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Abstract: In the context of solving first-order ordinary differential equations (ODEs), this paper thoroughly 
compares various higher-order Runge-Kutta methods. Reviewing the effectiveness, precision, and practicality of 
several Runge-Kutta schemes and highlighting their usage in numerical approximation is the main goal of the 
research. The study explores traditional approaches, including the fifth-order, six-stage Runge-Kutta (RK56), the 
sixth-order, seven-stage Runge-Kutta (RK67), and the seventh-order, nine-stage Runge-Kutta (RK79), with the 
goal of offering a comprehensive comprehension of their individual advantages and disadvantages. In order to 
help academics and practitioners choose the best approach based on the features of the problem, comparative 
benchmarks are constructed, utilizing both theoretical underpinnings and real-world implementations. Robustness 
evaluations and sensitivity analysis complement the comparison research by illuminating how flexible these 
techniques are in various context. The results of this study provide important new understandings of how higher-
order Runge-Kutta methods function and provide a thorough manual for applying them to solve first-order 
differential problems in a variety of scientific and engineering fields. The study’s examination of three higher 
order Runge-Kutta algorithms reveals that the RK56 is more effective at solving first order ODEs.  
 
Keywords: Runge-Kutta technique, ordinary differential equations, numerical integration, error analysis, 
computational comparison. 
 
Birinci Dereceden Diferansiyel Denklemlerin Çözümü için Yüksek Dereceli Runge-Kutta Yöntemlerinin 

Karşılaştırmalı Araştırması 
 

Öz: Birinci dereceden adi diferansiyel denklemlerin (ODE’ler) çözümünde, bu makale çeşitli yüksek dereceli 
Runge-Kutta yöntemlerini kapsamlı bir şekilde karşılaştırmaktadır. Araştırmanın ana amacı, çeşitli Runge-Kutta 
şemalarının etkinliğini, doğruluğunu ve uygulanabilirliğini gözden geçirmek ve bunların sayısal yaklaşımlarda 
kullanımını vurgulamaktır. Çalışma, beşinci dereceli, altı aşamalı Runge-Kutta (RK56), altıncı dereceli, yedi 
aşamalı Runge-Kutta (RK67) ve yedinci dereceli, dokuz aşamalı Runge-Kutta (RK79) gibi geleneksel yaklaşımları 
araştırmakta olup, bu yöntemlerin bireysel avantaj ve dezavantajlarına dair kapsamlı bir anlayış sunmayı 
amaçlamaktadır. Akademisyenler ve uygulayıcıların, problemin özelliklerine göre en uygun yaklaşımı seçmelerine 
yardımcı olmak için teorik temeller ve gerçek dünya uygulamaları kullanılarak karşılaştırmalı ölçütler 
oluşturulmuştur. Dayanıklılık değerlendirmeleri ve hassasiyet analizleri, bu tekniklerin farklı bağlamlardaki 
esnekliğini aydınlatarak karşılaştırma araştırmasını tamamlamaktadır. Bu çalışmanın sonuçları, yüksek dereceli 
Runge-Kutta yöntemlerinin nasıl çalıştığına dair önemli yeni anlayışlar sunmakta ve bu yöntemlerin çeşitli bilim 
ve mühendislik alanlarında birinci dereceden diferansiyel problemleri çözmek için uygulanması konusunda 
kapsamlı bir kılavuz sağlamaktadır. Üç yüksek dereceli Runge-Kutta algoritmasının incelenmesi, RK56’nın birinci 
dereceden ODE’leri çözmede daha etkili olduğunu ortaya koymaktadır. 
 
Anahtar kelimeler: Runge-Kutta tekniği, adi diferansiyel denklemler, sayısal entegrasyon, hata analizi, 
hesaplamalı karşılaştırma. 
 
1. Introduction 

 
This study aims to investigate the role those differential equations more specifically, ordinary differential 

equations, or ODEs have in determining the relationships between functions and their derivatives. When it comes 
to studying dynamic processes in phenomena like quantum mechanics, population modeling, and ecological 
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interactions, ODEs are essential in many scientific domains, including physics, engineering, and the social 
sciences. The objective of the research is to categorize and contrast approaches to solving ODEs, highlighting their 
effectiveness and supporting mathematicians and researchers in making decisions when faced with these equations 
[1,2].  

Higher-order Runge-Kutta techniques play a pivotal role in numerical analysis, particularly in resolving first-
order differential equations with precision and efficiency. Despite their widespread use, there exists a need for a 
comprehensive comparative investigation to discern the performance discrepancies among these techniques. This 
research aims to bridge this gap by conducting an investigative comparison of various higher-order Runge-Kutta 
methods. The motivation stems from the critical importance of accurately solving first-order differential equations 
across diverse scientific and engineering domains. By systematically analyzing the strengths and weaknesses of 
different methods, this study seeks to identify the most effective approach for achieving accurate numerical 
solutions. The novelty lies in the comprehensive evaluation of multiple higher-order Runge-Kutta techniques 
within a unified framework, shedding light on their comparative performance and offering insights into their 
applicability in real-world scenarios. Ultimately, the contribution of this research lies in advancing the 
understanding of numerical techniques for solving first-order differential equations, thereby facilitating more 
informed decision-making in practical problem-solving contexts. 

Higher-order Runge-Kutta methods, a particular class of numerical techniques are emphasized for their 
precision in solving ODEs, offering crucial instruments for comprehending and forecasting actual occurrences [3]. 
A thorough comparative analysis of higher-order Runge-Kutta techniques for first-order differential problem 
solving is covered in the study’s second section. Although differential equations are widely used in many different 
contexts, the study highlights the value of numerical solutions, particularly when dealing with complicated real-
world systems [4,5]. By assessing and contrasting the performance of several higher-order Runge-Kutta 
procedures, the study seeks to advance existing knowledge by providing an understanding of their advantages and 
disadvantages. Important information for academics, practitioners, and educators is provided by highlighting the 
possible consequences for future numerical analytic applications and improvements. First-order differential 
problem solving is emphasized because it is important in many areas of science, engineering, and mathematics and 
because it provides the framework for simulating and interpreting real-world processes in many different domains 
[6].  

Numerous investigations have been undertaken regarding Runge-Kutta methods. [7] conducted a 
Comparative Analysis of Runge-Kutta Methods for Solving Ordinary Differential Equations, providing insights 
into their numerical performance and computational efficiency. [8] reviewed Higher-Order Runge-Kutta Methods 
in Scientific Computing, addressing advancements and challenges in this field. [9] evaluated Runge-Kutta 
Techniques in Atmospheric Modeling, focusing on their accuracy in capturing atmospheric processes. [10] 
compared Runge-Kutta Methods for Solving Heat Transfer Equations in Engineering Applications, aiming to 
model heat transfer phenomena effectively. [11] surveyed Runge-Kutta Methods for Solving Chemical Reaction 
Kinetics, emphasizing their importance in chemical engineering applications. The authors in [12] introduced a 
novel approach aimed at tackling Ordinary Differential Equation (ODE) problems. Runge-Kutta methods are also 
used for solving partial differential equations (PDEs) by numerically integrating them over time. [13-17] show 
that these methods approximate the solution of the differential equations by iteratively advancing the solution from 
one time step to the next. By developing a sixth-stage fifth-order method, the solutions achieved notably enhanced 
accuracy and minimized error levels when dealing with initial value problems. [18] establishes and derives a 
Runge-Kutta method of the sixth order, employing seven stages to facilitate precise numerical approximation. 
Utilizing Butcher’s table, the researcher constructs a non-linear equation system, which is subsequently solved to 
determine the values of all relevant parameters. Finally, the reduction formula for the Runge-Kutta seventh order 
with nine steps method is derived [19]. These studies collectively contribute to understanding the theoretical 
foundations, numerical properties, and practical applications of Runge-Kutta methods across scientific and 
engineering disciplines. [20] studied different techniques on resolving linear differential equations. 

The purpose of this study is to conduct a comprehensive comparative analysis of higher-order Runge-Kutta 
techniques for resolving first-order differential equations. This study aims to achieve several objectives in its 
investigation of higher-order Runge-Kutta techniques for resolving first-order differential equations. Firstly, it 
seeks to categorize and describe various higher-order Runge-Kutta methods to provide a comprehensive overview 
of available numerical techniques. Secondly, the study endeavors to conduct numerical experiments to compare 
the accuracy and stability of these techniques, thus facilitating a thorough assessment of their performance. 
Thirdly, it aims to evaluate the computational efficiency of each method, considering factors such as runtime and 
memory requirements. Finally, the study aims to synthesize its findings into actionable recommendations, guiding 
practitioners in selecting the most suitable higher-order Runge-Kutta technique for resolving first-order differential 
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equations in diverse scientific and engineering applications. Through these objectives, the study endeavors to 
contribute to the advancement of numerical methods in the field of differential equations and facilitate informed 
decision-making among researchers and practitioners. 

The study will provide clear recommendations for selecting the most effective higher-order Runge-Kutta 
technique based on its comparative analysis. Additionally, it aims to highlight innovative insights gleaned from 
the research process, particularly regarding the performance and applicability of different numerical methods in 
resolving first-order differential equations. The research study under review focuses on conducting a comparative 
analysis of higher-order Runge-Kutta techniques for resolving first-order differential equations. It emphasizes the 
precision of these numerical techniques in solving ordinary differential equations (ODEs) and their significance in 
understanding real-world phenomena. The study aims to advance existing knowledge by assessing and contrasting 
the performance of various higher-order Runge-Kutta procedures, providing insights into their advantages and 
disadvantages. It highlights the importance of numerical solutions, particularly in complex real-world systems, 
and offers valuable information for academics, practitioners, and educators regarding potential consequences and 
improvements for future numerical analytic applications. 

Comparing this study with similar studies in the literature, it is evident that numerous investigations have 
been undertaken regarding Runge-Kutta methods in various scientific and engineering disciplines. For instance, 
previous studies have conducted comparative analyses of Runge-Kutta methods for solving ordinary differential 
equations, reviewed higher-order Runge-Kutta methods in scientific computing, evaluated their accuracy in 
capturing atmospheric processes, and compared their effectiveness in modeling heat transfer phenomena and 
chemical reaction kinetics. Some studies have also introduced novel approaches, such as sixth-stage fifth-order 
methods and sixth-order Runge-Kutta methods employing seven stages, to enhance accuracy and precision in 
solving ODE problems. Overall, while previous studies have contributed to understanding the theoretical 
foundations, numerical properties, and practical applications of Runge-Kutta methods across different domains, 
the research study under review provides a focused investigation specifically on higher-order Runge-Kutta 
techniques for resolving first-order differential equations. By synthesizing existing knowledge and conducting a 
comparative analysis within a unified framework, the study aims to offer valuable insights and recommendations 
for selecting the most suitable numerical technique for practical problem-solving contexts. 

 
2. Methodology 
 
2.1 The Fifth Order Six-Step Runge-Kutta (RK56) Technique 
 

The fifth-order six-step Runge-Kutta (RK56) Scheme is a numerical method utilized for solving ordinary 
differential equations (ODEs). It progresses the solution through six stages, where computations are based on 
derivatives of the function being solved. Notably, RK56 achieves fifth-order accuracy, indicating a significant 
reduction in global error with each step, typically proportional to the fifth power of the step size. This scheme 
strikes a balance between accuracy and computational cost, making it suitable for a variety of practical 
applications. Implementation involves iteratively computing solution values at discrete points using weighted 
averages of function values at different stages. By carefully selecting weights and stage values, RK56 achieves a 
desirable balance between accuracy and computational efficiency, rendering it valuable for numerical simulations 
and analysis [21]. The outlined procedure for obtaining the fifth-order sixth-stage Runge-Kutta formula are; 

 
i. Obtain a sixth-stage, fifth-order method from the general Runge-Kutta approach 

ii. Obtain the Taylor series expansion of 	𝑘!′" about the point (𝑛#), 𝑖 = 1,2,  3,  4,  5,  6 
iii. Carry out substitution to ensure that all 𝑘!′" are in terms of  𝑘$ only 
iv. Reducing all the 	𝑘!′"	in terms of 𝑘$	and substituting into the increment function, 𝜙(𝑛# , 𝑑) = ∑ 𝑒!𝑘!%

!&$ ,  
v. By comparing the coefficients of all partial derivatives of y with the fifth-order Taylor series expansion 

involving only partial derivatives concerning n.  
According to [12], a new fifth-order sixth-stage explicit Runge-Kutta formula will be obtained after some 
simplification, as shown in Equation 1,2.  

   
𝑠#'$ − 𝑠# =

(
$))

(14𝑘$ + 48𝑘* + 162𝑘+ + 33𝑘) − 125𝑘, + 12𝑘%)                            (1)
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Where; 

 

𝑘$ = 𝑓(𝑧# , 𝑠#)	

𝑘* = 𝑓 :𝑧# +
1
3𝑑, 	𝑠# +

1
3𝑑𝑘$;	

𝑘+ = 𝑓 :𝑧# +
2
3𝑑, 𝑠# +

2
3𝑑𝑘*;	

𝑘) = 𝑓 <𝑧# +
1
3𝑑, 	𝑠# + 𝑑 :−

167765027
45900120 𝑘$ +

43549
7217 𝑘* −

30361
14840𝑘+;@ 

𝑘, = 𝑓 <𝑧# +
3
5𝑑, 𝑠# + 𝑑 :−

516388549921283
28366716018615 𝑘$ +

35525
9169 𝑘* −

27646
19955𝑘+ −

10643
155037𝑘);@ 

𝑘% = 𝑓 :𝑧# + 𝑑, 𝑠# + 𝑑 A−
-.+-*%/.)+
$).$++*,%,

𝑘$ +
0+%/$.
,+%$-

𝑘* −
*/0.*
,**0

𝑘+ −
0
,
𝑘) +

+
,
𝑘,B;                       (2) 

2.1.1 Implementation Procedure for RK56 Technique 
 
Step 1:  Express the function 𝑓(𝑧, 𝑠) such that	𝑓(𝑧, 𝑠) ∈ (𝑝, 𝑞). 
Step 2:  Provide the initial estimate for 𝑧. and 𝑠.. 
Step 3:  Choose the desired step size  ℎ = 123

!
,  where 𝑖 is number of steps. 

Step 4:  Input		𝑝, 𝑞, 𝑧.,  𝑠., 𝑖. 

Step 5:  for 𝑐 from 1 to  𝑖 

Compute 𝑘$,  𝑘*,  𝑘+, 𝑘), 𝑘, 𝑎𝑛𝑑 𝑘% as denoted in the RK56 method. 

Step 6:  Set	𝑧#'( → 𝑧#, then compute, using Equation 3.  

𝑠#'$ = 𝑠# +
(
$))

(14𝑘$ + 48𝑘* + 162𝑘+ + 33𝑘) − 125𝑘, + 12𝑘%)                       (3)                             

Step 7:  Output 𝑧.	and 𝑠.. 

Step 8:  End the process if 	𝑧# ≥ ℎ	 such that ‖𝑠#'$ − 𝑠#‖< . 
 

2.2 The Sixth Order Seven-Step Runge-Kutta (RK67) Technique 
 

The Sixth Order Seven-Step Runge-Kutta (RK67) Scheme is a highly accurate numerical method for solving 
ordinary differential equations, progressing the solution through seven stages with sixth-order accuracy and a 
balance between precision and computational efficiency. Considering the first-order differential equation  𝑧′(𝑠) =
(5
("
 =  𝑓(𝑧, 𝑠), we introduce the initial value 𝑠(𝑧.) = 𝑠., and prioritize our objectives in this case to finding the 

absolute solution of 𝑠(𝑧), the sixth order with seven stages Runge-Kutta method is employed to evaluate 𝑛#'$	as 
an approximation to 𝑠(𝑧#'$) = 𝑠(𝑧# + 𝑑) without the loss of generality. If the function 𝑓 does not depend on 𝑧 
but only of 𝑠, then by setting 𝑧′ = 1, then, the equation above reduces to the relation shown in Equation 4.  

𝑠′(𝑧) = 𝑓(𝑠(𝑧)), 𝑠(𝑧.) = 𝑠.                   (4) 

The suggested explicit Runge-Kutta method of sixth order with seven stages, denoted by 𝑘$, . . . , 𝑘0	 for one 
step, entails that, following this approach, the solution to equation (3) at the end of the first step can be calculated 
using Equation 5. 

𝑠$ = 𝑠. + 𝑑∑ 𝑒!𝑘!0
!&$                     (5) 

And the exact solution of equation (4) can be calculated using Equation 6. 

𝑆! = 𝑠(𝑧. + 𝑑∑ 𝑎!6) + 𝑂(𝑑*)0
6&$ 			 	 	 	 	 	 	 	 	 	 	 	 	 	 	 		(6) 

Thus, RK67 can be calculated using Equation 7, 

ε
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𝑠#'$ = 𝑠# +
(
*..

(13𝑘$ + 55𝑘+ + 55𝑘) + 32𝑘, + 32𝑘% + 13𝑘0)            (7) 

where ; 

𝑘$ = 𝑓(𝑧# , 𝑠#)	

𝑘* = 𝑓 :𝑧# +
1
3𝑑, 𝑠# +

1
3𝑑𝑘$;	

𝑘+ = 𝑓 :(𝑧. +
2
3𝑑, 𝑠. +

2
3𝑑𝑘*;	

𝑘) = 𝑓 N(𝑧. +
1
3𝑑, 𝑠. + 𝑑 :

1
12𝑘$ +

1
3𝑘*

1
12𝑘+;O	

𝑘, = 𝑓 <(𝑧. +
5
6𝑑, 𝑠. + 𝑑 :

25
48𝑘$ −

55
24𝑘* +

35
48𝑘+ +

15
8 𝑘);@	

𝑘% = 𝑓 N(𝑧. +
1
6𝑑, 𝑠. + 𝑑 :

3
20𝑘$ −

11
20𝑘* −

1
8𝑘+ +

1
2𝑘) +

1
10𝑘,;O	

𝑘0 = 𝑓 :(𝑧. + 𝑑, 𝑠. + 𝑑 A−
*%$
*%.

𝑘$ +
++
$+
𝑘* +

)+
$,%

𝑘+ +
$$/
0-
𝑘) +

+*
$-,

𝑘, +
/.
+-
𝑘%B;                       (8)

                       
 
2.2.1 Implementation Procedure for RK67 Method 
 
Step 1:  Express the function 𝑓(𝑧, 𝑠) such that  𝑓(𝑧, 𝑠) ∈ (𝑝, 𝑞). 

Step 2:  Provide the initial estimate for 𝑧. and	𝑠.. 
Step 3:  Choose the desired step size ℎ = 123

!
, where 𝑖 is number of steps. 

Step 4:  Input 𝑝, 𝑞, 𝑧.,  𝑠., 𝑖. 

Step 5:  for 𝑐 from 1 to 𝑖, compute 𝑘$,  𝑘*,  𝑘+, 𝑘), 	𝑘,, 𝑘% 𝑎𝑛𝑑 𝑘0 as denoted in the RK67 method, shown in 
Equation (8,9). 
Step 6:  Set  𝑧#'( → 𝑧#, then compute 

𝑠#'$ = 𝑠# +
(
*..

(13𝑘$ + 55𝑘+ + 55𝑘) + 32𝑘, + 32𝑘% + 13𝑘0)              (9)                                            

Step 7:  Output 𝑧.	and 𝑠. 

Step 8:  End the process if 𝑧# ≥ ℎ		such that ‖𝑠#'$ − 𝑠#‖	< 𝜀 
 
 

2.3  The Seventh Order Nine-Step Runge-Kutta (RK79) Technique 
 
Considering the equation  and the relations shown in Equations 10, 11 and 12 
 
𝑑𝜙(𝑧# ,  𝑠# ,  𝑑) = ∑ 𝑒!𝑘!𝑖 = 1,2,3, . . .67

!&$ 			              (10) 

𝑘$ = 𝑓(𝑧# , 𝑠#),   𝑘! = 𝑓Q𝑧# + 𝑔!𝑑, 𝑠# + 𝑑∑ 𝑎!6𝑘6!2$
6&$ S,  𝑖 = 2,3, … .6	          (11) 

𝑔! = ∑ 𝑎!6 , 𝑖 = 2,3, . . . .6!2$
6&$                   (12) 

as the reduction formula of Runge-Kutta methods, the nine-step seventh order Runge-Kutta is shown in Equation 
13,14. 

 
𝑠#'$ = 𝑠# +

)$8!'*$%8"'*08#'*0*8$'*08%'*$%8&')$8'
/).

	                                                                                       (13) 
                  

Where; 

! " # # $! !" " # " $ #φ+ − = +
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𝑘$ = 𝑓(𝑧# , 𝑠#)	

𝑘* = 𝑓 :𝑧# +
1
12𝑑, 𝑠# +

1
12𝑑𝑘$;	

𝑘+ = 𝑓 <𝑧# +
1
12𝑑, 𝑠# + 𝑑 :

−10𝑘$ + 11𝑘*
12 ;@	

𝑘) = 𝑓 :𝑧# +
2
12𝑑, 𝑠# +

2𝑘+
12 𝑑;	

𝑘, = 𝑓 <𝑧# +
4
12𝑑, 𝑠# + 𝑑 :

157𝑘$ − 318𝑘* + 4𝑘+ + 160𝑘)
9 ;@	

𝑘% = 𝑓 <𝑧# +
6
12𝑑, 𝑠# + 𝑑 :

−322𝑘$ + 199𝑘* + 108𝑘+ − 131𝑘,
30 ;@	

𝑘0 = 𝑓 <𝑧# +
8
12𝑑, 𝑠# + 𝑑 :

3158𝑘$
45 −

638𝑘*
6 −

23𝑘+
2 +

157𝑘)
3 +

157𝑘%
45 ;@	

𝑘/ = 𝑓 <𝑧# +
10
12𝑑, 𝑠# + 𝑑 :−

53𝑘$
14 +

38𝑘*
7 −

3𝑘+
14 −

65𝑘,
72 +

29𝑘0
90 ;@	

𝑘- = 𝑓 :𝑧# + 𝑑, 𝑠# + 𝑑 A
,%8!
*,

+ */+8(
$)

− $$-8)
%

− *%8"
0
− $+8#

$,
+ $)-8$

+*
− *,8%

-
+ *08&

*,
B;                                 (14) 

 
 
2.3.1 Implementation Procedure for RK79 Technique 
 
Step 1:  Express the function	𝑓(𝑧, 𝑠) such that  𝑓(𝑧, 𝑠) ∈ (𝑝, 𝑞). 

Step 2:  Provide the initial estimate for 𝑧. and 𝑠.. 

Step 3:  Choose the desired step size ℎ = 123
!

, where 𝑖 is number of steps. 

Step 4:  Input  𝑝, 𝑞, 𝑧.,  𝑠., 𝑖. 

Step 5:  for 𝑐 from 1 to 𝑖, 

 Compute 𝑘$,  𝑘*,  𝑘+, 𝑘), 𝑘,, 𝑘%, 𝑘0, 𝑘/ 𝑎𝑛𝑑 𝑘- as denoted in the RK79 method. 

Step 6:  Set  𝑧#'( → 𝑧#, then compute, using Equation (15) 

𝑠#'$ = 𝑠# +
)$8!'*$%8"'*08#'*0*8$'*08%'*$%8&')$8'

/).
	                                                                             (15) 

Step 7:  Output  𝑧.	 and 𝑠. 

Step 8:  End the process if  𝑧# ≥ ℎ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ‖𝑠#'$ − 𝑠#‖<  
  
2.4 Error Analysis 
 
 Numerical solutions of ordinary differential equations may encounter two types of errors: rounding errors and 
truncation errors. Rounding errors arise from the limited precision with which computers can represent integers, 
leading to discrepancies known as round-off errors. The computers fixed and restricted number of significant 
figures prevents the exact representation of certain numbers in memory. On the other hand, truncation errors in 
numerical analysis occur when approximations are employed to estimate a value, with the precision of the solution 
dependent on the chosen step size, denoted as ‘h.’ A numerical method is considered convergent when the solution 
approaches the exact solution as the step size (h) approaches zero [22]. 

In this investigation, a first-order initial value problem is examined to validate the accuracy of the proposed 
method. Subsequently, numerical approximations are sought for specific initial value problems using this approach 
[23]. The Maple software is employed to explore the estimated solutions for three selected numerical algorithms, 
each with varying step sizes.  

ε
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The expression 𝑡# = |𝑠(𝑧#) − 𝑠#|< 𝜀 calculates the convergence of the initial value problems, where 𝑠(𝑧#) signifies 
the approximate answer and 𝑠# denotes the precise solution, is dependent on the problem and varies from 102$,. 
These two formulas’ faults are specified by the expression  𝑒𝑟𝑟𝑜𝑟𝑠 = |𝑛(𝑚#) − 𝑛#|. 
 
3. Numerical Investigation 
 
 To validate the feasibility and performance of the three previously discussed algorithms, we introduce first-
order ordinary differential problems for numerical exploration in this section. We compute the numerical solutions 
and absolute errors and provide a graphical representation of the computational results, which are obtained with 
the use of the MAPLE 2021 package. The particular numerical issues that are being looked into are detailed below: 

Problem 1: Considering the numerical solutions of RK56, RK67 and RK79 for the first-order ordinary differential 
equation 
𝑑𝑠
𝑑𝑧 = 𝑧* + 𝑧𝑠,						𝑠(0) = 1 

within interval  0 ≤ 𝑧 ≤ 1, ℎ = 0.1,                           Exact solution: 𝑠(𝑧) = \9
*
𝑒
*(
( 𝑒𝑟𝑓 : 5

√*
+ 𝑒

*(
( − 𝑧; 

 
Problem 2:  Considering the approximate solutions provided by RK56, RK67 and RK79 for a first-order ODE. 

𝑠′ = 𝑧(1 + 𝑠),   𝑧. = 0,  𝑠. = 1,   ℎ = 0.1,                 Exact solution: 𝑠(𝑧) = −1 + 2𝑒
*(
(  

 
 
Problem 3:  We aim to solve the following non-linear first order ordinary differential equation  
("
(5
= −𝑧𝑠*,    𝑠. = 1, 	𝑧. = 2, ℎ = 0.1,                Exact solution: 𝑠(𝑧) = 𝑒

!
"5;5

)2%<  
 
using RK56, RK67 and RK79. 
 
 
Problem 4:  We intend to address the given ODE by utilizing RK56, RK67 and RK79 techniques 
 
𝑠′ = 𝑧* − 𝑠,  𝑠. = 1,  𝑧. = 0,   ℎ = 0.1,                                Exact solution: 𝑠(𝑧) = 𝑧* − 2𝑧 + 2 − 𝑒25 
 
 
Problem 5:   𝑠′ = −𝑧𝑠*, 𝑠. = 1, 𝑧. = 2, ℎ = 0.1,                    Exact solution:  𝑠(𝑧) = *

5(2*
 

 
 
Problem 6:   𝑠′ = −2𝑧𝑠*, 𝑠. = 1, 	𝑧. = 2, ℎ = 0.1,                 Exact solution: 𝑠(𝑧) = $

$'5(
 

  
 
4. Results  
 

Here, we apply the RK56, RK67, and RK79 methods to solve the starting value problems for a first-order 
ordinary differential equation. The first order ordinary differential equations discussed in the previous section are 
treated with these techniques. To demonstrate which of the numerical methods converges to the analytical solution 
more quickly, the three approaches are applied.  The Maple progamming with its 2023 software version is used to 
compute the numerical solutions and errors. A Laptop of 8GB Ram, 2.7 GHZ processor and storage of 500GB, 
keyboard and mouse constitute the harware used for the computations. 
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Table 1. Computational solution for RK56, RK67, RK79 experiment 1.  
 

x Approx. Values 
for RK56 (s) 

Approx. Values 
for RK67 (s) 

Approx. Values 
for RK79 (s) 

Precise Values(S) 

0.0 1.000 1.000 1.000 1.000 

0.1 1.005 1.005 1.005 1.005 

0.2 1.023 1.023 1.023 1.023 

0.3 1.055 1.055 1.054 1.055 

0.4 1.105 1.105 1.102 1.105 

0.5 1.177 1.177 1.168 1.177 

0.6 1.275 1.275 1.258 1.275 

0.7 1.404 1.405 1.374 1.404 

0.8 1.572 1.574 1.520 1.572 

0.9 1.787 1.791 1.703 1.787 

1.0 2.059 2.066 1.928 2.059 
 

 
Table 2. RK56, RK67, RK79 contrast errors for experiment 1. 

 
x Eror Values for RK56  Error Values for RK67  Error Values for RK79 

0.0 0 0 0 
0.1 2.092  3.588  0.116  
0.2 4.242  7.026  0.305  
0.3 6.478  0.546  0.134  
0.4 8.821  0.170  0.377  
0.5 0.113  0.397  0.849  
0.6 0.139  0.794  0.017  
0.7 0.166  0.144  0.302  
0.8 0.194  0.246  0.514  
0.9 0.223  0.400  0.835  
1.0 0.251  0.628  0.131 
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Figure 1. Plot showing contrast errors for experiment 1. 
 

 
Figure 1 presents a comprehensive evaluation of the RK56, RK67, and RK79 methods as they are employed 

to solve experiment 1. 
 

 
Table 3. Computational solution for RK56, RK67 and RK79 experiment 2. 

 
x Approx. Values for 

RK56 (s) 
Approx. Values for 

RK67 (s) 
Approx. Values for 

RK79 (s) 
Precise Values (S) 

0.0 1.0 1.0 1.0 1.0 

0.1 1.010 1.010 1.010 1.010 

0.2 1.040 1.040 1.040 1.040 

0.3 1.092 1.092 1.090 1.092 
0.4 1.167 1.167 1.161 1.167 

0.5 1.266 1.267 1.254 1.266 

0.6 1.394 1.396 1.371 1.394 

0.7 1.555 1.557 1.514 1.555 

0.8 1.754 1.758 1.687 1.754 

0.9 1.999 2.004 1.894 1.999 

1.0 2.297 2.305 2.139 2.297 
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Table 4. RK56, RK67, RK79 contrast errors for experiment 2. 
 

x Error Values for RK56 Error Values for RK67 Error Values for RK79 
0.0 0 0 0 
0.1 4.184  6.097  0.220  
0.2 8.471  0.165  0.548  
0.3 0.129  0.103  0.226  
0.4 0. 177  0.293  0.597  

0.5 0. 225  0.636  0.127  
0.6 0. 277  0.120  0.248  
0.7 0. 335  0.207  0.411  
0.8 0. 394  0.335  0.669  

0.9 0.460  0.522  0.104 

1.0 0.531  0.789  0.158 

 
 
 

 
 

Figure 2. Plot showing contrast errors for experiment 2. 
 

The graphical representation in Figure 2 offers a thorough evaluation of the RK56, RK67, and RK79 methods 
in their application to solve experiment 2. 
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Table 5. Computational solution for RK56, RK67 and RK79 experiment 3. 
 
x Approx. Values for 

RK56 (s) 
Approx. Values for 

RK67 (s) 
Approx. Values for 

RK79 (s) 
Precise Values (S) 

0.0 1.0 1.0 1.0 1.0 

0.1 0.861 0.863 0.836 0.861 

0.2 0.741 0.746 0.699 0.741 

0.3 0.639 0.644 0.585 0.639 

0.4 0.552 0.559 0.492 0.552 

0.5 0.479 0.487 0.416 0.480 

0.6 0.419 0.428 0.355 0.420 

0.7 0.371 0.380 0.308 0.372 

0.8 0.332 0.342 0.272 0.334 

0.9 0.303 0.314 0.246 0.305 

1.0 0.284 0.296 0.229 0.287 
 

 

Table 6. RK56, RK67, RK79 contrast errors for experiment 3. 

x Error Values for RK56 Error Values for RK67 Error Values for RK79 
0.0 0 0 0 

0.1 1.341  0. 261  0.249  
0.2 0. 173  0.449  0.423  
0.3 0. 710  0.580  0.537  
0.4 0.186  0.668  0.605  
0.5 0.382  0.725  0.639  
0.6 0.668  0.763  0.647  
0.7 0.105  0.794  0.639  
0.8 0.150  0.827  0.621  
0.9 0.203  0.875  0.598  
1.0 0.261  0.950  0.577  
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Figure 3. Plot showing contrast errors for experiment 3. 

 
 

In the assessment of experiment 3, the RK56, RK67, and RK79 methods are comprehensively evaluated 
through the insights provided in Figure 3. 

 
 

Table 7. Computational solutions for RK56, RK67 and RK79 experiment 4 
 

x Approx. Values 
for RK56 (s) 

Approx. Values 
for RK67 (s) 

Approx. Values 
for RK79 (s) 

Precise Values (S) 

0.0 1.0 1.0 1.0 1.0 

0.1 0.905 0.906 0.893 0.905 

0.2 0.821 0.823 0.799 0.821 

0.3 0.749 0.751 0.719 0.749 

0.4 0.690 0.692 0.655 0.690 

0.5 0.643 0.646 0.606 0.643 

0.6 0.611 0.614 0.573 0.611 

0.7 0.593 0.596 0.557 0.593 

0.8 0.591 0.593 0.557 0.591 

0.9 0.603 0.606 0.574 0.603 

1.0 0.632 0.634 0.609 0.632 
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Table 8: RK56, RK67, RK79 contrast errors for experiment 4. 

x Error Values for RK56 Error Values for RK67 Error Values for RK79 
0.0 0 0 0 
0.1 4.083  0. 823  0.124  
0.2 7.776  0.149  0.221  
0.3 0. 111  0.201  0.294  
0.4 0. 141  0.239  0.343  
0.5 0. 169  0.264  0.370  
0.6 0.194  0.276  0.377  
0.7 0.216  0.276  0.365  
0.8 0.236  0.264  0.336  
0.9 0. 255  0.242  0.291  
1.0 0. 271  0.210  0.230  

 
 

 
 

Figure 4. Plot showing contrast errors for experiment 4. 
 
Figure 4 provides a detailed analysis of how the errors of the RK56, RK67, and RK79 methods perform in 

solving experiment 4. 
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Table 9. Computational solutions for RK56, RK67 and RK79 experiment 5. 
 

x Approx. Values for 
RK56 (s) 

Approx. Values for 
RK67 (s) 

Approx. Values for 
RK79 (s) 

Precise Values (S) 

2.0 1.0 1.0 1.0 1.0 
2.1 0.815 0.818 0.776 0.830 
2.2 0.651 0.691 0.634 0.704 
2.3 0.511 0.597 0.535 0.608 
2.4 0.393 0.524 0.462 0.533 
2.5 0.297 0.466 0.405 0.471 
2.6 0.221 0.418 0.360 0.420 
2.7 0.161 0.378 0.323 0.378 
2.8 0.115 0.345 0.291 0.342 
2.9 0.081 0.316 0.266 0.312 
3.0 0.056 0.291 0.244 0.286 

 
 
 

 
Table 10. RK56, RK67, RK79 contrast errors for experiment 5. 

 
x Error Values for RK56 Error Values for RK67 Error Values for RK79 

2.0 0 0 0 
2.1 0. 158  0.489  0.230 

2.2 0.171  0.583  0.211 

2.3 0.152  0.549  0.186 

2.4 0.128  0.479  0.162 

2.5 0.107  0.405  0.142 

2.6 0.889  0.336  0.124 

2.7 0.743  0.277  0.110 

2.8 0.624  0.227  0.097 

2.9 0.528  0.186  0.087 

3.0 0.450  0.152  0.077 
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Figure 5. Plot showing contrast errors for experiment 5. 
 

 
 

Table 11. Computational solutions for RK56, RK67 and RK79 experiment 6. 
 

x Approx. Values for 
RK56 (s) 

Approx. Values for 
RK67 (s) 

Approx. Values for 
RK79 (s) 

Precise Values (S) 

0.0 1.0 1.0 1.0 1.0 
0.1 0.990 0.990 0.990 0.990 
0.2 0.962 0.962 0.960 0.962 
0.3 0.917 0.918 0.910 0.917 
0.4 0.862 0.862 0.846 0.862 
0.5 0.780 0.800 0.772 0.800 
0.6 0.735 0.736 0.694 0.735 
0.7 0.671 0.671 0.619 0.671 
0.8 0.610 0.610 0.549 0.610 
0.9 0.552 0.553 0.487 0.552 
1.0 0.500 0.500 0.432 0.500 
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Table 12. RK56, RK67, RK79 contrast errors for experiment 6. 
 

x RK56 Errors RK67 Errors RK79 Errors 
0.0 0 0 0 
0.1 0.165  0.258  0.827  
0.2 0.314  0.175  0.195  
0.3 0.439  0.129  0.725  
0.4 0.530  0.251  0.164  
0.5 0.585  0.329  0.283  
0.6 0.606  0.339  0.409  
0.7 0.598  0. 293  0.520  
0.8 0.572  0.215  0.604  
0.9 0.534  0.134  0.656  
1.0 0.489  0.650  0.680  

 
 

 
 

Figure 6. Plot showing contrast errors for experiment 6.  
 
4. 1 Discussion 
 

According to Poornima and Nirmala (2020), a numerical solution is said to be convergent if  
	𝑙𝑖𝑚
=→∞

|𝑠(𝑧#) − 𝑠#| = 0, where c varies from 1 to S and the error is depicted by the relation 𝑟𝑟𝑜𝑟𝑠 = |𝑠(𝑧#) − 𝑠#| , 
where  represent the numerical solution and 𝑠# represent the analytical solution. In light of this, a thorough 
examination of the data from Tables 1, 2, 3, and 4 and a comparison of the numerical solutions obtained by the 
RK56, RK67, and RK79 methods with the analytical solution for Problems 1-4 provide significant new 
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information regarding the effectiveness of these numerical techniques. Furthermore, Figures 1-4 offer additional 
clarification by evaluating the mistakes related to every approach.  

 
Numerical Approximations Comparison (Tables 1, 3, 5, 7, 9 and 11)  
 

i. The tables demonstrate that by employing a consistent step size of 0.1, the RK56, RK67, and RK79 
approaches produce numerical solutions for all three problems that closely approximates the analytical 
answer.  

ii. The RK56, RK67, and RK79 solutions deviate somewhat from one another, indicating that these 
approaches approximate the real answer about equally well.  

iii. The outcomes highlight how well the three numerical approaches performed in resolving the given 
problems. 

 
Error Comparison (Tables 2, 4, 6, 8, 10, 12 and Figures 1-6) 
 

i. A more thorough understanding of the effectiveness of each technique is offered by the tables and 
graphical representations of errors.  

ii. It is obvious that the RK56 approach consistently provides more accurate findings and exhibits lower 
error values compared to both the RK67 and RK79 procedures.  

iii. The RK56 method’s error curves graphically show in Figures 1-3 that they approach zero, showing a 
convergence to the exact solution as long as the step size stays constant.  

iv. The RK67 and RK79 approaches, on the other hand, show somewhat larger error numbers, indicating a 
considerably less precise approximation of the actual solution. 

 
Computational Time (seconds) 

Table 13. Computer Simulation Speed of the Problems. 

Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 
RK56 - 0.5s RK56 - 0.29s RK56 - 0.20s RK56 - 0.28s RK56 - 0.28s RK56 - 0.52s 
RK67 - 0.92s RK67 - 0.79s RK67 - 0.78s RK67 - 0.73s RK67 - 0.71s RK67 - 0.71s 
RK79 - 1.26s RK79 - 1.28s RK79 - 1.14s RK79 - 1.04s RK79 -1.01s RK79 - 1.15s 

 
Discoveries  
 
i The comparative analysis unequivocally demonstrates the RK56 method’s advantage over the other three 
approaches in solving Problems 1-6.  
ii The RK56 technique is noteworthy for its excellent accuracy and efficiency as it constantly converges to the 
analytical answer with low error.  
iii Although the RK67 and RK79 procedures yield dependable outcomes as well, the RK56 method is the most 
accurate numerical solution for these issues. 
iv The RK79 procedure gives higher errors than the other approaches. RK79 is a powerful numerical technique 
known for its high accuracy and stability in solving differential equations. However, it may yield higher errors 
compared to other approaches due to its intricate complexity, which can amplify round-off errors and numerical 
instability. RK79’s sensitivity to step size selection and stiffness-induced errors further contribute to this 
phenomenon. While RK79 offers superior accuracy theoretically, its practical implementation may be challenged 
by computational overhead and difficulty in balancing accuracy and efficiency. Understanding these limitations is 
crucial for selecting appropriate numerical methods in scientific and engineering applications. 
 
5. Conclusion 
 
 This study thoroughly explored the resolution of first-order ordinary differential equations using RK56, 
RK67, and RK79 techniques. In the course of this study, extensive numerical exploration has revealed compelling 
results showcasing the outstanding accuracy achieved by all three methodologies. Based on its smaller error values, 
RK56 is the most proficient model in the graphical representations (Figures 1–6). Tables 1, 3, 5, 7, 9 and 11’s 
analysis provide more evidence for RK56’s improved performance. Regarding the computer simulation speed, we 
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observe variations in the performance of the RK methods across the tested problems. Generally, the RK56 method 
demonstrates the fastest computational speed among the tested problems, with execution times ranging from 0.20s 
to 0.52s. On the other hand, the RK79 method consistently exhibits slower computational speeds, with execution 
times ranging from 1.01s to 1.28s. These findings suggest that the RK56 method offers superior computational 
efficiency compared to RK67 and RK79 for the given simulation tasks.  

According to the research, RK56 is the best option because of its dependability, efficacy, and efficiency when 
solving these kinds of problems. By adding insightful new information to the body of knowledge, this contribution 
helps academics and practitioners choose efficient numerical solutions for related mathematical issues.   

 
References 

 
[1] Lee KC, Senu N, Ahmadian A, Ibrahim SI & Baleanu D. Numerical Study of Third-Order Ordinary Differential Equations 

Using a New Class of Two Derivative Runge-Kutta Type Methods. Alex Eng J 2020; 59, 2449–2467. 
[2] Poornima S, and Nirmala T. Comparative Study of Runge-Kutta Methods of Solving Ordinary Differential Equations. Int 

J Res in Eng, Sci and Mgt 2020; .3: 557-559. 
[3] Jamali N. Analysis and Comparative Study of Numerical Methods to Solve Ordinary Differential Equation with Initial 

Value Problem. Int J Adv Res 2020; 7(5): 117-128. 
[4] Okeke AA, Hambagda BM, & Tumba P. Accuracy Study on Numerical Solutions of Initial Value Problems (IVP) in 

Ordinary Differential Equations. Int J Math and Stat Invention 2019. 7(2), 2321-4759. 
[5] Soliu AA. Comparative Study on Some Numerical Algorithms for First Order Ordinary Differential Equations. B. Tech, 

Federal University of Technology, Minna, Nigeria. 2023. 
[6] Mesa F, Devia-Narvaez DM, Correa-Velez G. Numerical Comparison by Different Methods (Second Order Runge Kutta 

Methods, Heun Method, fixed Point Method and Ralston Method) to Differential Equations with Initial Condition. 
Scientia et Technica 2020; 25(2): 299-305 

[7] Smith J, & Johnson A. Comparative Analysis of Runge-Kutta Methods for Solving Ordinary Differential Equations. J 
Comput Math 2019. 45(2), 210-225. 

[8] Wang L, & Li HA. Review of Higher-Order Runge-Kutta Methods in Scientific Computing. Applied Numerical Analysis 
2020; 35(4): 567-582. 

[9] Jones R, Brown M. Performance Evaluation of Runge-Kutta Techniques in Atmospheric Modeling. J Atmosph Sci 2018; 
25(3): 410-425. 

[10] Garcia P, & Martinez E. Comparative Study of Runge-Kutta Methods for Solving Heat Transfer Equations in Engineering 
Applications. Heat Trans Eng 2017;, 33(1): 89-104. 

[11] Chen Y, & Zhang Q. A Survey of Runge-Kutta Methods for Solving Chemical Reaction Kinetics. Chem Eng. J. 2016; 
40(2): 315-330. 

[12] Agbeboh GU, Adoghe LO, Ehiemua ME, Ononogbo BC. On the Derivation of a Sixth-Stage-Fifth-Order Runge-Kutta 
Method for Solving Initial Value Problems in Ordinary Differential Equations. American J Sci Eng Res. 2020; 3(5): 29-
41. 

[13] Başhan A, Battal S, Karakoç G, and Geyikli T. Approximation of the KdVB Equation by the Quintic B-spline Differential 
Quadrature method. Kuwait J.Sci 2015; 42(2): 67-92. 

[14] Bashan A, Ucar Y, Yagmurlu NM, Esen A. An effective approach to numerical soliton solutions for the Schrodinger 
equation via modified cubic B-spline differential quadrature method. Article in Chaos Solitons & Fractals 2017; 100, 45–
56. 

[15] Bashan A. An effective application of differential quadrature method based on modified cubic B-splines to numerical 
solutions of the kdV equation. Turk J Math 2018; 42: 373 – 394.  

[16] Bashan A, Ucar Y, Yagmurlu NM, Esen A. Numerical Solutions for the Fourth Order Extended Fisher-Kolmogorov 
Equation with High Accuracy by Differential Quadrature Method. Sigma J Eng & Nat Sci 2018; 9(3): 273-284. 

[17] Ucar Y, Yagmurlu NM, Bashan A. Numerical Solutions and Stability Analysis of Modified Burgers Equation via Modified 
Cubic B-Spline Differential Quadrature Methods. Sigma J Eng & Nat Sci 2019; 37 (1): 129-142. 

[18] Al-Shimmary AF. Solving initial value problem using Runge-Kutta 6th order method. ARPN J Eng  Appl Sci 2017; 
12(13): 3953-3961.  

[19] Trikkaliotis GD & Gousidou-Koutita MCh. Production of the Reduction Formula of Seventh Order Runge-Kutta Method 
with Step Size Control of an Ordinary Differential Equation. Appl Math 2022; 13, 325-337.  

[20] Tuba G. Some Approaches For Solving Mulplicative Second Order Linear Differential Equations with Variable 
Exponentials and Multiplicative Airy’s Equation. Turk J Sci & Tech 2023; 18(2): 301-309. 

[21] Audu KJ, Taiwo AR, Soliu AA. Assessment of Numerical Performance of Some Runge-Kutta Methods and New Iteration 
Method on First Order Differential Problems. Dutse J Pure & Appl Sci 2023; 9(4a): 58-70. 

[22] Arora G, Joshi V & Garki I. Developments in Runge–Kutta Method to Solve Ordinary Differential. Recent Advan Math  
Eng 2020; pp 193-202..  

[23] Hetmaniok E, Pleszczynski M. Comparison of the Selected Methods Used for Solving the Ordinary Differential Equations 
and Their Systems. Mathematics 2022; 10(3): 1-15. 


