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Abstract Oz

Let R be a commutative ring with identity, M be a R —
module and N be a submodule of M. N is called to be
essential (large) in M if NN Rm # 0 for any nonzero
element m € M and we showed by N <, M. A sequence
of R — modules and R — morphisms
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is called exact at M; if Im(f;_;) = Ker (f;). Also this
sequence is  called e—exact at M; if
Im(fi—1) <. Ker(f;) anditis called e — exact ifitis e —
exact at each M;. In this note, we present the concept of
the characterization of E —homotopy and E —
resolution with some results such as chain map for e —
exact sequence and comparing theorem for e — exact
sequence.

Keywords: E-injective modules, e-exact sequences,
contravariant functor, homological algebra.

R birimli ve degismeli bir halka, M bir R modiil ve N, M
‘nin bir alt modiilii olsun. Eger sifirdan farkl bir m € M
elemant i¢in N N Rm # 0 gergekleniyorsa N’ye M ‘nin
bir biiyiik alt modiilii denir ve N <, M ile gosterilir. Bir
R — modiil dizisi i¢in

fiz1 fi

M e e, B

her M; i¢in Im(f;_,) = Ker (f;) oluyorsa bu diziye tam
(exact) dizi denir. Ayrica her M; i¢in Im(f;_1) <. Ker(f;)
oluyorsa bu diziye e-exact dizi denir. Bu caligmada
tam (exact) diziler teorisinin bir genislemesi olan E —
exact diziler teorisi i¢in E — homotopy and E —
resolution tanmimlanmis ve zincir map ve karsilagtirma
teoremi gibi ilgili bir kisim sonuglar verilmistir.

Anahtar Kelimeler: E-injektif modiiller, e-tam diziler,
contravariant functor, homolojik cebir.
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A. Giindiiz E-Exact Sequence and Some Result

1. INTRODUCTION

Let R be a commutative ring with identity and M, A; be an R — module, for i = 1,2.
Consider

f f2

A —= A, "= A,

an exact sequence of R —modules. Hence we have Im(f,) = Ker (f;) (= f, - ({0})).
We can think a natural question: if we change a submodule U of R, what does happen
for the trivial submodule {0} in the above definition? This sequence is called U; —
exact at A5 if Im(f,) = £, *(Us), where U, is a submodule of As. Firstly, In (Davaz,
& Parnian-Garameleky, 1999), Davaz and Parnian-Garameleky answered this question.
Also, In (Davvaz, 2002), Davaz and Shabani-Solt obtained a generaliation of some
notations in homological algebra and new basic properties of U —homological algebra
for U — exact sequence theory. Besides, in (Anvariyeh, & Davvaz, 2002), Anvariyeh
and Davvaz studied over U — split sequences. In (Anvariyeh, & Davvaz, 2005),
Anvariyeh and Davvaz proved further results about quasi-exact sequences such as an
analogue of Schanuel’s Lemma for quasi-exact sequences. On the other hand, a
submodule N of M is said to be essential (large) in M if the intersection of N with each
nonzero submodule of M is nonzero, namely, N N Rm # 0 for any nonzero element
m € M and we showed by N <, M. A sequence of R — modules

Fi_a fi Fita

— M, M, M, e

is called exact at M; if Im(f;_;) = Ker (f;). In (Akray & Zebari, 2020), Akray and
Zebari introduced the e — exact sequences as a generalization of exact sequences, like
U — exact theory. The previous sequence is called e —exact at M; if
Im(f;_1) <. Ker(f;) and it is called e —exact if it is e —exact at each M;.
Particularly, they defined the sequence

0 Ay P4, g, 0

to be short e — exact if Ker (f;) = 0, Im(f;) <., Ker(f,) and Im(f,) <, A;. Also
from (Akray & Zebari, 2020), an R — morphism f;:A; —» A, is called epic if
Im(f;) <. A, and essential monic if Ker(f;) = 0. Obviously, the class of e — exact
sequences is larger than the class of exact sequences. For instance, consider the short
e — exact sequence

0 167 z—2 7162 ——=0

where f;(16n) = 8n and f,(n) = 8n + 16Z. Since f; is monic, Im(f;) <. Ker (f;)
and f, are epic, the sequence is e — exact. But the sequence is not exact, since f, is
not an epimorphism.
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In (Gunduz & Osama 2022), Gunduz and Osama defined a characterization of e-
injective module in terms of contravariant functor Hom(—, E).

We recall from (Tercan & Yiicel 2016) some basic definitions. An element m of M is
said to be torsion of M if the exists a regular element r € R such that rm = 0. The set
of all torsion elements T(M) is a submodule of M. Also, an R — module M is called a
torsion if T(M) = M and called torsion — free when T(M) = {0}.

The following theorem says that the contravariant functor Hom(—, M) is a left e —
exact functor when M is a torsion — free R — module.

Theorem 1. (Akray & Zebari, 2020) Suppose that the following sequence of R —
module and R — morphism

f i
M5 M, 5 My —0

is e — exact. Then for all torsion — free R — module M, the sequence

0 —— Hom(Ms, M) SN Hom(Ma, M) S Hom(M,, M)

is e — exact. The converse is true if M5 /Im(f,) and M, /Im(f;) are torsion — free
R — modules.

Defimition 1. (Gunduz & Osama, 2022) Let R be aring and E an R — module. E is
said to be e — injective if the following condition is satisfied: For any monic map
fi: A1 = A, and any map f,: A; = E, there exist 0 # r € R and f3: A, — E such that

fzfi=T1fs

f1

0——=A —— Ay

lth
E

Theorem 2. (Gunduz & Osama 2022) Let R be aring and E an R — module. Then the
following statements are equivalent:

i) E is an e — injective R — module.
il) Hom(—, E) is an e — exact sequence.

Throughout section 2, all modules are assumed to be torsion — free. In this section,

we introduce the definition of e — homotopy and e — resolution with some theorems
such as chain map for e — exact sequence comparing theorem for e — exact sequence.
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2. CHARACTERIZATION OF E-HOMOTOPY AND E-RESOLUTION

To define e — homotopy and e — resolution, recall that some basic definitions. Let
{Ky}nez be a family of R —modules and {d,:K, = K,_1} a family of R —
homomorphisms. The family {K,, d,,} is called chain complex if d,d,,_; = 0 for
each n.

We take K = {K,}, d = {d,,} and show a chain complexes as follows:

dnt1 d

(K-: ”j) : .. I{u+l I{n - K—n—l

We also recall that H,, (K, d) = Z,,/B,,, n € N is called n — th homology module of K,
where Z, = Ker(d,) and B, = Im(d,4+1).

Let (K, d) and (I, d") be chain complexes. The sequence f = {f,;: K, — L} is
called a chain map if the following diagram is commutative. In words for the diagram

dny1 . dy

(K, d) : K1 K, K1
l.lru—l lfﬂ lfﬂ—l
] f!:l_ n’f:l
(L.d): .. Lpii ——~ L, L1

that satisfies f,,_d, = d,f;

For the theory of e — exact, we will define f* = H,(f) from H,, (K,, d,) to
H, (L, dy) as follows:

Theorem 3. Let (I, d) and (L, d") be chain complexes. If f = {f;,} is a chain map
then it induces R — module homomorphisms as follows

Hy(f) = f* = Hp(Ky, dyp)— Hyp (L, dy)

such that x + B, » f,,(rx) + B,,, where B, = Im(d,,,), B, = Im(d,,,,) and for
some 0 # r € R.

Proof. To show f* is well defined, suppose that x + B, =y + B,,, then x —y € B,,.

Let x,y € Ker(d,,) and implies that x —y € Ker(d,,). Since Im(d,,;,) <. Ker(d,),
we have r(x — y) € Im(d,44) forsome 0 # r € R. Hence f,,(r(x — y)) = f,(r(x) —
r(y¥)) € By, and so f,(rx) — f,(ry) € By,. Therefore f,(rx) + By, = f,,(ry) + B, and
we get £ (x) = f,; (¥). Also, it can be seen that f* is a homomorphism. Let x + B,
y + B, € Hy(Ky,dy,)  then flCe+ By, +(y+ Bl = f'[(x +y) + By =
fur(x +y)) + By = fu(rx +1y) + By = f,(rx) + f(ry) + By = (fu(rx) + By) +
(fuGy) +By) = f*(x + B,) + f*(y + By,), as desired.

322



Istanbul Commerce University Journal of Science, 23(46), Fall 2024, 319-328.

Defimition 2. (E-homotopy). Let (K, d) and (IL,d") be two chain complexes and f =
{f,g:K = L} be two chain maps as 2.1. If there is a sequence s = {s,} such that
rlfn — gnl = dpp1Sp + 7 (Sp_1dy,) for all n € Z and for some 0 # r € R, then f and
g are chain e — homotopic which is denoted by f =, g, where s,: K, = L, is an
R — module homomorphism that is called a chain e — homotopy.

Lemma 1. The e — homotopy relation “f =, g” is an equivalence relation.

Proof. If we choose s, = —s, for all n € Z and for some 0 # r € R, then

r[fn - gn] = d';1+1(_5n) + T(( Sn— l)dn) and 1mphes that r[gn - fn] = d;1+1sn +
r(Sp_1dy,) , namely “g =, f” and “=~,” is symmetric.

If we choose s, = 0, Vn € Z and for some 0 # r € R, then r[f, — g,] = 0 and implies
that “f =, f” and “=,” is reflexive.

To check transtivity, let f ~, g and g ~, h. Then forsome 0 # 7;, r; € Rand i,j € I
(an index set) there exist s, t n : K, = L1, R — module homomorphisms such that
we have 1 [fn gn] - n+1sn + ri(sn—ldn) and n[gn - hn] = d;z+1tn +
7j(tp-1dy). Define x, : K, = Ly,; homeomorphism such that x,, = s, +t,,. This
implies that T[fn —h ] - T(fn n) + T(gn n) - n+15n + d;1+1tn +
T(Sp-1dn) + 17(tp-1dn) = dpys (Sp + ) + T((S‘n 1t b 1)dn) dpaXn +

7(Xp-1dy,), where for some 0 # r = r;7; € R. Namely “~,” is transitivity. Hence,
“=~,” is an equivalence relation.

Theorem 4. If “f ~, g” and “h =, k”, then “hf =, kg”, where hf isequal ho f.
Proof. Let f, g: (K,d) — (IL,d") be chain complexes. Then, there exist s,: K,, = Ly41
and t,: L, > M,,,, R — module homomorphisms such that #;[f,, — g] = dp+15, +

1i(Sp—1dy) and r;[hy, — k] = dy) 41ty + 17(tn_1dy), some 0 # 1,77 € R, where each
gn 1s defined as g,,: K;, = L,,.

i1 d

(K: d) : e Kvn+l I{u - -Krn—l
, d, d,
(]]-‘-: d ) : s Ln+1 = L-u L-u—l
Irh:% lhf/t,‘_l lh,._l
" 4y ]
(M: d ) : “us ;'1.-[“4,1 J‘llru ﬂf"’,l

Define x,: K;, & My, Vn € Z and some 0 # r = r;7; € R such that x, = hy,,15, +
tngn, then we get r[hyfy — kngnl = r[hnfn] — T[hagnl + rhngn]l — rlkngnl =
r(hn[fn - gn]) + r([hn - kn]gn = hn(r[fn - gn]) + r[hn - kn]gn = hn(d;‘wlsn +
r(sn—ldn)) + (d;ll+1tn + r(tn—ld;l))gn = hnd;1+15n + r(hnsn—ldn + d;{+1tn9n) +

Ttn1dngn = dys1[Pns1Sn + tagn] + 7(ApSnoq + tao1gn-1)dn = dyp1xn +
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r(xp_1d,), as desired. Here h,d;,; = dy1hn41 and d. gy, = gn_1d, are used by the
above diagram. Hence “hf =, kg” and the proof is completed.

Theorem 5. If two chain maps f, g: K — L are e — homotopic, then H, (f) = H,(g).

Proof. Suppose that r[f, — gn] = dp 415, + r(sp_1dy) for all 0 #7r € R. Let x +
B, € H,(K) for x € Z. Since d,(x) = 0 and H,(f) = f*: H,(K) = H,(L) such that
X+ By, —= furx) + B, ., then 7[fy — gnl(x) = dpiy5,(x) +7(sp-1dr) () =
dp+15n,(x). Since x € Ker(d,), d,(x) =0 and d;,,5,(x) € B, , we get r[f,, —
Inl(x) = f,(rx) — g,(rx) € B,, , which implies f,,(rx) € B;, = g,(rx) € By,. Hence
H,(f)(x + By) = Hy(g) (x + By), and so H,,(f) = H,(9).

To give the following theorems, recall that Let (X, €) be a left complex over a module
A, where

dp41 dy

X:... X, . X, do

Xo

and €: X, - Asuchthateod; = 0.

To get further results, we will give the following definitions.

Defimition 3. If the above sequence is e — exact then it is called e — resolution.
Moreover if each X, is an e — projective module then it is called e —
projective resolution .

Likewise, recall that let (Y, §) be the right complex over a module B, where

"T(?

1 n—1
Y:0 Yo yr_4 o A yn_d

and 6: B — Y, such thatdy o 6 = 0.

Definition 4. If the above sequence is e — exact, then it is called e — resolution.
Moreover, if each Y™ is an e —injective module then it is called e —
injective resolution.

Under the above new definitions, the following theorem is characterized by comparing
theorem for e — exact theory that explains why the above definitions are important.

Theorem 6. Let (X, €) be a left complex over R — module A, (Y, §) a left complex

over R —module B and f:A — B a homomorphism. If each X,, is e — projective
and (Y, §) is e — resolution, then
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dnt+1 dn 1 dy
n Xn -1 Xl XO A 0
f lfn -1 l fo l !
'
o d, d, d, 5
}fu n—1 s YYI }/l'l B 0

there exists a chain map f: {f} : X = Y such that the above diagram is commutative.
Moreover, if f' is another chain map that satisfies the same condition, then f =,f" .

Proof. To proof this, we will use induction. Since § is an epimorphism and X, is e —

projective, there exists a homomorphism f: X, = Y, such that § f, = r[f¢], for some
0 # r € R. Thus, we have the following diagram

Xo

fe
o
5 0

Y ——=B——=0

is hold. Now, suppose that f;, f5, ..., f, are homomorphisms. By hypothesis, we have
the following diagram

XH

fa—1dan
},«— - .ff[! l
- dn -
}/n n—1 ﬂ

such that d'f,, = r[f,,_1d,] for some 0 # r € R. By the above diagram d'f,d,,, =
T[fp-1dndns+1] = 0. Since d, d,.; = 0, it implies f,d,., € Ker(d,). Also, since
Im(dy41) <. Ker(dy), then r(f,d,4,) € Im(dy,,) for some 0 #r € R. This
implies that there exists fy,41: Xp42 = Y41 such that d;, 1 (fre1) = 7fndps1. Thus we
get the following diagram

Xn—l—l

) fnf-iu+l
}'.-' ern+1 l

d
n+1 ;
Yu+l —— I?n(dn-l-l) —0

is hold.

Hence, we can say that there exists an e — projective module X, such that the
above diagram is commutative.

325
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Now, let f' = f,,: X =Y be another chain map that make he following diagram
commutative

dnt1 dy, dn_1 dy

.- X'u anl - Xl Xf} = A 0
e |4 lf
d, d, . d, j’ -

Y, ey, Y, — Y, —2>B 0

To show f =, f', we will construct a homomorphism s,,. By induction, let fy — fy: X, =
Y, be a homomorphism. Since §(fy — fo) = 6f; —0fo = fe — fe =0, then f; —
fo € Ker(98). Since, Im(d;) <. Ker(9), that implies r(f; — f;) € Im(d;), for some
0 # r € R. So there exists an s,: X, — Y, with the commutative diagram

Xo

-"3[] lf{]_fn
e ]

d ,
Y, — Im(d,) —=0

such thatdisy = r(fy — fo). Since X_; = 0, we take s_; = 0. So, we getr[fy — fol =
diSo + r(s_1dy) for all n € Z and for some 0 # r € R.
Now, suppose that there exist sy, Sy, ..., S, then the equality

dy dp
X, —:—Xﬂ #’-0

" sg l $_1
i j’d’l ' ‘{'dl
1’1 —:a-}n—?-[)

rlfn — ful = dpy15n + 17 (s5—1d,,) for all n € Z and for some 0 # r € R is satisfied.
Now, we will show that there exists a homomorphism S,,1:X,41 = Y42 such that
Tlfns1 = fas1] = dni2Sner +7(Spdpye). Namely, it implies that dpy,Sp4q =
r[fr:+1 fn+1 Sn n+1]

Also, dni1([far1 = farr = Sn@nar]) = rdnsifuer — Tdniafoer — Tdnp1Sndngs =
Tfalnir = Thhdner — TdniiSndnes = Tlfn = fuldnyr — 7dpyiSpdng =

Tldni1Sn + 7(Spo1dn)ldngr — TdpiiSndner = TdpigSndngr + TSpo1dndngg —
rdy41Spdnsr = 0, since dpd,.; =0, where dy q1fni1 = fn’ ne1 from 2.4 and
dps1fnsr = [fndner from 2.3 If we take g = fri1 — frs1 — Sndnsq then we can see
that d;,,,(g) = 0. This implies g € Ker(dy,,,). Since Im(d,,,,) <, Ker(d,,;,), then
rg € Im(d;.,), forsome 0 # r € R, it means that, there exists an sn+1.XnJr1 - Yo
with the following commutative diagram
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JYH +1

]
L Bl l
£ g

n+42 ’
Yo —5 Im(d), ) — 0

is hold and such that r[f;,1 — fus1] = dny2Spe1 + 7(Spdns1). In conclusion that
f=,f"

Theorem 7. Let (X, ) be aright complex over R — module A4, (Y, §) a right complex
over R — module B and f: A - B a homomorphism. If each Y™ is e — injective and
(X,¢e) ise — resolution, then

0 1 n—1 n
0 A—ss x0T x1 4, A xn B
e |
. "o 1 fn—1 '
0 B ] YO d yl d d yn d

there exists a chain map f: {f} : X — Y such that the above diagram is commutative.
Moreover, if f' is another chain map that satisfies the same condition, then f ~e .

Proof. The proof can be done as Theorem 6 in similar way.

3. RESULTS AND RECOMMENDATIONS

In this paper, we present some new definitions, theorems and results about e-exact
sequences of theory, which is the generalization of exact sequence of module theory,
like U-exact sequence theory. Similarly, many results of homological algebra can be
obtained for e-exact sequences such as the Lambek lemma, Snake lemma, Connecting
homomorphism and Exact triangle for this theory.
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