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1. INTRODUCTION

The concepts of normed quasilinear spaces, quasilinear operators, and quasilinear spaces were first presented by
Aseev in [1]. Next, they obtained a number of findings in normed quasilinear spaces in [6]. Afterwards, they examined
quasilinear functions with limited interval values and examined the Hahn-Banach extension theorem for interval valued
functions in [10] and [11]. Additionally, it was demonstrated in [19] that a particular class of fuzzy number sequences
is a Hilbert quasilinear space. Effortless samples of approximate estimates of deterministic autocorrelation of some
semi-non-deterministic signals or signals with imprecise data were provided in [12], and, the authors of [13] describe
a mathematical technique for handling non-deterministic signals, called the model interval signal, by utilizing interval-
valued functions and they presented the notion of complex interval matrix in [14].

The notion of soft sets was first developed by Molodtsov [16] in 1999. He then demonstrated several uses of this
theory in the fields of engineering, economics, and medicine, among others. Subsequently, they introduced multiple
operations on soft sets in [15]. The concepts of soft elements and soft real numbers were subsequently presented by
Das and Samanta in [7]. Next, they worked in [8] and [9] on soft linear spaces, soft normed linear spaces and some of
their properties. Later, they presented soft normed spaces from a different angle in [17] and soft inner product spaces
and soft Hilbert spaces in [18].

Drawing from previous research on soft linear spaces and quasilinear spaces, she presented the concepts of soft
quasilinear spaces and soft normed quasilinear spaces in [2]. Both soft Hilbert quasilinear spaces and soft inner
product quasilinear spaces were later defined in [3]. After that, they focused on a few soft inner product quasilinear

*Corresponding Author
Email addresses: fatmaonatbulak @ gmail.com (F. Bulak), hacer.bozkurt@batman.edu.tr (H. Bozkurt)


https://orcid.org/0000-0003-1060-947X
https://orcid.org/0000-0002-2216-2516

F. Bulak, H. Bozkurt, Turk. J. Math. Comput. Sci., 16(2)(2024), 534-540 535

space features. Soft interval spaces and soft interval sequence spaces are the two types of soft quasilinear spaces that
the author described in [5].

As novel notions of soft normed quasilinear spaces, we define soft quasilinear dependence, soft quasilinear indepen-
dence and soft quasi basis. One of the greatest obstacles to the improvement of soft normed quasilinear spaces is the
presence of these properties. In this study, we will present the definitions of these significant concepts and give some
illustrative examples. Additionally, we demonstrate that the proposed definitions agree with counterparts of similar
results in soft linear spaces. Finally, in some soft normed quasilinear spaces, we have studied their singular and regular
dimensions just as in quasilinear spaces.

2. SorT QUASILINEAR SPACES AND SOFT NORMED QQUASILINEAR SPACES

This part introduces some soft set theory concepts as well as some basic notions such as soft quasilinear spaces and
soft normed quasilinear spaces.
Suppose we have a universe Q, a set of parameters P, its power set denoted by P(Q).

Definition 2.1 ( [16]). A pair (G, P) is called a soft set over Q, where G is a mapping defined by G : P — P(Q).

Definition 2.2 (~ 9. If G(y) = Q for all y € P, then a soft set (G, P) over Q is considered an absolute soft set
symbolized by Q. If G (y) = @ for all y € P, then a soft set (G, P) over Q is considered a null soft set symbolized by ©.

Definition 2.3 ( [7]). Let O be a non-empty set and P be a nonempty parameter set. After that, the functiong : P — Q
is referred to as a soft element of Q. If g (y) € G (y), y € P, then a soft element g of Q is said to belong to a soft set
G of Q, which is indicated by ¢ € Q. Thus, we obtain G(y) = {q(y),y € P} for a soft set G of Q with regard to the
index set P. A soft set (G, P) for which G(y) is a singleton set, ¥y € P can be determined with a soft element by simply
establishing the singleton set with the element that it includes Yy € P.

The set of all soft sets (G, P) over Q will be described by S (6) for which G (y) # @, for all y € P and the collection

of all soft elements of (G, P) over Q will be indicated by S E (é)
Now, let us provide a reasonable description of non-soft linear spaces in soft quasilinear spaces.

Definition 2.4 ( [2]). Let P be a set of parameters and Q be a quasilinear space. Assume that G is a soft set over (Q, P) .
If QO (y) is a quasilinear subspace of Q for any y € P, then G is a soft quasilinear space of Q.

With @, b, T and g, w, 7z soft real numbers and soft quasi vectors of a soft quasilinear space are demonstrated, respec-
tively.

A soft quasi element 7 is said to be regular if it has an inverse, i.e., §— g = 6, such that 7 (y) — §(y) = 6 (y) for any
v € P. A soft quasi element ¢ is referred to as singular if it lacks an inverse.

Let Q and W be two quasilinear spaces over field R, P be a nonempty set of parameters, Q and W be the suitable
absolute soft quasilinear spaces i.e. Q(/l) = Qand W(/l) = W forevery A € P.

Definition 2.5 ( [2]). Let Q be the absolute soft quasilinear space. Then, a mapping ||.|| : SE (@ —> R (P) is said to

be soft norm on the soft quasilinear space Q if ||.|| satisfies the following conditions:

i) |[7]l = 0if § # 6 for every 7 € O, N

if) 117 + il < IIgll + W] for every 7, € O,

iii) |la - gl = [a| - |Iql| for every ¢ € Q and for every soft scalar @,

iv) if g=<w, then [[g]| < |IW|| for every g, w € Q,

v) if for any & > 0 there exists an element qs € Q such that, g<w + ¢, and |[g,|| < & then g<w for any soft elements
q.,we Q.

Soft normed quasilinear space denoted as (é, ||.||) or (é, I, P) is a soft quasilinear space Q with a soft norm||.|| on

0.
Lemma 2.6 ( [4]). Let (é, I, P) be a soft normed quasilinear space and a soft quasi norm ||.|| satisfies the condition:

{19 (v) : g (y) = q, for g € Q and y € P} is a singleton set.
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Then, for every y € P, ||ll, : Q — R" defined by |gll, = l[gll (y), for every g € Q and Eéé such that ¢ (y) = ¢, is a
quasi norm on Q.
Let Q be a soft normed quasilinear space. Then,

ho(@, W) = inf {720 : G=Ww + ) . w=q + 3. [} <7}
defines soft Hausdorff or soft norm metric on Q

3. MaN ResuLrs
This part introduces some algebraic notions on soft quasilinear spaces and provides some examples and theorems.

Definition 3.1. Let Q be an absolute soft quasilinear space and {g;};_, are soft quasi vectors of é Also, {a;};_, are
soft scalars. The soft quasi vector g such that }7_, @xgx = ¢ is called the linear combination of {g};_,. Otherside, the
soft quasi vector g such that Y}_, @;qx<q is called the quasilinear combination of {g;}}_.

From the above definition we understand that the set of soft linear combinations corresponding to the scalars {@;};_,
is unique. But, the combination of soft quasilinear corresponding to the same scalars may not be unique. Furthermore,
the set of soft quasilinear combinations of a soft vector in a soft quasilinear space may consist of different sets for
different parameters. Namely, if vy, y, are different parameters of P, then may not always be g(y;) = ¢(y,2). Again, the
images of two different soft quasi vectors of soft quasilinear space under same parameter may be the same.

Definition 3.2. Let Q be an absolute soft quasilinear space and Mc Q Soft quasi span set of Mis

n
0S PM = {ﬁe 0: Z(Zﬁ;gﬁ, i € M, @y are soft scalar every 1 < k < n}
=1

If QS PM = Q, then we say that M is quasi span.
Example 3.3. Let us take soft quasi vector g € Q¢ (R) such that q(y) = [-1,2] for ay € P. Assume that a (y) = «
for every soft scalar and for every y € P. From here, soft linear combination set of soft quasi vector qis (ag) (y) =
{q' V=qeQc®):a(y)q(y)=al[-1,2]=¢q, y € P} but soft quasilinear combination set of soft quasi vector g is
@) ={g ) =qeQc®):@(NG() =al-1,21< g, y € P}. For example, if we take soft scalar I (y) = 1, then
we get that soft quasilinear combination of soft quasi vector g € Q/C\(T/R) consists of all soft quasi vector q~ € ch\@/%)
such that ¢ (y) = g € Q¢ (R) that includes [—1, 2] because of 1 (y) g (y) = [-1,2] < g fory € P. _

Further, if we take a(y)q(y) = a[-1,2] < [2,3], then we can’t find a soft scalar a (y) = a for ¢’ (y) = ¢ = [2,3].
So, QS P{q} # Q.
Example 3.4. Let us take Mc Q/_C\(Tl/%) such that M = {m : m(y) = {3} for y € P}. Again, we take @ (y) = « for every
soft scalar and for every y € P the we find

OSPM = {m' € Oc(R) : @m) (y) = aim (y) = {3} <m’ (7)., y € P}.

Since ch\(fR) is a absolute soft quasilinear space we find m e ch\(R) such that a {3} 2}17 (y) for a y parameter. So,

OSPM = {m' € Q) : @m) (y) = a (3} 2m (7), ¥ € P} = Gc().

We know from [6] that, the set [{a}] quasi span Q¢(R). In a soft quasilinear space, if g (y) = {g} € Qc(R) for soft
scalar @ (y) = @ and g € R, then we say that the soft quasi vector g € QcR) will quasi span the soft quasilinear space
Qc®).

Theorem 3.5. Let O be a soft quasilinear space and M = {G1,G>, ....Gn} € Q. Then, QS PM is a soft quasilinear
subspace of Q.

Proof. We assume that g,w € QS PM and @ is a soft scalars. From our acceptance there exist soft scalars a; and by
that we find 3}_, @xqx<q and Y}_, brgi<w. Since Q be a soft quasilinear space we obtain
n . n n .
D@ AbOG = Y @i+ Y hGiSq +w
k=1 k=1 k=1
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and
Q| @an = )| @ (@) <ag.
k=1 k=1
This gives ¢ + w € OS PM and @G € QS PM. Thus, we say that OS PM is a soft quasilinear subspace of 0. O

The result obtained in the above theorem is quite similar to the result in quasilinear spaces.
Definition 3.6. Let Q be a soft quasilinear space, {gy};_; are soft quasi vectors of é and {az},, are soft scalars. If
0<a1q1 + 2z + .. + Ann

inequality satisfies if and only if @1 = a; = ... = @, = 0, then we say that the soft quasi vectors set {gx};_, is soft
quasilinear independent. Otherwise, we say that the soft quasi vectors set {gz};_; soft is quasilinear dependent.

Considering that every soft linear space is a soft quasilinear space with the relation ”=", dependency quasilinear in-
dependence and dependence concepts in soft linear spaces turn into soft linear independence and dependence concepts.

Theorem 3.7. In the soft quasilinear space QcR), any soft set with two elements must be quasilinear dependent.

Proof. Let us take a soft quasi set {g, w} C Qc(R) such that q(y) = g € Qc(R) and w(y) = w € Qc(R) for every y € P.
Here are a few cases:

If g,w € (Qc(R)), then 8(y)<@:(1)q(y) + @(y)W(y) = a1q + aow satisfies for @y, @ other than 0 for @ (y) =
a,@(y) = @

Ifgq e (QC(R)d orw € QC(R)d then we get q(y) = ¢ includes a symmetric interval [k, k] or w(y) = w includes a
symmetrlc interval [—k, k]. In both cases, the 9(y)<a 1(V)q(y) + @ (y)w(y) = a1q + apw inequality is not satisfied only
a 1= (1’2 = 0

Ifgwé¢ (QC(R)d then 9(y)<al(7)q(y) + @ (Y)w(y) = a1q + apw inequality is not satisfied only @; = @; = 0.
Namely, the 6’(7)<a1 (y)q(y) + ax(y)w(y) inequality is satisfied within @; and @, other than 0.

Because of these cases in the soft quasilinear space Q-R) any soft set with two elements must be quasilinear
dependent. This result is quite similar to the result in quasilinear spaces. O

Example 3.8. Let us take a soft quasi vector g of absolute soft quasilinear space QOc(R) and a(y) = a € R for every
soft scalars @ and y € P. From Definition 3.6, we say that 6<aq is soft quasilinear independent in Qc(R) if and only if
] (y) <a(y)q(y) is quasﬂlnear independent in Q¢ (R). Also, if g(y) includes {0} for parameter v, then g is soft quasilinear
dependent in QC(R) Otherwise, we get that ¢ is soft quasilinear independent in QC(R)

Example 3.9. Let us take two soft qua51 vectors g and w of absolute soft quasilinear space QC(R) and oz()/) =a €R,
ﬂ(y) B € R for every soft scalars @ and ,6’ and parameter y. From Theorem 2.2. 4 in [6], we get that 9<aq + ,BW is soft
quasilinear dependent in QC(R) since 6 (y) Sa(y)q(y) + E(y)w(y) is quasilinear dependent in Qc(R).

Remark 3.10. In an absolute soft quasilinear space 0, a soft quasi vector ¢ is soft quasilinear independent if and only
if ¢ (y) is quasilinear independent in Q for y € P.

Remark 3.11. Note that the soft quasilinear combination, soft quasi span, soft quasilinear independency and soft
quasilinear dependence of a soft quasi vector is analyzed depending on the parameter y € P. So, when we research at
the situation of a soft quasi vector in relation to any of these properties, we can say that it is soft quasilinear dependent
or independent under the parameter 7.

In accordance with the above remark, we can give the following theorem.

Theorem 3.12. Let Qbe a soft quasilinear space and the set M = {q1, G2, - qn} Of soft quasi vectors in é Then, M is
soft quasilinear independent in Q if and only if M (y) = {q1 (¥),q2 (¥), ..., @, (¥)} is quasilinear independent in Q for
everyy € P.

Proof. Assume that M = {q, q2, --., ¢} be a soft quasilinear independent in é Then, for every soft scalars a;, a3, ..., @,
we obtain

011 + @>@s + ... + @y, ifand only if @ =@ = ... = @, = 0. 3.1
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If we take arbitrary yy € P, then we can write M (yo) = {q1 (¥0) g2 (Y0) 5 ---» @n (¥0)}. Moreover, consider that a; (yy) =
ay, @ (o) = g, ..., @, (Yo) = @, then from (3.1), we find @; = @; = ... = @, = 0. Thus, we find

0 = 0(y0) <@ (%) G (v0) + @ (¥0) G2 (¥0) + .. + @ (¥0) G (¥0)

a1q1 (Yo) + @242 (Y0) + ... + @G (Y0) -

From here, we say that M (o) = {q1 (v0) > 42 (¥0) » ---» @n (¥0)} is quasilinear independent in Q for arbitrary yy € P. This
gives M (y) = {q1 ¥), q2 (¥) , ..., ¢n (¥)} is quasilinear independent in Q for every y € P.

__ On the other side, let M (y) = {q1 (), 42 (¥), ..., ¢ ()} be quasilinear independent in Q for every y € P. Namely,
0(y)<a1q1 (Yo) + 2@ (o) + ... + @ugn (o) inequality satisfies if and only if @, = a = ... = @, = 0. Let us
take a1, as,...,@, be any soft scalars such that <@g, + @2q> + ... + @,q,. Then, if we take a; (y) = a1, (y) =
a, ..., @, (v) = a, for every y € P, we find

OGN G N +TGBD G @)+ o+ TG (V)G (7).

Thus, we get a; (y) = az ) =..=a,(y) = 5(7) for every vy € P. This gives AGZCZ@ + @2q; + ... + @,q, implies that
=y =..=a, = 0. So, M = {ql,cﬁ, ...»qn} be a soft quasilinear independent in Q. O

Theorem 3.13. Let Q be a soft quasilinear space and the set M = {41,925 .., qn} Of soft quasi vectors in é Then, M is
soft quasilinear dependent in Q if and only if M (y) ={q1 (¥),q2 (¥) , ..., @n (y)} is quasilinear dependent in Q for every
y€P.

Proof. Assume that M = {q, q2, ..., ¢} be a soft quasilinear dependent in Q Then, for every soft scalars a7, @z, ..., @y,
not equal to 5, we obtain

0<@1q1 + @as + .. + Andy- (3.2)
If we take arbitrary yo € P, then we can write M (yo) = {q1 (¥0) » g2 (Y0) » ---» @n (Y0)}. Moreover, consider that a7 (yo) =
ay, @ () = g, ..., @, (Yo) = @, are not all 6 then from (3.2), we find a1, @2, ..., @, are not all 0. Thus, we find

0 = 6 (y0) <@ (¥0) @1 (o) + @ (¥0) > (¥0) + . + @ (¥0) G (70)
= a1q1 (Yo) + @2q2 (Yo) + ... + @@ (Y0) -

From here, we say that M (yo) = {q1 (0) 42 (¥0) » ---» @n (¥0)} is quasilinear dependent in Q for arbitrary vy € P. This
gives M (y) ={q1 (¥), @2 (V) , e., @n ()} iS quasilinear dependent in Q for every y € P.

On the other side, let M (y) = {q1 (¥),q2 (¥) 5 ..., qn (y)} be quasilinear dependent in Q for every y € P. Then there
is a set of scalars a1, as, ..., @, not all 0 such that ] (y) <a/1q1 (y0) + @22 (y0) + ... + @uqn (v0). Let us take ay, s, ..., @,
be any soft scalars such that a; (y) = al,az (y) = az, ..., (y) = a, for every y € P. So, we say that soft scalars
ay,as, ..., @, not all 6 for 7y parameter. 9<alq1 +@2q; + ... + @,q,. Then, we find

00 G () + @ (7)51'2(7) tot @ (V) g (y).
So, M = {G1, G, ..., 4y} be a soft quasilinear dependent in Q. m|

Definition 3.14. Suppose QO be a soft quasilinear space and W C Q. We say that W is a soft quasilinear base of Q it W
is soft quasilinear independent and QS PW = Q.

Example 3.15. Consider a soft quasi subset W = {{g}} of soft quasilinear space Qc(R). For W is a soft quasilinear
base of Qrc\(I-/R) a necessary and sufficient condition is that g(y) € ch\(IJR), for every y € P.

Corollary 3.16. For the soft quasilinear space Qrc\@li) all soft quasilinear vectors {q} such that q(y) + 0 and q(y) €
Qc(R), are bases.

Example 3.17. Consider a subset of the singular subspace of Qc(R) such that
F={7:9(y)=[a.b] .a<b, a,beR ora,beR}U{{0}}.
F is soft quasilinear independent set. But, F has not soft quasilinear base because of QS PF # é

Now, some information and examples will be given about the dimension of soft quasilinear spaces, which are a
generalization of quasilinear spaces. We will see here again when the dimension of a soft quasilinear space is defined
as regular and singular dimensions, just like in quasilinear spaces.
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Definition 3.18. The maximum number of linearly independent elements that a regular subspace of a soft quasilinear
space Q can contain is called the regular dimension of Q Similarly, the maximum number of quasilinear independent
elements that the singular subspace of Q can contain is called the singular dimension of Q The regular dimension of
the soft quasilinear space Q is denoted by r — dim Q and singular dimension of the soft quasilinear space Q is denoted
by s —dim Q If in a soft quasilinear space » — dim Q = s—dim Q then we will denote the dimension of soft quasilinear
space Q with dim Q

If Q is a soft linear space, it’s singular dimension is 0. Therefore, the dimension of Q is only the regular dimen-
sion. Therefore, only the concept of dimension is used instead of regular dimension in soft linear spaces. Similar to
quasilinear spaces, If s — dim Q >0, Q is a soft quasilinear space.

Remark 3.19. If s — dim Q = 0 1in a space, this space does not have to be a soft linear space. Let’s now illustrate this
using an example.

Example 3.20. Let ch\@lé)d denote the set of all symmetric vectors of the ch\(]JR). From definition of Q/RR)[, we know
that ch\(IJR)d ={q:q(y) =[-a,a], a € R}. If we take g1, G2, ....,qu € ch\(R)d, 625151 + @2y + ... + Ouqy inequality is
not satisfy only fora; = a; = ...@, = 0. As a result, we cannot find the soft quasilinear 1ndependent vectors of QC(R)d
Hence, s — dim QFR)d =0. ThlS gives dim QC(R)d =

Definition 3.21. It is said that a soft quasilinear space Q is of finite dimension, if there is a finite set of quasilinear
independent soft quasi vectors in Q that are also associated with Q.

In a soft normed quasilinear space Q, if g1, 2, ..., g, are soft quasilinear independent vectors in 0, then
GO, ..., g, (y) are quasilinear independent vectors in Q for every y € P. Namely, if O<a1q1 + @y + ... +

Ay = 51 =@ =@ =0then0,(N<T NN +TNGO) + .+ TN T (y) = @1 (y) = T2(y) +.
an (7’) =

Example 3.22. The soft quasilinear spaces R" QC(R”) QC(R”)S { 0} and QC(R”), have the following dimensions:
r—dimR" = n, s—dimR" = 0
r—dim Qc(R?) = n, s — dim Qc(R") = n
r = dim (Qc(R"), U {0}) = 0, 5 — dim (Qc(®), U {0}) = n
r—dim QC(R”), =n, s —dim QC(R”), =0.

Example 3.23. The dimensions of the QE\(E)), Q:;\(Z) and QE\(I_;) soft quasilinear spaces are as follows.

r — dim Q¢ (cp) = oo s — dim Q¢ (cp) = oo
r—dimQc(h) = s —dim Qc(h) = o
r — dim Q¢ (Io) = o s — dim Q¢ (o) = o

Example 3.24. For the soft quasilinear space
0 = (9 (@) U{0,0,..,0,k,0,0, ...,..} k € R}
we find _ _
r—dimQ =1and s —dim Q = co.

Example 3.25. Consider the soft quasilinear subspace M = (I,]?Riz)3 v {7: Hy)=@t0):teR, ye P} of soft quasilinear
space IR2. Let we take q1,q>» € M such that g;(y) = ((0),[1,2]) and g2(y) = ([1,2],{0}) for a y € P. Then, the
inequality

0,0) = 0<@ (NN () + T@(ND()

= a1+ ((0),[1,2]) + a2 - ([1,2],{0})

is satisfied only when a; = @, = 0. So, the set {¢1, g2} is quasilinear independent set in IR2. Also, s —dim M = 2 since
M is a soft quasilinear subspace of IR2.
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Furthermore, if we consider the M, = {t~: y)=@t0):teR, ye P}, then the inequality

0()<a(y)g(y)
a-(1,0)

0,0)

for g € M, is satisfied only when a = 0. Thus, we have r —dim M = 1.

Example 3.26. Let us take a soft quasilinear space M = (IFZ?))S U {@}. Let us take arbitrary finite singular subset

{q1, @25 s » Gn} of M such that q1(y) = {([1,2],0,0,...)}, g2(y) = {(0,[1,2],0,...)}, ..., g.(y) = {(0,0, ...[1,2],0,...)} for
ay € P. Then,

0.0,...0,.)=0(y) < WG+ DRNRY) + .. + T(¥)Ga(y)

is satisfied only when a1(y) = ax(y) = ... = a@,(y) = 0. So, the set {g1, 42, ..., gn} 1S quasilinear independent set in M.
Also, s — dim M = oo. Moreover, r — dim M = 0 because of M, = {@}.

CONFLICTS OF INTEREST

Author Fatma Bulak declares that she has no conflict of interest. Author Hacer Bozkurt declares that he has no
conflict of interest.

AUTHORS CONTRIBUTION STATEMENT

Both authors have created and written the article.

REFERENCES

[1] Aseev, S.M. Quasilinear operators and their application in the theory of multivalued mappings, Proceedings of the Steklov Institute of Math-
ematics, 2(1986), 23-52.
[2] Bozkurt, H. Soft quasilinear spaces and soft normed quasilinear spaces, Adiyaman University Journal of Science, 10(2)(2020), 506-523.
[3] Gonci, M.S., Bozkurt, H., Soft inner product quasilinear spaces, Turkic Word Mathematical Society Journal of Applied and Engineering
Mathematics, 14(1)(2024), 122-133.
[4] Bozkurt, H., Soft quasilinear operator, Mathematical Sciences And Applications e-Notes, 10(2)(2022), 82-92. https://doi.org/10.36753
/msaen.917318
[5] Bozkurt, H., Soft interval spaces and soft interval sequence spaces, Filomat, 37(9)(2023), 2647-2658.
[6] Cakan, S., Some New Results Related to Theory of Normed Quasilinear Spaces, Ph.D. Thesis, Inénii University, Malatya, 2016.
[7] Das, S., Samanta, S.K., Soft real sets, soft real numbers and their properties, Journal of Fuzzy Mathematics and Informatics, 6(2)(2012),
551-576.
[8] Das, S., Samanta, S.K., Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1)(2013), 77-94.
[9] Das, S., Majumdar, P., Samanta, S. K., On soft linear spaces and soft normed linear spaces, Annals of Fuzzy Mathematics and Informatics,
9(1)(2015), 91-109.
[10] Levent, H., Yilmaz, Y., Hahn- Banach extension theorem for interval-valued functions and existence of quasilinear functionals, New Trends in
Mathematical Sciences, 6(2)(2018), 19-28.
[11] Levent, H., Yilmaz, Y., Translation, modulation and dilation systems set-valued signal processing, Carpathian Mathematical Publications,
10(1)(2018), 143-164.
[12] Levent, H., Yilmaz, Y., Inner-product quasilinear spaces with applications in signal processing, Advanced Studies: Euro-Tbilisi Mathematical
Journal, 14(4)(2021), 125-146.
[13] Levent, H., Yilmaz, Y., Analysis of signals with inexact data by using interval valued functions, The Journal of Analysis, 30(2022), 1635-1651.
[14] Levent, H., Yilmaz, Y., Complex interval matrix and its some properties, Turkish Journal of Mathematics and Computer Science, 15(1)(2023),
20-26.
[15] Maji, PK., Biswas, R., Ropy, A.R., Soft set theory, Computation Mathematical Applications, 45(2003), 555-562.
[16] Molodtsov, D., Soft set-theory first results, Computational and Applied Mathematics, 37(1999), 19-31.
[17] Yazar, M.L, Bilgin, T., Bayramov, S., Giindiiz, C., A new view on soft normed spaces, International Mathematical Forum, 9(24) (2014),
1149-1159.
[18] Yazar, M.L., Aras, C.G., Bayramov, S., Results on Hilbert spaces, TWMS Journal of Applications Engineering Mathematics, 9(1)(2019),
159-164.
[19] Yilmaz, Y., Bozkurt, H., Levent, H., Cetinkaya, U., Inner product fuzzy quasilinear spaces and some fuzzy sequence spaces, Journal of
Mathematics, 2022(2022), 2466817.



	Algebraic Results on Soft Normed Quasilinear Spaces. By 

