test statistic has a p degrees of
freedom X2distribution. The null hypothesis is that there is no
ARCH effect present.

In general, the ARCH effect in ARCH (1) does not require
long delays to be considered. For this reason, in practice, it is
generally applied via ARCH (1).

Since the conditional variance (0:2) or square root is
included in the mean equation, the model is called ARCH in
Mean.

Average equation is as follows;
Y:= OYe1+@o2+e,e ~ N(0, 0,2) (5)
Model is as follows;

ARCH-M(p) = 02=aop + a1 &-12 + A2 €02 + .......... + Ap Etp?
(6)

Also, the parameter ¢ in the average equation is the risk
premium coefficient that changes over time.

Although the ARCH model has a parametric structure in
estimating volatility and has produced some empirical results
on financial asset returns, it also has some weaknesses. These
weaknesses are as follows:

i. The ARCH model is only used to determine the
behaviour of the conditional variance. It is ineffective in

explaining the changes in the financial series (Degiannakis and
Xekalaki, 2015: 272).

ii. Since the shocks of the previous period are included in
the model with their squares, positive and negative shocks are
assumed to have the same effect on volatility. However, it is well
known that the prices of financial assets in financial markets
can react differently to these shocks.

iii. Since the ARCH model tends to react slowly to large
shocks to financial returns, it can predict volatility more than it
does.
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iv. The excess of variables that are significant in the delay
number of the error term square in the ARCH model increases
the number of parameters to be estimated (Cil, 2015: 449).

2.2. GARCH and GARCH-M Models

The Generalised ARCH (GARCH) model was developed by
Bollerslev (1986) to overcome the implementation difficulties of
the ARCH model. The main limitation of the ARCH model is that
it requires many lags to capture the effect of past returns on
today's volatility. Bollerslev (1986) developed the GARCH model
by including the ARCH model's own lag in the volatility
equation.

For the GARCH model, as in the ARCH model, r: denotes
the logarithmic return and & = r: — P, shock at time t. The
GARCH (p,q) model used to capture the volatility in the financial
return series with & = z; ot is as follows:

GARCH(p,q): 02 = ao+Xi_, a;e?,_i+2i_, Bio?; (7)

The random variable array with z~ N(0,1)expresses the
degree of the parameter GARCH, that is, the degree of the
conditional variance (0:2), while the parameter p expresses the
degree of the ARCH and the past period of the residues.

GARCH(].,].): 01;2 = Cl0+a1€2t_1+‘810-2t_1 (8)

In the GARCH (1,1) model, the parameter ao indicates the
long-run volatility, a; indicates the size of the shocks arriving in
the series, and the parameter f; indicates the effect of past
volatility on today's volatility. In the equation, the response of
the series to shocks is equal to the value of the parameter a;.
The size of the parameter f,, which indicates the volatility lag,
means that the shocks in the series last for a long time.

For example, ifa;= 0.30 and p;= 0.60, one unit of
unexpected return changes cause the volatility to increase by
0.30 units, when the volatility of the previous period increases
by one unit, the volatility of the next period increases by 0.60.

For the significance of the GARCH model, ao, @; and B;> 0
must be O.
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Also, a; + ;<1 condition must be fulfilled for covariance
stationarity. (Covariance Stationary: It means that the mean
and variance of the stochastic process does not change over
time. Besides, it requires that the correlation, which is the
indicator of the relationship between x (t) and x (t + h), depends
on the h parameter, that is, the distance between processes and
not on time.)

The GARCH model also uses the maksimum likelihood
method for parameter estimations.

3. UNIVARIATE ASYMMETRIC AUTOREGRESSIVE
CONDITIONAL HETEROSKEDASTICITY MODELS

3.1. Exponential GARCH (EGARCH) and Threshold GARCH
(TARCH) Model

The main disadvantage of ARCH and GARCH models is
that the variance effect is assumed to be constant
(Gil,2015:461). However, the reaction to negative news in
financial markets is greater than the reaction to positive news.
In other words, the fall in stock prices causes more volatility in
financial markets than the rise in prices. The reason for this is
that the company is seen as more risky because of the increase
in the ratio of debt to equity, known as the leverage effect. The
leverage effect was first introduced by Black (1976) (Black,
1976:177-181).

The EGARCH model developed by Nelson (1991) to capture
this asymmetry is as follows (Nelson, 1991:347-370):

Et—i Et—i
In(0,%) = a0 XL, filn(o? )+ Bl ai [+ B i s 9)
As seen from the equation, the conditional variance of a
time series in the EGARCH model is a nonlinear function of its

past values, the lagged values and sign of the residues. The term
Z=i in the equation is standardized error terms.

Ot—i

The use of standardised errors instead of past values of the
error terms in the EGARCH model provides information on the
size and persistence of the shock. If Z?zlﬁﬁ 1, the process is
covariance stationary. Since the conditional variance is modeled
linearly in the EGARCH model, there are no non-negative
constraints imposed on the parameters for the GARCH model to
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be positive, so the model does not restrict the parameters a; and
Bi-
Let's examine the parameters on the EGARCH (1,1) model

P
Jfor the term == ;
Ot—i

In(0,?) = ao+Byin(a?,_D+ay

t—1

€
Ot—1

+y, =L (10)

Ot—1

If this term is positive, the effect of shocks on conditional
variance is equal to(a; + y;). If the ratio is negative, the effect
of shocks on conditional variance will be (a¢-y;) (Enders, 2009:
156). The most important concept that distinguishes this model
from other models is the parameter y;. The statistically
significant y; parameter indicates the presence of asymmetric
volatility. While y; < 0 indicates the presence of leverage effect,
y1 = 0 means that the positive shock ( &_; > 0) and negative
shock (¢,_; < 0) have the same effect on volatility.

The main feature of this model is that a dummy variable
expressing the threshold is added to the conditional variance
model based on a threshold for the residual of the mean model.
The conditional variance equation of the TARCH model is as
follows:

02 = Qo+Xi_; Bio% i+ Xy (@i’ + ¥iDje_je*e—)) (11)
TARCH(1,1): 0 = ao+f10%_1+a 6% 1 + y1De_18%11 (12)

In here, £2,_; is the residues obtained from the average
equation.

D . — {1 &1 <0
t-1 = 0 Et-1 =0

Also, the statistically significant y; parameter indicates the
presence of asymmetric effect.

4. BAYESIAN ARCH and GARCH VOLATILITY MODELS

Classical ARCH and GARCH models have been mentioned
in the previous section. These are models that can be treated
using a Bayesian approach. The Bayesian approach takes into
account prior information about the process and takes a more
disciplined approach to uncertainty. It provides an advantage
by utilising prior knowledge of parameters and better
performance in model comparison. The approach involves prior
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knowledge and posterior distribution. The posterior
probabilities are calculated using the first and likelihood
probabilities. This process includes the steps of the Bayesian
approach. The process is followed in the Bayesian forecasting of
ARCH-GARCH models. Therefore, in this section, we will
discuss Bayesian ARCH and GARCH models, and the ARCH
model will be mentioned primarily within the Bayesian
approach, as it forms the basis of the GARCH model.

4.1. Bayesian ARCH Models

Bayesian extraction of ARCH models was first developed
by Geweke (1986a, 1986b) (Geweke, 1988: 73). In Bayesian
prediction, it is easier to achieve constraints such as stationary
assumption in classical ARCH models. It's well known that in
the Bayesian method, inference is made via the similarity
function. The likelihood function is a concept that plays a role
in the calculation of the prior distribution in the Bayesian
approach and is used in the calculation of the probability
depending on the parameters. It is also critical for algorithm
performance (Thornton 2007: 598). Markov Chain Monte Carlo
(MCMC) provides flexibility in finding the last probability
distribution of both model parameters and functions, since the
similarity function is not linear with respect to the parameters,
optimising of the similarity function is difficult. MCMC is a class
of simulations in Bayesian statistics and is a powerful tool for
calculating integrals in high-dimensional problems for which no
analytical solution exists (Chernozhukov and Hong, 2003: 294).

Accordingly, let’s determine the similarity function for the
ARCH model in the Bayesian Approach.

Let's assume that the mean model is the simple AR (1)
model in the form of Yi= 0Y:.1 + &. In this case, it is expressed
as ARCH (p): 02=ao + a1 €12 + Az €22+ .......... + ap &-p2. Here,
conditional similarity function of Y; with the variation &~N(O,
1),it is expressed as 1 (0;y, 30 ) = [Tre1 f (¥: 15¢-1,0) [12]. 8" = (o
y A1y eennen Ap), Y = (Y1,¥2e0eee-- V1) 5 30 = (Yo Y-1yeeeeee- y1-p) are the
vector of the initial conditions. f(y;I3;_1,6) is the conditional
probability density function. Each conditional probability
density function has a normal distribution with an average of
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zero and variance of o:2. Similarity function when initial
observations are taken as initial conditions;

(03, 30)o¢ TTEoa(02) ™/ exp ( — 331, 25) (13)

Engle (1982) proposed a linear decreasing structure for the
a; coefficients of the ARCH (p) model (from (p+1) to 2) in order to
reduce the number of parameters. In this case,

. p+1—j
ARCH(p) : 6 = ao+ 2a Z, 1p(p+1)y . ]equatlon replace
ARCH(p): 6t*= oo + a1 &t1% + 02§62+ ... + ap &-p? €quation.
p+l—j - _ p+1—j .
Since it is Z] 1o - 0.5, p(p+1)> 0, Vj<p, the

stationary condition is 31m11ar1y provided with a <1.

The inequality constraints required to provide the
positivity constraint and the stationary condition, expressed as
0<a<1 when estimating the model with the maximum likelihood
method, make the solution very difficult. In the Bayesian
approach, values that don't confirm the inequalities are rejected
by simulating the final probability distribution. In this way, the
condition of inequality is satisfied. However, if the rejected
values are too many, problems will arise because the process
will not be stationary (Bauwens and Lubrano, 1999:208).

In the general ARCH (p) model, if p is greater than 1, the
Monte Carlo method can be used. Since numerical integration
is used, any initial probability density function can be chosen.

4.2, Bayesian GARCH Models

Bayesian GARCH models were developed by Kleibergen
and Van Dijk (1993) and Bauwens and Lubrano (1998)
(Bauwens and Lubrano, 1988: 23). For the Bayesian estimation
of the GARCH model, the likelihood function, the pre-
distributions of the parameters and the final distribution
calculated within the framework of the Bayes rule should be
specified. At this point, it is necessary to make a distribution
assumption for the return errors, and the expression "mixture
of normal distributions" is generally used for the GARCH model.
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The mixture of normal distributions is a concept proposed
for thick tails and asymmetry. The mixture of normals is
determined by changing either the variance or the mean of a
normally distributed random variable. If only the normal
variance is changed, the distribution obtained refers to the scale
mixture of normals, and if both the mean and variance are
changed, it is expressed as the position scale mixture of
normals. In this respect, the Student t distribution better
captures the nature of the distribution of the data when it comes
to returns. So let's first look at the similarity function for the
GARCH model. The similarity function of the ARCH model was
expressed as;

85y, 30)o¢ [Ty (02) /% exp (— 3312, 25) (14)

In this notation, under the conditional normality
hypothesis, the similarity function can be written for GARCH
(1,1) process by adding changes in ¢,2.

Ifee~t (0, 1,1/(v-2),v) is similarity function'
(B3y,So) [T [ T (22 / T (@ - 2)0,2) [1 +
Ifec~t (0, 1,1/ V,V) is similarity function;

(653, 3o)o TTE=a [ T (222 / T ()02 [1 4+ 2] +/2 (16)

voy 2
In many applications of Bayesian GARCH models, the
numerical computational methods of the models are more
important than the determination of the first distribution for the
parameters, because there are limitations in the choice of the
first probability distributions and the computations are done
numerically (Rachev et.al., 2008: 203).

Bollerslev et al. (1992) model GARCH (1,1) with Student-t
residues (Student-GARCH (1,1)),

Vi = €t/ 02 & / St1 ~ Student (0,1,v), Variance can be
stated as (Bollerslev et.al., 1992: 5);

(1;+1)

- w+1)/2 (15)

(v- 2)

o’=aota &% 1+B10% ;4 (17)

Here t = 1, 2, ........... is T. As mentioned earlier, the
Student t distribution reflects the leptrophicity in the financial
series better than the normal distribution due to its thick tails.
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Depending on the past information (3«1 ), Student t is
distributed with y¢, 0 average o,%v/(v-2) variance (v>2 ).

The parameters of the variance equation are constrained
to a0 >0, @; > 0 and B; = 0 to ensure that ¢,? is positive. Last
probability function with T observation number,

Shown as ¢@(0/y) xe@)] (0/y) (Bauwens and
Lubrano,1988: 25).

Here ¢(0) denotes the marginal probability density, and I
(6/y)denotes the similarity function. 8 ( ao, ai, 1, v) shows the
parameter vector. ¢(0), the first probability density function
must satisfy the positivity constraint on parameters and the
condition f; < 1. Besides, f; < 1 condition is necessary for weak
and strong stasis.

An important feature of Bayesian inference is that the final
probability density function can be integrated. Here we
encounter the integral because of the concept of the probability
density function, because here are the values corresponding to
each point. This leads us to the concept of area and thus to the
expression integral. If you use an integrable first probability
density function, or a particular first probability density
function, and if the similarity function also makes sense for
some parameter values, then the last probability function can
also be integrated. Failure to integrate the last probability
function may be due to the inability to integrate the first
probability function. Therefore, sufficient initial information is
required for the degrees of freedom of v to ensure that the final
probability function converges sufficiently to zero in the tail
region and that the integral can be obtained.

In the Bayesian ARCH - GARCH model estimation, the
Metropolis - Hastings algorithm, Importance Sampling and
Griddy - Gibbs Sampler are used. The M-H algorithm is one of
the MCMC algorithms. Due to the repetitive structure of the
variance equation in models, the conjugate process between the
likelihood function and the predistribution cannot be
performed. Sampling is done from the parameter vector, which
contains all parameters together (Rachev et.al., 2008: 208).
Simulation is then performed by adding additional input
parameters such as the v (degrees of freedom) parameter.
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Griddy Gibbs sampling is a special form of Gibbs sampling
and developed by Geman and Geman (1984) (Geman and
Geman, 1984: 721). The basic idea in this sampling is that if it
is possible to express conditionally every coefficient to the
others, it is possible to achieve the desired accurate common
distribution by looping these conditional expressions. Griddy
Gibbs sampling is carried out by evaluating the univariate
conditional final density in the system to which the parameter
value belongs. Therefore, in order to apply the Gibbs sampler,
all of the last probability density functions must be analytically
known. This sampling is a combination of the known Gibbs
sampling and a standard numerical computation and was first
used by Bauwens and Lubrano to estimate the parameters of
the GARCH models. The Gibbs sampler can be applied by
applying the dimensionless deterministic integral rule to each
coordinate of the last probability density function. The approach
should be followed up by creating all the conditional densities
in order to obtain random samples from the common final
probability distribution. Significance sampling is a version of
rejection sampling with greater emphasis on "major regions". In
this case, points that do not reflect the target distribution are
not discarded, instead they are given less weight. With the
significance sampling, it is aimed to increase the accuracy of the
estimator by reducing the variance and by giving more weight
to the simulations that are important. In the significance
sampling, the last probability density function is brought closer
to the importance function to obtain random shots. Bayesian

calculation requires the obtaining of E[g(0)] = % .

Here @ (0 / y) is the kernel of the last probability density
function and g (.) Is an integrable function. The integrals in the
statement above are based on the expected values according to
the significance function (I (8)) can be stated as;

[ @(Bly)d6 = f%l(@)d(@) = E {%}. Sample mean can
be stated as;
PN 1N 20ily)
E{ 1(6) }NN =1 16y (18)
The convergence of the estimate is obtained by limiting the
weighting function @ (6/y)/1(6). The small coefficient of variation
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of this ratio increases the sensitivity. It is very difficult to find a
good importance function for this method. The choice is often
based on the Student t-density, which is easy to simulate.
Student's density can determine the tail thickness of the
degrees of freedom parameter, so it is more flexible. If there is
no specific information about the tails of the final probability
distribution function, it is determined by trying the v selection.
Since GARCH models need to be truncated to ensure the
positivity constraint of the student t function, significance
sampling is not suitable for these models (Sacild: Sacakli, 2011:
96).

4. CONCLUSION

Methods that have been used for a long time on issues
such as financial assets, risk management, exchange rates,
where parameters are assumed to be fixed and inferences are
made based on data, belong to the classical approach. On the
other hand, the Bayesian approach is the approach in which the
parameters are considered random, uses prior knowledge and
makes probabilistic inferences about the parameters. These
approaches provide useful tools for different needs in the
financial field and take volatility into account when determining
the risk of financial assets. Therefore, determining the difference
between the two approaches plays an important role in
determining what purpose the Bayesian approach will serve,
such as whether it works well in small samples. Therefore,
identifying the similarities and differences between both
approaches will contribute to the literature in guiding the
selection of a better model that takes into account future
fluctuations with applications in financial markets. It is thought
that it would be beneficial to make an assessment in terms of
the differences and advantages over the classical approach to
the subject, rather than the methodological differences in the
Bayesian approach. The theory shows that expected utility
maximization provides the basis for rational decision making,
and Bayes' theorem explores ways of combining beliefs in the
light of changing evidence. The aim is to create a set of rules
and procedures through a disciplined approach to uncertainty.
Maximization of the likelihood function used in ARCH - GARCH
model estimation should be ensured by a constrained
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optimization technique. The model parameters must be positive
to provide a positive conditional variance and the covariance
must be stationary. The optimization process is subject to some
inequality constraints which make the process difficult. The
optimization becomes difficult to converge when the actual
parameter values are not close to the bounds of the parameter
space, or when the process is closer to a non-stationary state.
Also, since it is difficult to obtain the optimal covariance matrix,
some approaches should be taken to obtain reliable results. In
classical applications of ARCH-GARCH models, the focus is not
directly on the parameters of the model, but on the possible
complex non-linear functions of the parameters. When the
models are treated by the Bayesian approach, these difficulties
disappear. First, the constraints considered appropriate for the
model parameters can be incorporated into the model with
appropriate predistributions. Secondly, Monte-Chain Monte-
Carlo (MCMC) can be used to study the combined final
distributions of the model parameters. This approach avoids the
local maxima encountered in maximum likelihood estimation of
the regime-modified GARCH model. Nonlinear distributions of
model parameters can be easily achieved by simulating from the
combined final distribution. Therefore, while constraints such
as the constancy constraint are difficult assumptions to achieve
according to the classical approach, this difficulty disappears in
the Bayesian approach and solutions are provided for many
assumptions and constraints made outside the framework of
the stationary state.

Etik Beyani: Bu calismamn tiim hazirlanma stireglerinde etik
kurallara uyuldugunu yazar beyan eder. Aksi bir durumun
tespiti halinde Akademik Izdiisiim Dergisinin hicbir sorumlulugu
olmayip, tiim sorumluluk calismanin yazarina aittir.

Destek ve Tesekkiir: Bu arastrmanin hazirlanmasinda
herhangi bir kurumdan destek alinmanustir.

Katkt Orant Beyanu: Arastirmarun tiim stireci makalenin beyan
edilen tek yazan tarafindan gerceklestirilmistir.
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Catisma Beyani: Arastirmada herhangi bir c¢ikar catisma
beyani bulunmamaktadar.
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CLASSICAL AND BAYESIAN APPROACH TO
UNIVARIATE VOLATILITY MODELS

Extended Summary
Aim:

Global developments, including economic, political and social
developments in recent years, directly affect exchange rates and
other financial instruments in financial markets and cause
significant volatility in their return changes. At this point, the
concept of volatility becomes important. Volatility, which
corresponds to uncertainty in financial markets, also represents
the risk of the financial asset. Volatility estimates are used
extensively in asset management, portfolio management and
derivative product pricing and are very important. The
constraints in the applications of classical ARCH - GARCH
models are eliminated in the Bayesian approach, and solutions
are provided to many assumptions and restrictions outside the
scope of the stationarity condition. In this regard, the aim of the
manuscript is to compare the Classical and Bayesian volatility
models theoretically and to clarify the approach by discussing
the advantages of the Bayesian approach, since the necessity of
choosing the right econometric forecasting method directly
affects the reliability of the results to be obtained.

Research Questions:

The research questions that this manuscript aims to answer
are; - What are the basic characteristics of financial asset
returns? What does the concept of volatility in financial markets
mean and why is it important? What are the characteristics of
univariate symmetric and asymmetric autoregressive
conditional variance models in the classical approach and
volatility models in the Bayesian approach? What are the
disadvantages of the classical approach and the advantages of
the Bayesian approach over the classical approach?

Method(s):

In this manuscript, classical and Bayesian approaches to
volatility models are discussed, taking into account that the
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choice of appropriate econometric method is crucial for the
reliability of the results in model estimations.

Findings and Discussion:

The maximisation of the likelihood function used in ARCH -
GARCH model estimation is achieved by a constrained
optimisation technique. To ensure a positive conditional
variance, the model parameters must be positive and the
covariance must be stationary. The optimisation process is
subject to some inequality constraints, which complicates the
process. If the actual parameter values are not close to the
boundaries of the parameter space or if the process is closer to
the non-stationary state, the convergence of the optimisation
becomes difficult. Moreover, since it is difficult to obtain the
optimal covariance matrix, some approximations must be
adopted for reliable results. In classical applications of ARCH -
GARCH models, the focus is not directly on the parameters of
the model, but on the possible complex nonlinear functions of
the parameters. These difficulties are eliminated when the
models are handled with a Bayesian approach. Firstly,
constraints that are deemed appropriate for the model
parameters can be included in the model with appropriate prior
distributions. Furthermore, the Monte Chain Monte Carlo
(MCMC) process can be used to investigate the joint final
distributions of the model parameters. With this approach, local
maxima encountered in the Maximum Likelihood estimation of
the regime-switched GARCH model can be avoided. Nonlinear
distributions of the model parameters can be easily obtained by
simulation from the final distribution. Therefore, while
constraints such as the stationarity constraint are difficult
assumptions to obtain according to the classical approach, this
difficulty is eliminated in the Bayesian approach, and many
assumptions and constraints made outside the scope of the
stationarity condition are solved.
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