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MATHEMATICAL ANALYSIS AND NUMERICAL SIMULATIONS

FOR A NONLINEAR KLEIN GORDON EQUATION IN AN

EXTERIOR DOMAIN

Gülnihal MERAL

Department of Mathematics, Ankara Yıldırım Beyazıt University, Ankara, TÜRKİYE

Abstract. In this study, the finite propogation speed properties investigated
for a two dimensional exterior problem defined by nonlinear Klein-Gordon

equation. Under some assumptions on the initial data and the nonlinearity,

the solution is shown to have a finite propogation speed. Furthermore, it is
demonstrated that the problem has a unique solution, and accurate numerical

solutions have been produced by the use of the dual reciprocity boundary

element approach with linear radial basis functions.

1. Introduction

Nonlinear wave equations are used to describe various physical problems, includ-
ing free surface problems, fields generated at the speed of light, large amplitude
problems. The nonlinearity may originate from the material constitutive relations,
from the large amplitude of the motion, or from the presence of a free bound-
ary [1, 2]. In most cases, nonlinear exterior wave problems are difficult to analyze
theoretically and computationally, since there is an added nonlinearity, the problem
is time dependent, the domain is unbounded and periodic waves are not possible.

It is known that solutions of the nonhomogenous linear wave equations have
quite different behaviour from solutions of parabolic equations since the energy of
a pure wave equation is constant and the initial data are transported with finite
velocity [3].

For the linear wave equation as well as for the general class of linear hyperbolic
equations in [4] it has been shown that any disturbance originated outside the light
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cone with a fixed vertex (x0, t0) has no effect on the solution within the cone and
consequently has finite propogation speed. The theoretical and computational anal-
yses of nonlinear wave problems are usually complicated, since there is an added
nonlinearity, the problem is time dependent, the domain is unbounded and peri-
odic waves are not possible. The trial equation method has been used to find exact
solutions of a nonlinear Klein Gordon equation [5]. An energy decay estimate has
been derived in [6] and asymptotic behaviour of the energy for periodic solutions
has been studied for a particular semi-linear wave equation,namely damped Klein
Gordon equation in [7]. The longtime behaviour of a nonlinear exterior wave prob-
lem has been studied in [8]. The existence of a global solution has been studied
for exponential type nonlinearity and for a Cauchy problem with small data in [9]
and [10], respectively. On the other hand, local energy decay properties have been
studied for the dissipative exterior Klein-Gordon equation [11]

It is known that the theoretical solutions are not easy to obtain when the equation
is nonlinear and particularly if the problem domain is unbounded. The radial basis
functions [12], Taylor matrix method [13], finite difference method(FDM) [14, 15]
have been used for the solution of the problems defined by nonlinear Klein Gordon
equations. One can find differential quadrature solution for the 2-D IBVP in [16]
and artificial boundary method has been applied for the initial value problem (IVP)
defined by a coupled nonlinear Klein Gordon equations [17].

Most numerical methods such as the finite element method(FEM), FDM and
the differential quadrature method (DQM) have some difficulties for unbounded
regions, since they need to discretize the domain itself.

A FEM based method, Dirichlet to Neumann FEM (DNFEM) is a general
method for the solution of problems in unbounded domains. DNFEM method
constructs an equaivalent problem by introducing an artificial boundary and a map
is derived between the original domain and the and the artificial boundary. A
detailed review on the method can be found in [18]. Later, another alternative nu-
merical method dual reciprocity boundary element method (DRBEM), which has
the advantage of discretizing only the boundary of the region, has been applied to
the same problem in [19]. However for the unbounded domains one should be care-
ful with the selection of the approximating radial basis functions (RBF), unless the
problem is not guaranteed that the solution vanishes far away from the time-space
cylinder.

In this paper, an IBVP which has significant applications in quantum physics
and defined by a Klein Gordon equation (Section 2)) has been considered. In Sec-
tions 3 and 4 the IBVP has been shown to have finite propogation speed under
some assumptions on the initial data and the solution has also shown to be unique.
Unlike [19], one has the advantage of having freedom in the selection of the ap-
proximating RBF, since it is guaranteed by the mathematical analysis. For the
numerical solution procedure (Section 5), DRBEM is used with linear RBF. The
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numerical results have been seen to be consistent with the behaviour of the solu-
tion and a well agreement with previously given reference solution [20] has been
obtained in terms of absolute maximum error.

2. The Problem Definition

In this paper, the finite propogation properties, the uniqueness and the numerical
solution of the IBVP

∂2u

∂t2
− c2∇2u = ϕ(u) in Ω× (0,∞) (1)

u = g1 on Γg1 ,
∂u
∂n = g2 on Γg2 (2)

u(x, y, 0) = u0(x, y),
∂u

∂t
(x, y, 0) = v0(x, y) (3)

are considered. In (1), c is a constant and ϕ (u) is a given function of the unknown u.
In Equations (1)-(3), the infinite exterior problem domain Ω has an inner boundary
Γ = Γg1 ∪ Γg2 , n is inward unit normal, g1, g2, u0, v0 are given functions, u0 and
v0 have compact support.

3. Domain of Dependence

In this section the domain of dependence of solutions to the nonlinear Klein-
Gordon equation is examined. In order to prove finite propogation speed a curved
’cone-like’ region C is found as in [4]. To this end, the boundary of C is estimated
as a level set {p = 0} where p solves the Hamilton-Jacobi equation

pt − c2
(
p2x + p2y

)1/2
= 0 in Ω× (0,∞) . (4)

Separating the variables one can write

p (x, y, t) = q (x, y) + t− t0 ((x, y) ∈ Ω, 0 ≤ t ≤ t0) (5)

where q solves {
c2

(
(qx)

2
+ (qy)

2
)
= 1 q > 0 in Ω− {x0}

q (x0, y0) = 0.
(6)

for a fixed (x0, y0) ∈ Ω, t0 > 0. Therefore it is assumed that q is a smooth solution
of ( 6) on Ω− {(x0, y0)}. Now one can define C as,

C := {(x, y, t) |p (x, y, t) < 0} = {(x, y, t) |q (x, y) < t0 − t} ⊂ Ω× (0,∞) .

with the cross section of Ct of C for each t > 0,

Ct := {x|q (x, y) < t0 − t} . (7)

Moreover, the cone C is taken far enough such that both boundaries do not touch
each other, i.e., C̄ ∩ Ω̄i × [0, T ] = ∅ where Ωi is the interior domain bounded by Γ.
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Theorem 1 (Finite Propogation Speed). Assume u is a smooth solution of Equa-
tion (1) with ϕ(u) = −mun, m > 0, n is a positive odd integer. If u ≡ ut ≡ 0 on
C0, then u ≡ 0 within the cone C.

Proof. Defining the energy

e(t) :=
1

2

{∫
Ct

(
u2
t + c2 |∇u|2

)
dx

}
−

∫
Ct

Φ (u) dx (8)

where ϕ(u) = ∂Φ
∂u , ė (t) can be computed by making use of the Coarea formula, [4]

ė (t) =

[∫
Ct

(
ututt + c2∇u.∇ut

)
dx

]
︸ ︷︷ ︸

A

−
[
1

2

∫
∂Ct

(
u2
t + c2 |∇u|2

) 1

|∇q|
dS +

∫
Ct

(
d

dt
ϕ (u)

)
dx

]
︸ ︷︷ ︸−

[∫
∂Ct

ϕ (u)

|∇q|
dS

]
︸ ︷︷ ︸

B C
(9)

Integration by parts in A yields,

A =
∫
Ct

ut

(
utt − c2∇2u

)
dx+ c2

∫
∂Ct

ut (∇u.ν) dS (10)

where ν = ∇q
|∇q| is the outer normal to ∂Ct. Using ( 6), Cauchy-Schwarz and Cauchy

inequalities and the fact that u is a solution of ( 1) one gets,

|A| ≤
∫
Ct

utϕ (u) dx+ c2
∫
∂Ct

|ut| |∇u| 1
|∇q|dS ≤

∫
Ct

d
dtΦ (u) dx+B (11)

and thus

ė (t) ≤
∫
∂Ct

Φ (u)

|∇q|
dS ≤ 0 (12)

since Φ(u) = −mun+1

n+1 (m,n > 0, n is an odd integer) Thus e (t) is a nonincreasing
function of t and hence,

e(t) ≤ e(0) = 0 ∀ 0 ≤ t ≤ t0.

On the other hand, by its definition (Equation (8)) e(t) is nonnegative and therefore
ut,∇u, u ≡ 0 within the cone C.

□
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4. Uniqueness of the Solution

In this section the aim is to show the uniqueness of the solution for (1-3) for
some particular choice of the nonlinear funciton ϕ in equation 1.

Theorem 2 (Uniqueness). There exists at most one function u ∈ L2(Ω) solving
the initial and boundary value problem (1) -(3) with ϕ(u) = −mun, m > 0, n is
a positive odd integer.

Proof. To show uniqueness u and ũ are assumed to be two different solutions of
(1-3). If one considers the L2 inner product of the functions ut − ũt then obtains
f (u)− f (ũ)

⟨ut − ũt, ϕ (u)− ϕ (ũ)⟩ =
∫
Ω
(ut − ũt) (ϕ (u)− ϕ (ũ)) dx

=
∫
Ω

(
1
2

d
dt

(
u2
t − 2ut.ũt + ũ2

t

))
+

∫
Ω

(
1
2

d
dt

[
(∇u)

2 − 2 (∇u.∇ũ) + (∇ũ)
2
])

dx

+
∫
Γ

(
∂u
∇ν − ∂ũ

∇ν

)
(ũt − ut) dS

(13)

In (13) integration by parts and the fact that u and ũ are both solutions of the
equation (1) are made use of. Also by the boundary conditions the last integral in
(13) vanishes, since both solutions satisfy the same boundary condition. Therefore
one finally has,

2 (ut − ũt, ϕ (u)− ϕ (ũ)) = d
dt ∥ut − ũt∥2L2(Ω) +

d
dt ∥∇u−∇ũ∥2L2(Ω).

Using Cauchy’s inequality with ϵ one gets,

d
dt ∥ut − ũt∥2L2(Ω) +

d
dt ∥∇u−∇ũ∥2L2(Ω) ≤ ϵ ∥ut − ũt∥2L2(Ω) +

1
ϵ ∥ϕ (u)− ϕ (ũ)∥2L2(Ω).

If one selects ϵ > 0 sufficiently small, uses Poincare inequality and Lipschitz conti-
nuity of the polynomial ϕ (u) then these lead to

d

dt
∥u− ũ∥L2(Ω) ≤ C ∥u− ũ∥L2(Ω)

Finally Gronwall’s inequality gives

∥u− ũ∥L2(Ω) ≤ C ∥u (0)− ũ (0)∥L2(Ω)

which results with u = ũ.
□
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5. Numerical Solution

In this section, the IBVP defined by (1)-(3) is solved approximately by using a
combination of DRBEM and FDM is used as in [19].The DRBEM has the benefit
of discretizing only the region’s boundary, and it has been used to solve a variety of
issues in a wide range of scientific fields, including fluid dynamics and medicine e.g.,
[22,23]. However here the nonlinearity function is chosen as given in Theorem 1, so
that by the theory given in Section 3 , one is free for the selection of approximating
RBF.

To see that, before the application of DRBEM, consider the family of cones

Ci,T (xi) =
{
(x, t) ∈ R2 × [0, T ] | |x− xi| 1

c ≤ t,
0 ≤ t ≤ T, xi ∈ (supp (u0) ∪ supp (v0))} .

By using these cones one can define the following domain

B := ∪Ci,T (xi)

where, BC : R2× [0, T ]/B and naturally the cones in Section 3 are included in BC .
By Theorem 1 in Section 3 it is obvious that for t ∈ [0, T ] all x with (x, t) ∈ BC , u
vanishes, i.e. u (x, t) = 0, since x /∈ supp (u0) ∪ supp (v0) .

To apply DRBEM, Equation(1) is multiplied by the fundamental solution of the
Laplace equation ( u∗) and integrated over Ω [21], i.e.,∫

Ω

(c2∇2u)u∗dΩ =

∫
Ω

(
∂2u

∂t2
− ϕ(u)

)
u∗dΩ (14)

Then, if for the left hand side of Equation 14 integration by parts is applied, one
obtains ∫

Ω

(
c2∇2u

)
u∗dΩ =

∫
Ω∩BT

(
c2∇2u

)
u∗dΩ

= c2(diui +
∫
Γ
(∂u

∗

∂n u− u∗ ∂u
∂n )dΓ)

(15)

where BT := {x ∈ Ω| (x, T ) ∈ B}, i denotes the source (fixed) point, and di =∫
Ω
∆(xi, yi, x, y)dR. Here the only integral coming from the boundary is coming

from the boundary is the obstacle, namely Γ, because of the fact that the solution
u vanishes in the region B̄C identically.

The choice of approximating functions is not restricted, since for

u ∈ C2 (Ω× (0, T )) the integrand of the right hand side,i.e. ,
(

∂2u
∂t2 − ϕ(u)

)
van-

ishes outside B by Theorem 1 in Section 3 and the right hand side of (14) can
be approximated using linear RBF f = 1 + r with r being the distance function
and considered as the modulus of a vector rkj where for each boundary point k
on the obstacle, j represents each of the other boundary and internal nodes. The
approximation would be as follows:
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(
∂2u

∂t2
− ϕ(u)

)
≈

N+L∑
j=1

αj(t)fj (16)

with N and L being the number of discretization points on the inner boundary
and inside the exterior domian, respectively. Choosing the RBF fj s to be related

to the other distance functions ûj(x, y) through the relation ∇2ûj = fj with the

condition
∑N+L

j=1 αj (t) ûj ≡ 0 in BT
C one obtains,∫

Ω
(∂

2u
∂t2 − ϕ(u))u∗dΩ =

∫
BT∩Ω

(∂
2u

∂t2 − ϕ(u))u∗dΩ

=
∫
BT∩Ω

∇2u∗ ∑N+L
j=1 αj(t)ûjdΩ

+
∫
Γ

(
∂
∂nu

∗)∑N+L
j=1 αj(t)ûjdΓ

−
∫
Γ
u∗ ∂

∂n

(∑N+L
j=1 αj(t)ûj

)
dΓ

(17)

Here there is no boundary integral coming from the boundary BT ∩ Ω, since∑N+L
j=1 αj (t) ûj ≡ 0 on the boundary of BT ∩ Ω by the assumption.

Combining (15) and (17) yields,

c2
(
ciui +

∫
Γ

(
∂u∗

∂n u− u∗q
)
dΓ

)
=

∑N+L
j=1 αj(t)

[
ciûij +

∫
Γ

(
∂u∗

∂n ûj − u∗q̂j

)
dΓ

]
.

(18)

where q̂j =
∂ûj

∂n .
Finally, rewriting Equation (18) in matrix vector form, one gets a system of

ordinary differential equations of size (N + L)× (N + L) as;

c2 (Hu−Gq) = S (ü− ϕ) (19)

where S =
(
HÛ−GQ̂

)
F−1 with G and H being the matrices with entries con-

taining the fundamental solution of Laplace equation and its normal derivative,
respectively. Furthermore, each coloumn of the matrices F , Û and Q̂ consists of
the vectors of approximating functions fj , particular solutions ûj and q̂j , respec-
tively. Note that, ü is the (N+L)×1 vector containing second order time derivative
at discretization points.

In order to approximate the solution at the discretization points at a time T ,
the time interval [0, T ] is divided into K with an equal time step size of ∆t. The
second order time derivative in ( 19) is discretized by using the central difference
scheme having O(∆t2) , i.e.,
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ü =
1

∆t2
(
uk+1 − 2uk + uk−1

)
for k = 0, 1, 2, · · ·N (20)

with k denoting the time level. In order to obtain the DRBEM solution for the first
time level, the initial conditions (3) are made use of. To this end, the first order
derivative in (3) is discretized by using the O(∆t) backward difference scheme which
gives u−1 at the discretization points as,

u−1 = u0 −∆tv0 = u0 −∆tv0 (21)

where u0 and v0 contains the values of the initial conditions in (3) at the discretiza-
tion points.

In order to overcome the stability problems a relaxation procedure is applied for
the unknown u as

u = (1− β)uk + βuk+1 (22)

positioning the values of u between the time levels k and k+ 1. Together with the
relaxation procedure (22) the unknown u is obtained at the discretization points
by solving the system of linear algebraic equations

A1u
1 = A2u

0 +∆t2ϕ
(
u0

)
+A3q

1 +∆tv0 (23)

B1u
k+1 = B2u

k +∆t2ϕ
(
uk

)
+A3q

k+1 − uk−1 (24)

at the first and (k + 1)-st time levels, respectively. Note that the matrices in
equations (23) and (24) are given as

A1 =
(
(1− β) I+∆t2βH̄

)
,

A2 =
(
(1− β) I −∆t2 (1− β) H̄

)
, A3 = ∆t2Ḡ

B1 = (1− 2β) I +∆t2βH̄,

B2 = 2 (1− β) I−∆t2 (1− β) H̄

with
H̄ = −c2S−1H, Ḡ = −c2S−1G.



ANALYSIS & SIMULATIONS FOR AN EXTERIOR NONLINEAR KLEIN-GORDON EQN 841

Example: Computations have been carried out for the initial and boundary value
problem (1)-(3) with ϕ(u) = −mu3 and c = 200 . The region is taken as the
exterior of a circle with radius a = 0.25. The initial conditions u0 and v0 are taken
to be 0 and the solution is assumed to be 1 on the interior boundary. A reference
solution [20] is used to compare the numerical results with the technique described
here. In the calculations, N = 120 constant boundary elements and L = 100
interior points are used, and the time step is taken as 0.01. In order to compare the
results with the reference solution (denoted by uref ) in [20], the interior points are
taken along a portion (between a = 0.25 and R = 0.5 ) of a straight line radiating
from the origin of the circle.

In Tables 1 and 2, both of the solutions, obtained here(uDRBEM ) and the ref-
erence solution [20] (uref ), are presented, for different times at the point R = 0.5
with ϕ (u) = −mu3 for m = 0.0, m = 10000, respectively. In the third row of
the table the reference and DRBEM solutions are compared in terms of absolute
relative error τ which is calculated by

τ =

∣∣∣∣uref − uDRBEM

uref

∣∣∣∣
One can observe that the DRBEM solution with linear RBF are accurate almost

with 4 significant digits for both linear and nonlinear cases.
In the Figures 1 and 2, the reference solution and the DRBEM solution are illus-

trated at different times for the linear and nonlinear (m = 10000) cases; respectively.
One can see that DRBEM solution agrees well with the reference solution.

Table 1. R = 0.5,m = 0

t 0.02 0.05 0.08 0.1

uref 0.9441 0.8174 0.8673 0.8598

uDRBEM 0.9448 0.8176 0.8677 0.8593

τ 7× 10−4 2× 10−4 4× 10−4 5× 10−4

Table 2. R = 0.5,m = 10000

t 0.02 0.05 0.08 0.1

uref 0.9164 0.7509 0.7867 0.7736

uDRBEM 0.9165 0.7511 0.7861 0.7742

τ 1× 10−4 2× 10−4 6× 10−4 6× 10−4
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Figure 1. Reference and DRBEM Solutions for m = 0 at different times
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Figure 2. Reference and DRBEM Solutions for m = 10000 at
different times
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6. Conclusion

In this paper, finite propogation speed properties are shown for a nonlinear two-
dimensional exterior Klein Gordon problem. The solution of the problem is shown
to be unique. For the numerical solution of the corresponding problem DRBEM is
used and the nonhomogenity is approximated with the help of linear RBF which
is known to have some difficulties when the domain is an exterior one. However,
the theory in Section 3 shows that under certain conditions on the nonlinearity and
initial conditions the solution is vanishing far away from the time-space cyclinder
and thus the approximation by the RBF is taken only within the finite region of
integration. The numerical results show good agreement with a previously obtained
reference solution in terms of absolute relative error.
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