
Introduction

Perinatal period is a time of particular vulnerability to
stress which has serious consequences on the developing
foetus through both maternal behaviours and physiolog-
ical changes. Such distress can result from natural or
man-made disasters such as earthquakes, floods, storms,
war or terrorist acts. Besides, not only in socio-econom-
ically disadvantaged regions with less educated back-
ground and high unemployment rates, but also in every
civilized society; pregnant women are exposed to inti-
mate partner and patriarchal family violence, as well as
interpersonal tensions or adverse conditions in the work-
place.1 Moreover, pregnancy related risk factors and dra-
matic fluctuations in gonadal hormone levels increase

the prevalence of mood disorders and anxiety symptoms
during this period.2-4 Regardless of its nature and origin,
stressful situations are considered as a ‘threat to home-
ostasis’ and a series of morphological, physiological and
behavioural responses occur to restore the original con-
dition.5 Unfortunately, these responses negatively affect
the rate of development, mental and physical health of
the offspring and increase the incidence of preterm birth,
lower birth weights and smaller head circumferences.6-8

In turn, less optimal birth outcomes can lead to long-
term cognitive impairments and motor disabilities.
There is also compelling evidence showing that stress
exposure during prenatal life enhances susceptibility for
emotional problems and behavioural disorders later in
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life. Wide range of impairments seen in the offspring
might vary from decreased intellectual activity, problem-
solving skills, delayed language acquisition, and lower IQ
scores to anxiety disorders, hyperactivity, depression,
autism and schizophrenia.9-12 Nonetheless, it is not possi-
ble to relate the final outcome in the offspring directly to
maternal stress since most studies are not able to control
the attendant confounding factors, genetic background
and influences of postnatal environmental factors.
Especially in retrospective studies, a causal role of prena-
tal stress has been inferred from interviews with the
mothers or their answers to questionnaires. Therefore, a
lack of consensus on the definition of maternal stress,
appropriate ways to measure it or to account for individ-
ual differences in coping with it create challenges for
investigation of maternal stress effects on human off-
spring. Whereas, in experimental animals, not only are
environmental and genetic factors more easily con-
trolled, but also timing, duration and intensity of stress
exposure are determined by the investigator. Therefore,
the most reliable support concerning the effects of pre-
natal stress on the development and behaviour of the off-
spring comes from the experiments in rodents and non-
human primates. 

Experimental Animal Models
In order to imitate the effects of maternal stress expo-

sure and investigate the defects originating from such
manipulations in the offspring, a number of different
experimental paradigms have been developed. In major-
ity of these paradigms; rats or mice are used and preg-
nant dams are exposed to stress during the last week of
gestation, from embryonic day (E) 14 until delivery,
although shorter periods of stress exposure are also
employed. The most frequently used model has been in
the form of the restraint or immobilization (rat limbs are
taped to a platform) for 20, 30, 45, 60 or 90 min/once,
three times or variable times, daily.13-15 Other models
used in experiments have consisted of exposure to noise
(90 or 95 db), cold (4ºC), bright light, foot shocks, sleep
or food deprivation, immersion in water (forced swim-
ming) and saline injections.16-18 In some of the studies,
variable (combination of one, two or three different type

of stress models) or randomized stress protocols are also
applied.19-21 Although methodological variations can be
relevant while comparing the results of different stress
protocols; observed effects suggest that mild stressors
(noise, saline injection) are as potentially harmful as
more severe paradigms. All these stress models, though,
share a common property of being repeated and per-
formed on the last week of gestation emphasizing these
features are essential for the altered behavioural, func-
tional and molecular outcome.

Establishment of the Maternal 
Stress Response 

Whatever the nature of stress protocol, response of
an organism to environmental challenges activates cen-
tral and peripheral circuits; namely the hypothalamic-
pituitary-adrenal (HPA) axis, the central limbic stress
loop, and the sympathetic branch of autonomic nervous
system.22,23 Such response is under the control of stimu-
lating and inhibiting inputs to the hypothalamic par-
aventricular nuclei (PVN), which control the secretion
of corticotropin-releasing hormone (CRH) and vaso-
pressin (VP) into the pituitary portal circulation where
they regulate adrenocorticotrophic hormone (ACTH)
and β-endorphin release. ACTH, in turn, drives corti-
costerone (CORT) release from the rat adrenals (or cor-
tisol from the human adrenals). Glucocorticoids easily
cross the blood-brain barrier and act predominantly via
two intracellular receptors; glucocorticoid (GR) and
mineralocorticoid receptors (MR), with low and high
affinity, respectively.24 MR are found in highest concen-
trations in the hippocampus and appear to be involved in
maintaining basal activity of the HPA axis.25 Whereas,
GRs are found everywhere in the brain including the
frontal and cingulate cortex, hippocampus, basolateral
and medial nuclei of the amygdala, nucleus accumbens
and thalamus, but are most abundant in the hypothalam-
ic CRH neurons and the pituitary where they “shut off”
the neuroendocrine stress response via negative feedback
of CRH release (Figure 1A, solid lines). In addition,
binding of glucocorticoids to their cognate receptors in
hippocampus activates indirect pathways and causes sup-
pression of hypothalamic CRH expression. 



Both glucocorticoids and cognitive or emotional
stress signals also stimulate the more recently elucidat-
ed ‘central’ limbic stress circuit by converging on the
central nucleus of the amygdala (ACe) and activate
numerous CRH-producing neurons in this region.26

ACe send efferent projections to the bed nucleus of stria
terminalis (BST), which then projects to CRH express-
ing cells in PVN and activates the HPA axis. Locally
released CRH also acts on cognate receptors on projec-
tion neurons of the amygdala and conveys stress-related
information directly or indirectly via the entorhinal cor-
tex to the hippocampal formation (Figure 1A, dashed
lines). Within the hippocampus, CRH binds to its
receptors on principle cells where they elicit Fos expres-
sion and might mediate either beneficial or adverse
effects on synaptic efficacy.22 This intriguing paradox
(excitatory actions of CRH released from typical
inhibitory GABAergic interneurons) and contribution
of CRH on hippocampal synaptic plasticity are still the
focus of ongoing research.

The activation of the sympathetic nervous system in
response to stress increases the secretion of cate-
cholamines and norepinephrine. While norepinephrine
possesses a stimulatory role on CRH-neurons in the
PVN, catecholamines involve in the hippocampal gluco-
corticoid negative feed back mechanism by modulating
corticosteroid receptor levels.27,28 Therefore, these cen-
tral and peripheral hormonal cascades are closely inter-
related with each other and ultimately cause elevated
level of catecholamines and glucocorticoids in both
maternal and fetal circulation. 

Upon binding, activated corticosteroid receptors
translocate to the nucleus and modulate the expression
of target genes by two independent mechanisms: A direct
interaction of receptor dimers with specific DNA
sequences known as glucocorticoid response element
(GRE) in their promoter region or interaction with
other transcription factors (such as c-jun, AP-1, NF-B,
STAT5, CREB) activated by binding of different neuro-
transmitters to their cognate receptors (Figure 1B).
Thus, glucocorticoid mediated transcriptional effects
might be very complex and potentially diverse.29,30
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Figure 1. Stress-activated pathways comprising the neuroendocrine
hypothalamic-pituitary-adrenal axis (solid lines) and the central limbic
stress loop (dashed lines) are shown in A; and intracellular interac-
tions of activated corticosteroid receptors are shown in B. BST: bed
nucleus of stria terminalis; ACe: central nucleus of the amygdala;
GRE: glucocorticoid response elements; AP1: activator protein 1;
STAT5: signal transducer and activator of transcription 5; CREB:
cAMP responsive element binding protein.

A

B



Development of the HPA Axis
Unlike the animals giving birth to mature young

(sheep, guinea pigs and primates), in rodents birthing to
immature young, a large proportion of the neuroen-
docrine development takes place during the early post-
natal period.31 However, the HPA axis is highly suscepti-
ble to programming and environmental influences dur-
ing the prenatal period. In rats, PVN develops between
E13 and E15, and ability of the fetal HPA axis to respond
maternal stress is shown by the observation of increased
expression of CRH mRNA in the fetal PVN on E15.32

Following the stress exposure, fetal HPA activation mir-
rors maternal HPA activation and increases Fos protein
expression in direct relation to the severity of stress
treatment. However, unlike maternal PVN neurons,
fetal PVN neurons show no adaptation of Fos expression
to repeated maternal stress.33 In the meantime, GR
mRNA is present in the hippocampus, hypothalamus
and pituitary by E13, but MR expression is not
detectable until E16-17.34 In mouse, on the other hand,
MR expression is first detected on E15.5, but GR expres-
sion appears on postnatal day 5.35,36 Therefore, these
species differences should be taken into consideration
when comparing the effects of maternal stress on the
regulation of fetal HPA axis and development. 

Effects of maternal stress on the 
developing HPA axis 

Maternal stress leads to numerous cardiovascular and
endocrine changes in the mother including the increases
in plasma ACTH, β-endorphin, glucocorticoid and cate-
cholamine concentrations. Elevated maternal cate-
cholamine concentrations may lead to fetal hypoxia by
causing constriction of placental blood vessels.37 The
fetal hypoxia then activates the fetal sympathetic nervous
system and other neurotransmitter systems in the brain
leading to alterations in the physiological responses of
the offspring to stress.38

Under normal circumstances, the placenta forms a
structural and biochemical barrier to many maternal fac-
tors. For instance, access of maternal glucocorticoids to
the fetus is low due to the placental expression of 11β-
hydroxystreoid dehydrogenase (11β-HSD) that converts

corticosterone to inactive products.39 However, repeated
prenatal stress exposure leads to a decrease in placental
11β-HSD activity and thereby an increase in maternal
corticosterone reaching the fetus.40 Extended exposure to
glucocorticoids attenuates the HPA axis feedback sensi-
tivity by reducing the density of GR and MR in the hip-
pocampus and hypothalamus of the prenatally stressed
rats.41,42 Therefore, these animals exhibit prolonged ele-
vation in plasma glucocorticoid levels following acute
exposure to restraint stress. Furthermore, prenatal stress
accelerates the age-related HPA axis dysfunctions and
circulating basal corticosterone levels in adult off-
spring.15,43 Although some of the studies point out that
prenatal stress-induced programming of GR and MR, as
well as the basal HPA activity is sex specific with the
effect being greater in female offspring, there is also
remarkable variability in HPA outcome in male off-
spring.13,15,31 These differences might be related to the
differences in the duration, dose and timing of maternal
stress protocols.44,45

The development and structure of hypothalamic
CRH-containing neurons are also influenced by prenatal
stress exposure in a gender- and intensity-dependent
manner. During E15-17, daily restraint stress for 3 hours
decreases the length of processes on neurons and
increases the number of apoptotic cells in the fetal PVN;
while 30 minutes stress exposure enhances the cell dif-
ferentiation as indicated by an increase in both the num-
ber of branch points and the total length of the process-
es from the cell body.32 Repeated stress exposure for 30
minutes from E17 to E21 induces a significant increase
in the number of apoptotic cells in the PVN of female,
but not male fetuses.33

Effects of Maternal Stress on the
Developing Nervous System

Activation of stress network is very critical during
nervous system development, since extended exposure of
glucocorticoids can damage growth and maturational
processes despite the fact that they are essential for nor-
mal brain development.46,47 The rapid growth rate and
high turnover of neuronal connections make the devel-
oping brain particularly sensitive to maternal stress hor-
mones. Depending on the critical periods of develop-
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ment, interactions of glucocorticoids and CRH with
their receptors alter the programming of the fetal HPA
axis and in this way increase susceptibility to later psy-
chopathology. 

Investigation of postnatal outcomes in the offspring
indicates that stress hormones primarily affect the mor-
phology and function of the limbic system structures;
causing anxiety, depressive-like behaviour, learning and
attention deficits.48 However, as pointed out previously,
behavioural consequences are somewhat ambiguous, as
similar maternal stress protocols can elicit different
behavioural outcomes, even though it alters regulation of
the HPA axis. Therefore, we will concentrate on the pri-
marily affected regions of nervous system and go over
the main morphological alterations by reviewing the rel-
evant behavioural consequences:

Hippocampal and cognitive changes 
induced by prenatal stress

As both a target of stress hormones and an active par-
ticipant in the regulation of the stress response being
integrated into the limbic system and HPA axis, a num-
ber of studies have been focused on the hippocampus to
elucidate the molecular and cellular mechanisms by
which early life stress induces long-term changes and
plasticity in the nervous system.49 The majority of these
studies have been conducted in male rats in order to
avoid confronting effects of the eustrous cycle. In most
cases, perturbations in cognitive processes and exacerba-
tions in age-related learning and memory impairments
have been reported.21,50 However, depending on the
duration and intensity of stress exposure, as well as the
gender vulnerability; contradictory results have been
indicated on the learning performance. While prolonged
stress slows the acquisition of spatial learning in the
Morris water maze;50-52 milder forms of stress do not
impair the learning performance53 or affect that only in
males54,55 or even cause a faster rate of learning perform-
ance.14,56 Offspring of prenatally stressed rats have also
demonstrated lesser cognitive performance in other
learning tests, such as spontaneous alteration or explo-
ration in the Y-maze, delayed alternation in the T-maze,
passive avoidance conditioning and radial arm maze per-
formance.57,58

In parallel to learning deficits, reduced postnatal hip-
pocampal weight, reduction of neurogenesis in the den-
tate gyrus, decreased spine density of pyramidal den-
drites in the CA3 region, decreased synaptic density in
the hippocampus and suppression of long-term potenti-
ation (LTP) have been demonstrated in the offspring
born to prenatally stressed mothers.59-62 In association
with the suppression of LTP, a long-lasting reduction in
the NMDA and AMPA receptor function through
changes in transcription, translation and localization of
its functional subunits.63,64 On the other hand, opposing
effects on the morphological maturation of hippocampal
neurons, such as enhanced neonatal neurogenesis, differ-
entiation of hippocampal neuronal processes and LTP
have been demonstrated following exposure to short-
lasting, mild prenatal stress protocols.65

Regarding to cognitive performances and structural
plasticity; females seem to be better protected from the
effects of prenatal stress than males, but age-dependent
deleterious effects of stress exposure on hippocampal cell
proliferation have been shown in older females, too.66

Therefore, these effects might be related to circulating
levels of estrogens and testosterone that are known to be
shielding or aggravating modulators of cognitive func-
tions, respectively.67,68 Furthermore, prenatally stressed
male rats exhibit higher level of Fos expression under
basal conditions and blunted response following stress
exposure.69 Reduction in the activity of metabotropic
glutamate receptors in the ventral hippocampus, but
increased level of Brain-Derived Neurotrophic Factor
(BDNF) and pro-BDNF in the hippocampus of male
rats might be relevant changes with decreased synaptic
plasticity and compensatory effects of decreased neuro-
genesis.70

Morphological basis of anxiety and 
depressive-like behaviour

In majority of the animal studies, maternal stress
exposure induces anxiogenic and depressive-like behav-
iour in the offspring characterized by fewer entries and
significantly less time in the open arm of an elevated plus
maze, reduced open-field locomotion, exploratory activ-
ity, grooming and rearing, anhedonia (ability to feel
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pleasure) and learned helplessness.43,48 Although the clin-
ical symptoms of depression and mood changes cannot
be assessed in animals, rodents are able to adopt either
active or passive coping strategies in response to anxio-
genic stimulus. While the passive strategy is expressed by
immobility, freezing and reduced exploratory activity
and associated with an increased activity of the HPA axis;
the active strategy is expressed as higher loco motor
activity and associated with a reduced activity of the HPA
axis.71 In most studies, prenatally stressed rats displayed
impaired coping activity, increased duration of immobil-
ity in the forced swimming test and decreased preference
for saccharine possibly indicating depressive-like behav-
iour.72,73 The dopaminergic pathway projecting from the
ventral tegmental area to the nucleus accumbens is
thought to play a major role in motivation, mediation of
the rewarding effects, drug dependence and the initiation
of response patterns originating from the frontal cortico-
striatal loop systems.74 When pregnant rats subjected to
very mild stress, the volume and the total number of cells
in nucleus accumbens of adult offspring decrease in a
similar extend in both males and females.75 However,
permanent reduction of dopaminergic neurotransmis-
sion in the nucleus accumbens is seen only in prenatally
stressed females suggesting that females have a greater
tendency to depression than males.76 Recently, an in vivo
micro dialysis study in freely moving adolescent and
young adult rats is shown that prenatal stress differen-
tially modifies basal and stimulated dopamine and nora-
drenaline release in the nucleus accumbens.77 These
changes play also a key role in the etiology of other psy-
chiatric disorders, such as schizophrenia, autism and
drug addiction.78 Besides, prenatal stress enhances psycho
stimulant and neurochemical responsiveness to cocaine
and tendency to addiction-related behaviour in adult
rats.79 Therefore, both structural and catecholaminergic
alterations induced by gestational stress play a major role
in the etiology of psychiatric disorders.

The amygdala is another critical structure involved
in mood regulation, mediation of fear and anxiety. Since
it contains CRH nerve terminals, cell bodies and recep-
tors, and bi-directionally related to the frontal cortex,
hippocampus and hypothalamus, it controls emotional
and autonomic responses to stress.80 Besides, in trans-

genic mice with a disruption of GR in the cortex and
hippocampus, increased anxiety and depressive-like
behaviour have been observed in response to greater
activity of CRH on CRH1 receptors in specific brain
regions.81

In prenatally stressed rats, hyperanxiety is associated
with an increased response of HPA axis to stress with
higher levels of CORT in circulation and CRH in the
amygdala.43,82 Furthermore, anxiogenic behaviour can be
induced in normal rats by injection of CRH into the
basolateral nucleus of the amygdala.83 Since neurons in
this region are generated during E14-17 in the rat and
responsive to maternal CORT and CRH; excessive
amount of hormones and receptors may cause perma-
nent changes in the reactivity of the amygdala in
response to stress.82-84 As a matter of fact, prenatally
stressed male rats show higher number of Fos expressing
neurons in the medial amygdaloid nucleus in response to
less anxiogenic environment (exposing to the closed arm
of an elevated plus maze).85 Moreover, challenging them
with a more anxiogenic environment (the open arm of an
elevated plus maze) results in a less pronounced plastici-
ty in neuro-behavioural responses. 

With regard to the developmental and anatomical
changes, exposure to prenatal stress temporarily impedes
trajectory of lateral, basolateral and central nuclei of
amygdala, being smaller in size between P7-25, but
resolved after P45.86 However, expansion in the lateral
nucleus, an area in which learned fear is encoded, and
increased number of neurons and glia cells has been
reported in prenatally stressed adult male rats.87

Effects on the prefrontal cortex and their 
behavioural consequences

Prefrontal cortex is a very important area for the inte-
gration of different information into emotional and cog-
nitive-related behaviours.88 Similar to the sensory and
motor cortical regions, synaptic development of the lim-
bic cortical regions is modulated by emotional experi-
ence. Quantitative morphologic analysis has shown that
negative emotional experiences significantly alter the
neuronal morphology. In the dorsal anterior cingulate
and orbitofrontal cortex of rats, gestational stress causes
a significant reduction in the spine frequencies of pyram-
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idal neurons.20 In addition, a pronounced decrease in the
length and complexity of pyramidal apical dendrites are
observed in male, but not female offspring. 

Dorsal and ventral part of the medial prefrontal cor-
tex are shown to detect whether a stressor is under the
organism's control and inhibit stress-induced neural
activity and behavioural responses.89 The medial pre-
frontal cortex consists of the anterior cingulate cortex,
prelimbic and infralimbic regions in rats. Prenatal stress
exposure has a negative effect on the ratio of mushroom
spines in these regions without affecting spine densities.90

Since these spines have relatively strong synaptic
strength, more synaptic vesicles and a larger postsynap-
tic density; it might be related to reductions in the
expression of plasticity related neuronal proteins. In fact,
the expression of synaptophysin, one of the markers of
functional synapses, is significantly correlated with
stress-induced CORT release. Prenatally stressed rats
with low levels of synaptophysin expression in both
medial prefrontal cortex and nucleus accumbens have a
higher CORT response to a subsequent stressor and it is
not return to baseline as quickly.91

Another marker of neuronal plasticity, BDNF, is also
decreased in the prefrontal cortex of adult rats exposed
to prenatal stress.92 Interestingly, a significant reduction
in the expression of basic fibroblast growth factor (FGF-
2), playing role both as a neuroprotective molecule and
neuromodulator involved in psychiatric disorders, has
also been demonstrated within this region.93,94 In addition
to neurotrophic factors, dopaminergic and glutamatergic
dynamics are influenced by gestational stress in different
forebrain regions of male rats.95,96 In a very recent study,
it has been shown that gestational stress attenuates the
responsiveness of the glutamatergic system following a
challenge at adulthood, without altering basal glutamate
receptor expression.97 Again, these changes show gender
and anatomical specificity since they primarily affect
function of the prefrontal cortex in male rats. 

Cerebellar alterations

Over the last decade, a growing literature demon-
strates that the cerebellum critically involves in higher
cognitive functions, behaviour, emotion, many forms of
learning and memory.98 Although the cerebellum com-

prises only 10% of the total brain volume, the mature
cerebellum contains more than 50% of all the central
nervous system neurons.99 Despite the cerebellum is one
of first brain structures to differentiate, it is the last one
to achieve maturity. Therefore, this protracted develop-
mental schedule makes it particularly susceptible to dis-
ruptions during the perinatal period. In our experimen-
tal studies, stereological analysis of the synapse-to-neu-
ron ratios in the granular layer of the cerebellar cortex
revealed that maternal stress significantly reduces the
interneuronal connectivity and synaptophysin expression
in the developing rat cerebellum.100 We also showed that
prenatal exposure to stress changes the morphology and
numerical density of cerebellar neurons by primarily
affecting the actively dividing Purkinje cells during the
selected stress period.101 Intriguingly, in the rat brain,
cerebellum is one of the most prominent site of CRFR-
1 expression which occurs predominantly in Purkinje
cells beginning from early development through to
adulthood.102 The binding of CRH to this receptor has a
depolarizing effect on the Purkinje cells and play a ben-
eficial role in the regulation of neuronal survival through
activation of a number of putative neuroprotective intra-
cellular signalling pathways.103

However, CRF is capable of influencing cerebellar
neuronal development and increasing neuronal survival
of embryonic GABAergic neurons only after these cells
exposed to negative conditions threatening their survival
in cultures.104 Since deficits in GABAergic transmission
have been well documented in the prefrontal cortex, lim-
bic system, and cerebellum of individuals with schizo-
phrenia and autism; prenatal stress might possibly con-
tribute to the etiopathogenesis of these disorders by
causing Purkinje cell abnormalities and decreasing
interneuronal connectivity.

Concluding Remarks
Maternal stress during pregnancy increases both

maternal and fetal plasma CORT and causes down reg-
ulation of fetal GR and MR, which then impair the feed-
back regulation of the HPA axis in the offspring. Besides,
excess amounts of CRH reaching through placenta or
produced by fetal limbic system structures interact with
their cognate receptors and predispose to attention
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deficits, anxiogenic and depressive- like behaviour
through changes in neurotransmitter activity. 

The perinatal period is an extremely sensitive stage
for neuroplastic changes which may lead to long-lasting
or permanent changes in the structure and function of
the nervous system. Such vulnerability is not widespread
but, instead, affects specific regions and neuronal path-
ways that might be relevant to different psychiatric dis-
orders. Reduced neuronal plasticity, especially in the
limbic system structures including hippocampus, amyg-
dala and prefrontal cortex might represent a common
and relevant component underlying different impair-
ments. Therefore, enhancing neuronal plasticity and cel-
lular resilience might be a novel therapeutic approach for
the more effective treatment of psychiatric impairments.
And lastly, but certainly not leastly, in considering the
higher medical and social cost of emotional and behav-
ioural diseases; women should keep away from stress and
receive better protection and sympathy from all parts of
the society during pregnancy.
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