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Abstract: Let Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} − {(0)} be a set of integer vectors. We

enumerate lattice paths that only uses vectors in Vn . Unlike most lattice path enumeration problems, the

number of dimensions isn’t fixed and the vector set is dependent on the dimension. This requires us to

follow a different approach in explicitly expressing the number of lattice paths from origin to any point in

n -dimensional space. We notice that a special case of this problem corresponds to Fubini numbers, which

count the number of weak orderings of a set consisting of n elements. Then, we find the recursive relation

of this sequence. Finally, we develop an algorithm that can be used to find the number of paths between

any two points that do not touch the lattice points in R . The crucial part of our algorithm is that it

doesn’t rely on finding all paths and checking each path for usage of restricted points.

Keywords: Lattice paths, forbidden paths, binary paths, enumeration in n dimensions.

1. Introduction

In the literature, lattice path is defined as; one of the shortest paths from one point to another

in a model that consists of horizontal and vertical paths that intersect each other perpendicularly.

Various researches have been carried out on the “lattice path” for many years. These studies gained

momentum, especially after the 19th century and the most comprehensive studies on the subject

have been made in recent years. We refer the reader [5] for a history of lattice path enumeration.

A Hamiltonian path is a path that visits each vertex of a graph exactly once.

A Hamiltonian loop is a loop that visits each vertex exactly once. A graph containing a

Hamilton cycle is also called a Hamiltonian graph. Determining whether such paths and loops

exist in graphs is called the Hamiltonian path problem. In the study of E. Goodman and T.V.

Narayana in 1969 [3], lattice paths were examined by including cross-steps. In 1976, B.R. Handa

and S.G. Mohanty [4] conducted studies on lattice paths in high dimensions. Similarly, in a 1982
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article by A. Itai, C.H. Papadimitriou, and J.L. Szwarcfiter [6], the applications of Hamiltonian

paths, cycles, and graphs in grid graphs were examined.

The Delannoy number refers to the paths used in mathematics to get from the south-west

corner of a grid to the northeast corner in just simple steps (north, east and north-east). Most of

Delannoy’s work between 1886 and 1898 solved different mathematical problems using a chessboard.

C. Krattenhaler and S.G. Mohanty [8], C. Krattenhaler [7], G. Mohanty [9] has done many studies

on lattice paths. J.M. Autebert, M. Latapy and S.R. Schwer [1] brought their work “The lattice of

Delannoy paths” to the literature in English and French. Later in 2003, J.M. Autebert and S.R.

Schwer [2] expanded this concept (Delannoy path) to n-dimensional space and defined it over a

particular type of alphabet (S-Alphabet) in their study called “On Generalized Delannoy Paths”.

We enumerate lattice paths in an n -dimensional space for a fixed set of vectors Vn ∶=

{(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} − {(0)} . In [10, 11] lattice paths are studied in n -

dimensions. Our goal is to find a formula that gives the number of paths from the origin to the

point (l1, l2, . . . , ln) using only the vectors in Vn for n ≥ 2. We usually refer to these vectors as

steps. Figure 1 gives concrete examples of such lattice paths in 2 and 3-dimensional spaces. For

example, when n = 2 we get the set of steps V2 = {(1,0), (0,1), (1,1)} which has been studied

many times.

x

z

y

Figure 1: Left: A lattice path terminating at (3,2) - Right: A lattice path terminating at (2,2,2)
consisting of vectors (1,0,0) , (0,1,1) and (1,1,1)

The formula we found is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1
⌊x−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−li]

2

⌋ (1)

with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1.
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First, we want to note that n is the number of dimensions in our space. This formula finds

all possible paths (including the ones that do not terminate at the desired point) in n -dimensional

space, then chooses the ones that terminate at the desired point (l1, l2, . . . , ln) .

2. Finding All Paths in n-Dimensional Space

There are 2n − 1 steps in Vn . Each aj with 1 ≤ j ≤ 2n − 1 represents a different step in Vn . rj is

the number of aj steps used in a path. A bundle of steps is an unordered group of steps that do

not have to be different. Given all values of rj for 1 ≤ j ≤ 2n − 1, we can form exactly one bundle

of steps. For example for n = 2 and (r1, r2, r3) = (3,1,0) , we get the bundle (a1, a1, a1, a3) .

Lemma 2.1 The number of all possible paths in n-dimensional space can be found with

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

. (2)

Proof All possible bundle of steps comes from the sums ∑2n−1
j=1 ∑∞rj=0 . For a given bundle of

steps,
(∑2n−1

b=1 rb)!
∏2n−1

c=1 rc!
finds all possible permutations of that bundle. ◻

3. Finding Paths That Terminate at the Desired Point

In this section, we find a formula that determines whether a path terminates at the desired point

or not. Determining the terminal point of a path is the same as determining the terminal point

of the bundle that the path was created. It follows because all arrangements of a bundle of steps

terminate at the same point. The following part of our formula

n

∏
i=1
⌊e−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−li]

2

⌋

finds the distance traveled on all axes for a given bundle and multiplies (2) by 1 if the terminal

point is the desired point, multiplies by 0 if not.

3.1. Arranging the Steps

We systematically assign vectors to the notations of the form aj . First, we establish another

notation for steps. Let (h1, h2, . . . , hn) be a step in Vn . We write db to the notation of that step

for every hb = 1 with 1 ≤ b ≤ n and we have u < y for . . . dudy . . . . For example, the step (1,0,0,1)

is given by the notation d1d4 . This notation tells which axes the steps move on.

Note that the notation d1d4 represents (1,0,0,1) only if n = 4. For example, d1d4

represents (1,0,0,1,0) for n = 5.
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The length of a step is the number of axes that step moves on (also the number of 1’s in the

vector (h1, h2, . . . , hn) and the number of db terms in the notation of that step). We start sorting

the steps by their length. The length of the steps ascends from 1 to n .

Lemma 3.1 The notations aj with ∑k
s=1 (ns) ≤ j ≤ ∑

k+1
s=1 (ns) represents steps with length of k + 1 .

Proof It is easy to see that there are (n
k
) steps with length of k . The number of all steps with

a length smaller than k + 1 is ∑k
s=1 (ns) . In our system of arranging steps, these steps that have

length smaller than k + 1 comes before (by comes before, we mean y < u for ay being a step with

length less than k + 1 and au being a step with a length of k + 1) those with a length of k + 1. ◻

Now we turn our attention to arranging steps of a fixed length. The arrangement of steps is

very similar to an alphabetical arrangement. Assume db denotes the b-th letter in the alphabet.

For example, d1 denotes a , d2 denotes b , d3 denotes c and so on. We transform the notations

consisting of db ’s to words. For example, d1d3d4d8 transforms into acdh. Next we do the classic

alphabetical arrangement. The arrangement of steps for n = 4 is shown below:

a1 = d1 a5 = d1d2 a11 = d1d2d3 a15 = d1d2d3d4

a2 = d2 a6 = d1d3 a12 = d1d2d4

a3 = d3 a7 = d1d4 a13 = d1d3d4

a4 = d4 a8 = d2d3 a14 = d2d3d4

a9 = d2d4

a10 = d3d4

3.2. Distance Traveled on one Axis

We need to determine the distance traveled on a specific axis for a given bundle of steps. We call

this axis the observed axis and represent it with di . We want to find all steps that have di in its

notation. We can show such steps with

p+1

³¹¹¹¹·¹¹¹µ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k+1

. . . di

k-p

³·µ. . . . (3)

As shown in the notation, k + 1 is the length of the steps and p is the number of db terms

that are written before the observed axis. This tells that there are k − p db terms written after

the observed axis.

Lemma 3.2 (i) The valid interval for i is 1 ≤ i ≤ n .
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(ii) The valid interval for k is 0 ≤ k ≤ n − 1 .

(iii) The valid interval for p is max(0, k + i − n) ≤ p ≤min(k, i − 1) .

Proof

(i) There are n axes in the n -dimensional space.

(ii) The minimum length of a step is 1 and the maximum length of a step is n . Hence,

0 ≤ k ≤ n − 1.

(iii) There are i−1 choices of axes before the observed axis and we choose p of them. Hence

p ≤ i− 1. There can be only k more terms other than the observed axis, since the length of a step

is k + 1. Hence, we get p ≤ k . It is easy to see that it is necessary to choose the smaller one of

i − 1 and k for the maximum valid value of p .

There are n− i choices of axes after the observed axis and we choose k − p of them. Hence,

we get p ≤ k + i − n . On the other hand, we know p ≥ 0. It is easy to see that it is necessary to

choose the greater one of these values for the minimum valid value of p .

◻

Lemma 3.3 Let the part before the observed axis be fixed, more specifically D . Let aq+1 be the

step Ddidi+1di+2 . . . di+k−p−1di+k−p . Then, all aj steps with q + 1 ≤ j ≤ j + (n−i
k−p) travel on the i-th

axis.

Proof For a fixed part before the observed axis, there are (n−i
k−p) steps. There are n − i possible

axes that can be written after the observed axis and we choose k − p of them.

Next, we show that all of these steps are consecutive. Because of the alphabetical arrange-

ment that we made, the observed axis and the part before it does not change until we go through

all different (n−i
k−p) combinations for the part after the observed axis. ◻

Lemma 3.4 All different subsets of {1,2,3, . . . , i − 2, i − 1} with i − p − 1 elements are the sets

{m1,m2,m3, . . . ,mz−1,mz} with 1 ≤ z ≤ i − p − 1 , mz−1 − 1 ≥mz ≥ i − p − z , m0 = i and mz ∈ N .

Proof Consider all subsets of {1,2,3, . . . , i− 2, i− 1} that consists of i− p− 1 elements. Arrange

each set in descending order. Let mz be the z -th element from left of a subset, we get 1 ≤ z ≤ i−p−1

and mz−1 − 1 ≥ mz . Next we show that mz ≥ i − p − z . There are i − p − z − 1 elements to the

right of mz which are all smaller than mz . This implies that mz ≥ i − p − z . Lastly we show that

m0 = i . We know i − 1 ≥m1 as m1 is the greatest number in a subset. Thus, m0 = i . ◻

We find all steps that travel on i -th axis for fixed values of i , k and p . We denote the

function that finds the coefficients of all such steps in n -dimensional space by fn(i, k, p) . Fn(i, k, p)

denotes the function that finds all steps with given i , k and p values. Note that if we find all
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such steps we can find the distance traveled by simply changing each aj term with rj . We say

that all steps with given i , k and p values whose parts before the observed axis are the same are

a section. For example, when observing d3 in 6-dimensional space, d1d3d4 , d1d3d5 and d1d3d6 is

a section.

Theorem 3.5

Fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 aS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 a
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
(4)

with S = ∑k
s=1 (ns) , m0 = i , g0 = p and gt = gt−1 −mt−1 +mt + 1 .

Proof We first proof the case i = p + 1. Every step with such i and p values can be denoted by

d1d2 . . . di−1di . . . . Because of the alphabetical arrangement, these steps precedes those of the same

length. By Lemma 3.3, these steps are consecutive. All steps with a length smaller than k + 1 is

S = ∑k
s=1 (ns) and there are (n−i

k−p) steps because we choose k − p axes out of n − i axis for the part

after the observed axis.

Next we proof the case i ≠ p+ 1. In the case i = p+ 1, we had to use all db with b < i in the

notation of a step. But for the case i ≠ p+ 1 there is some db that is not used in the notation of a

step. Out of i − 1 axes we choose not to use i − p − 1 of them. mt terms represent these unused

axes. For example, if (m1,m2) = (3,1) , d3 and d1 are not used in the notation of a step. Notice

that for a fixed set of unused axes, all steps form a section. The number of steps in a section is

(n−i
k−p) .

We split all steps with given i , k and p values into sections and for each section, we find the

number of steps before that section. ∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z generates mt sets that forms the sections.

Consider not using dmi−p−1 but using all db with b < mi−p−1 . If dmi−p−1 is observed, the

part before it will be fixed. Lemma 3.3 implies that if dmi−p−1 is not used, then we must have gone

through all different combinations for the part after it. There are mi−p−1 − 1 axes before dmi−p−1 ,

thus there are (n−mi−p−1
k−gi−p−1 ) different combinations for the part after dmi−p−1 with gi−p−1 =mi−p−1−1.

Because steps of the form d1d2 . . . dmip−1−1dmip−1 precedes those of the same length, there are

S + (n−mmi−p−1
k−gi−p−1

) steps before the ones that do not use dmi−p−1 . Note that first mi−p−1 −1 terms are

fixed to d1d2 . . . dmi−p−1−1 and we denote this by D .

After that, consider not using dmi−p−2 but using all db with mi−p−1 < b <mi−p−2 . mi−p−2 −

mi−p−1 − 1 axes gets fixed after D . If dmi−p−2 is observed, there are (n−mmi−p−2
k−gi−p−2

) with gi−p−2 =

gi−p−1 +mi−p−2 −mi−p−1 − 1 different combinations for the part after it. There are S + (n−mi−p−1
k−gi−p−1 )+
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(n−mi−p−2
k−gi−p−2 ) steps before the ones that do not use dmi−p−1 and dmi−p−2 . The same idea applies to all

other mt terms and we get gt = gt−1−mt−1+mt+1. If this equation is summed up for 1 ≤ t ≤ i−p−1,

we get gi−p−1 = g0 −m0 +mi−p−1 + i − p − 1 which implies g0 = p . ◻

Example 3.6 Let n = 4 . The arrangement of these steps is made in Section 3. We can see that

F4(3,1,1) = (a6, a8) since F4(3,1,1) is the steps with a length of 2 and 1 db term before d3 in

4-dimensional space. Plugging the values into ( (4)) we get

F4(3,1,1) =
1

∑
z=1

mz−1−1
∑

mz=2−z

⎛
⎜
⎝

(1
0
)

∑
v=1

a
S+[∑1

t=1 (
4−mt
1−gt )]+v

⎞
⎟
⎠

with S = 4 , m0 = 3 and g0 = 1 . We further simplify,

F4(3,1,1) =
2

∑
m1=1

a(4+(4−m1
1−g1 )+1)

.

1. m1 = 1 , g1 = 0 . We get a8 . 2. m1 = 2 , g1 = 1 . We get a6 .

Example 3.7 Let n = 5 . The arrangement of these steps is

a1 = d1 a6 = d1d2 a16 = d1d2d3 a26 = d1d2d3d4 a31 = d1d2d3d4d5

a2 = d2 a7 = d1d3 a17 = d1d2d4 a27 = d1d2d3d5

a3 = d3 a8 = d1d4 a18 = d1d2d5 a28 = d1d2d4d5

a4 = d4 a9 = d1d5 a19 = d1d3d4 a29 = d1d3d4d5

a5 = d5 a10 = d2d3 a20 = d1d3d5 a30 = d2d3d4d5

a11 = d2d4 a21 = d1d4d5

a12 = d2d5 a22 = d2d3d4

a13 = d3d4 a23 = d2d3d5

a14 = d3d5 a24 = d2d4d5

a15 = d4d5 a25 = d3d4d5

Now, we show that F5(3,2,1) = (a21, a24, a25) . Notice that even though a24 and a25 are consecu-

tive, they do not form a section. Simplifying (4) gives

F5(4,2,1) =
2

∑
z=1

mz−1−1
∑

mz=3−z
a
15+[∑2

t=1 (
5−mt
2−gt )]+1

=
3

∑
m1=2

m1−1
∑

m2=1
a
15+[∑2

t=1 (
5−mt
2−gt )]+1

.

1. m1 = 2 , m2 = 1 , g1 = 0 , g2 = 0 . a(15+(32)+(
4
2
)+1) = a25 .
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2. m1 = 3 ,

(a) m2 = 1 , g1 = 1 , g2 = 0 . a(15+(21)+(
4
2
)+1) = a24 .

(b) m2 = 2 , g1 = 1 , g2 = 1 . a(15+(21)+(
3
1
)+1) = a22 .

Corollary 3.8 The distance traveled on i-th axis is

n−1
∑
k=1

min(k,i−1)
∑

p=max(0,k+i−n)
fn(i, k, p). (5)

4. The Results

Let

K(α) =
⎧⎪⎪⎨⎪⎪⎩

1, if α = 0
0, if α ≠ 0

. (6)

We combine this function above with our results. ∑n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i, k, p) − li is the dif-

ference between the distance traveled and the distance wanted to travel on the i-th axis. We

write α = ∑n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i, k, p)− li in (6). For a given bundle, we multiply all results for

1 ≤ i ≤ n . If the terminal point for that bundle is the desired point, the result will be 1.

Corollary 4.1 In n-dimensional space, the number of paths from origin to (l1, l2, . . . , ln) using

only vectors in Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1

K
⎛
⎝
⎛
⎝
n−1
∑
k=1

min(k,i−1)
∑

p=max(0,k+i−n)
fn(i, k, p)

⎞
⎠
+ ri − li

⎞
⎠

with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1 .

This formula can be generalized to counting the number of paths between any two lattice

points in n -dimensional space.

Corollary 4.2 In n-dimensional space, the number of paths from (e1, e2, . . . , en) to (l1, l2, . . . , ln)

using only vectors in Vn ∶= {(h1, h2, . . . , hn) ∶ hi ∈ {0,1},1 ≤ i ≤ n} is

2n−1
∑
j=1

∞
∑
rj=0

(∑2n−1
b=1 rb)!

∏2n−1
c=1 rc!

n

∏
i=1
⌊x−[(∑

n−1
k=1 ∑

min(k,i−1)
p=max(0,k+i−n) fn(i,k,p))+ri−(li−ei)]

2

⌋
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with

fn(i, k, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
(n−i
k−p)

v=1 rS+v, if i = p + 1

∑i−p−1
z=1 ∑mz−1−1

mz=i−p−z (∑
(n−i
k−p)

v=1 r
S+[∑i−p−1

t=1 (n−mt
k−gt )]+v

) , if i ≠ p + 1
,

S = ∑k
s=1 (ns) , m0 = i , g0 = p , gt = gt−1 −mt−1 +mt + 1 and x > 1 .

We calculate the number of paths from origin to (l1, l2, . . . , ln) = (1,1, . . . ,1) for 1 ≤ n ≤ 6

and we get the sequence 1, 3, 13, 75, 541, 4683. This sequence is OEIS sequence A000670, also

called Fubini numbers. The formula for the n -th number in this sequence is an = ∑n
i=1 (ni)an−i .

Corollary 4.3 Let L(n) be the number of lattice paths from origin to (l1, l2, . . . , ln) = (1,1, . . . ,1)

using steps in Vn . Then,

L(n) =
n

∑
i=1
(n
i
)an−i. (7)

Thus, we calculate the number of paths from origin to (l1, l2, . . . , ln) = (2,2, . . . ,2) for

1 ≤ n ≤ 5. We get the numbers 1, 13, 409, 23917 and 2244361 which appears as OEIS sequence

A055203.
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7

Figure 2: The number of paths from origin to (l1, l2,3) using steps in V3 for l1 + l2 ≤ 7

The numbers in Figure 2 was generated using Python.
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5. Recursive Relation

Theorem 5.1 Let L(p) be the number of lattice paths from origin to p using steps in Vn . The

recursive relation in this sequence is

L(l1, l2, . . . , ln) =
n−1
∑
m=2

n

∑
b=2

1

∑
vb=0

1

∑
v1=1

n

∑
b=2

L(l1 − v1, l2 − v2, . . . , ln − vn). (8)

Proof From (l1 − v1, l2 − v2, . . . , ln − vn) with vi ∈ {0,1} for all i , there is only 1 way of directly

(without touching any other lattice points besides the one we want to reach) reaching (l1, l2, . . . , ln) .

If any vi ∉ {0,1} , there will be no way of directly reaching (l1, l2, . . . , ln) . Summing up the values

of L(l1 − v1, l2 − v2, . . . , ln − vn) gives us the number of path to (l1, l2, . . . , ln) . But the case where

vi = 0 for all i is the point at which we are finding the recursive relation. Every time we fix one of

vi to 1 to solve this. ◻

In fact, the recursive relation in Theorem 5.1 can be generalized for any set of vectors.

Corollary 5.2 Let K be a set of vectors and L(l1, l2, . . . , ln) be the number the number of lattice

paths from origin to (l1, l2, . . . , ln) . Then the recursive relation in this sequence is

∑L(l1 − v1, l2 − v2, . . . , ln − vn)

for vi ∈ v and v ∈K .

6. An Algorithm for Lattice Paths with Restricted Points

We developed an algorithm that finds the number of paths from origin to any point without

touching the points in R .

Lemma 6.1 Consider a set of lattice points. There is either one or no arrangements of these

points such that i-th coordinate of a point is greater than or equal to the i-th coordinates of

previous points for all i .

Proof Consider two different lattice points p1 = (b1, b2, . . . , bm) and p2 = (c1, c2, . . . , cm) . It is

easy to see that there is either 1 or 0 arrangement such that bj ≤ cj for 1 ≤ j ≤ m or cj ≤ bj

for 1 ≤ j ≤ m . This means that 2 different points are not interchangable. If there is such an

arrangement for a set of lattice points, it will be the only such arrangement. ◻

Corollary 6.2 Let L(p, p′) denote the number of lattice paths from p to p′ (without restrictions).

The number of paths from p to p′ that do not touch the lattice points in R can be computed by the

following algorithm.
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1. Let rm be an m-element subset of R .

2. For pi ∈ rm , calculate the quantity (−1)nL(p, p1)L(p1, p2) . . . L(pm, p′) for all permutations

of rm . There can not be more than one nonzero value and if there is one, note it down.

3. Do this for all subsets of R .

4. The sum of the results is the number of paths from p to p′ that do not touch the points in

R .

Proof L(p, p1)L(p1, p2) . . . L(pm, p′) gives the number of paths from p to p′ that touch the

points (p1, p2, . . . , pm) in the given order. By Lemma 6, if there is such permutation, there will be

only one. We multiply by (−1)n because of the inclusion exclusion principle. ◻

The efficiency of our algorithm lies on the fact that it doesn’t compute all paths and check

whether each path is using one of the restricted points or not. It utilizes the inclusion exclusion

principle to avoid computing all paths.

7. Conclusion

A formula counting the number of paths from origin to the point (l1, l2, . . . , ln) using steps in Vn

has been found. The recursive relation between these numbers has been found and it has been
observed that the technique used to find this recursive relation applies to general sets of vectors.

The formula found can be generalized to find the number of paths between two lattice points. It

has been observed that the numbers L(1,1, . . . ,1) correspond to Fubini numbers which are the

number of arrangements of n competitors. Lastly, an algorithm for lattice paths with restricted

lattice points has been given.
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