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 Diabetes, a non-communicable disease, is associated with a condition indicative of too much glucose 
in the bloodstream. In the year 2022, it was estimated that about 422 million were living with the 
disease globally. The impact of diabetes on the world economy was estimated at $ 1.31 trillion in 
the year 2015 and implicated in the death of 5 million adults between the ages of 20 and 79 years 
globally. If left untreated for an extended time, could result in a host of other health complications. 
The need for predictive models to supplement the diagnostic process and aid the early detection of 
diabetes is therefore important. The current study is an effort geared toward developing a machine 
learning framework for the prediction of diabetes, expected to aid medical practitioners in the early 
detection of the disease. The dataset used in this investigation was sourced from the Kaggle 
database. The dataset consists of 100,000 entries, with 8,500 diabetics and 91,500 non-diabetics, 
indicating an imbalanced dataset. The dataset was modified to achieve a more balanced dataset 
consisting of 8,500 entries each for the diabetic and non-diabetic classes.  Gradient Boosting 
classifier (GBC), Adaptive Boosting classifier (ADA), and Light Gradient Boosting Machine (LGBM) 
were the best three performing classifiers after comparing fifteen classifiers. The proposed 
framework is a stack model consisting of GBC, ADA, and LGBM. The ADA classifier was utilized as 
the meta-model. This model achieved an average accuracy, area under the curve (AUC), recall, 
precision, and f1-score of 91.12 ± 0.75 %, 97.83 ± 0.29 %, 92.03 ± 1.55 %, 90.40 ± 1.01 %, and 91.12 
± 0.77 %, respectively. The selling point of the proposed framework is the high recall of 92.03 ± 1.55 
%, indicating that the model is sensitive to both the diabetic and the non-diabetic classes. 
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1. Introduction  
 

An estimated 422 million people globally are believed 
to be living with diabetes in the year 2022, according to 
the World Health Organization [1]. The International 
Diabetes Federation (IDF) projected this figure to rise to 
643 million and 783 million by the years 2030 and 2045, 
respectively [2]. As of 2015, the impact of diabetes on the 
global economy was estimated to be US $1.31 trillion. 
Furthermore, in 2015 diabetes was implicated in the 
death of an estimated 5 million adults aged between 20 
and 79 years [3]. Studies have shown that the risk of 
getting infections is enhanced in people living with 
diabetes compared to the normal population, with an 
attendant increase in their morbidity and mortality [3]. 

 Diabetes, most often, is associated with 
hyperglycemia, a condition indicative of too much sugar 
(glucose) in the bloodstream. This happens when the 
body has too little insulin (Type I diabetes) or if the body 
can’t properly utilize the available insulin (Type II 
diabetes), leading to insulin resistance [4]. If left 
untreated for an extended period, hyperglycemia can 

damage the nervous system, blood vessels, tissues, and 
critical organs [5,6], which may result in a host of 
complications, namely: renal failure, retinal failure, 
coma, cardiovascular dysfunction, cerebral vascular 
dysfunction, peripheral vascular disorders, sexual 
dysfunction, joint failure, weight loss, ulcer, ocular 
diseases, kidney failure, and loss of immunity against 
pathogens [5–9]. Additionally, diabetes has been 
implicated in adverse pregnancy outcomes, including 
increased risk of maternal and fetal morbidity and 
mortality [10]. Furthermore, hyperglycemia has been 
known to increase the risk for adverse events and 
outcomes for patients undergoing cancer treatment 
[11,12].  

Conventionally, the diabetes diagnosis process 
requires that multiple blood sugar tests be taken both 
before and after a meal. This presents practitioners with 
a difficult task in the diagnosis of diabetes. However, the 
diabetes diagnostic regime could be made simpler with 
the use of computational methods. Over the years, 
predictive models have been developed to aid in the 
diagnosis and consequently the treatment of diabetes. 
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The earlier diabetes predictive models [13–17] were 
developed based on simple scoring or logistic regression. 
These models used data derived from population-based 
studies that included risk factors that can easily be 
measured, such as age, BMI, waist circumference, 
physical activity, daily consumption of fruits, vegetables, 
or berries, history of antihypertensive drug treatment, 
and history of high blood glucose. In these early models 
different scores, ranging from 0 to 10 or 0 to 20, were 
assigned to each risk factor based on the ß-coefficients of 
a regression model (Equation 1). 

 
𝑥 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . +𝛽𝑛𝑥𝑛 (1) 

 
The emergence of new technologies, however, 

ushered in new techniques and methods that could 
improve the performance and applicability of these 
earlier predictive models. To this end, cutting-edge 
algorithms such as: Machine learning (ML) and Deep 
Learning (DL) could and have been employed to utilize 
the massive amount of data being churned out by both 
research cohorts and medical practitioners [4,18–23]. 
Machine learning is fast becoming a tool of choice among 
researchers in the medical field for building predictive 
models to supplement the diagnostic process and 
treatment of various diseases [24]. This tool has 
demonstrated its usefulness in handling large numbers 
of variables, detecting, and interpreting complex 
relationships between variables [9,24–27].  

This research effort is geared towards the 
development of a predictive model using machine 
learning tools implemented using Python programming 
language. In this study, we propose a stacked model 
consisting of a gradient boosting classifier (GBC), an 
adaptive boost classifier (ADA), and a light gradient 
boosting machine (LGBM), with the ADA boost as the 
meta_model. The proposed framework is intended to 
achieve not only high accuracy but also high sensitivity 
(recall) towards both the diabetic and non-diabetic 
classes. The proposed model is expected to aid medical 
practitioners in the clinical diagnosis of diabetes. 
Furthermore, this model could be useful and helpful to 
numerous undiagnosed diabetic patients who, very 
often, are unaware of their condition. 

In a study conducted by Maniruzzaman [28] and co-
researchers, a framework was developed where missing 
values and outliers were replaced by the group median 
and median values, respectively. Using a combination of 
Radom Forest feature selection and Random Forest 
classifier, the authors achieved accuracy, sensitivity, 
specificity, positive predictive value, negative predictive 
value, and area under the curve of 92.26 %, 95.96 %, 
79.72 %, 91.14 %, 91.20 %, and 93.0 %, respectively.    

In a related development, a research effort 
undertaken by [29] utilized the Pima Indians Diabetes 
Dataset, which consisted of 768 entries, to develop a 
predictive model for diabetes. The authors applied 
feature selection techniques along with five classification 
algorithms, namely: Support Vector Machine (SVM), 
Multi-Layer Perception (MLP), Logistic Regression (LR), 
Random Forest (RF), and Decision Tree (DT), to achieve 
the highest classification accuracy of 78.7% with MLP. 

In another research effort [7], the authors used an 
artificial neural network that was implemented in the 
Jacobian Neural Network (JNN) environment, for the 
prediction of diabetes. The dataset used in the study 
consists of 1004 entries and 9 features. Their effort 
resulted in a predictive model for diabetes with 87.3 % 
accuracy. On the other hand, Hasan and co-researchers 
[8] proposed a framework for the prediction of diabetes 
using the Pima Indian Diabetes Dataset. A weighted 
ensemble of different machine learning classifiers (K-
Nearest Neighbors, Decision Tree, Random Forest, Naïve 
Bayes, Ada Boost, XGBOOST Multi-Layer Perception) was 
employed. The Area Under the Curve (AUC) was the 
metric chosen for evaluating the performance of the 
mode. The ensemble classifier achieved a sensitivity, 
specificity, false omission rate, diagnostic odds ratio, and 
AUC of 0.789, 0.934, 0.092, 66.234, and 0.950, 
respectively.  

Butt and collaborators [30], proposed a model for 
early-stage detection and prediction of diabetes. The 
authors compared three classifiers, Random Forest, 
Multi-Layer Perception, and Logistic Regression, where 
the Multi-Layer Perception was the best-performing 
model with an accuracy of 86.08%. This was improved to 
87.26 % by using Deep Learning based Long Short-Term 
Memory. 

In another study conducted by Roy and collaborators 
[31], a diabetes predictive model was developed, based 
on an Artificial Neural Network (ANN) algorithm. In the 
study, median value data imputation was used to handle 
missing data, while the imbalance in the dataset was 
handled using a combination of SMOTETomek and 
random oversampling. This model achieved an accuracy 
of 98%, however, like other models using the Pima Indian 
dataset, it was plagued with concerns over the dataset. 
The dataset consisted of all females aged 21 years and 
above, with the population limited to Native Americans. 
Using the Pima Indian Diabetes Dataset, [4] developed a 
framework to conduct a comparative study based on the 
effectiveness of a three-category categorization model. In 
the first category, the authors considered the model’s 
performance with and without data pre-processing. In 
the second category, using the Recursive Feature 
Elimination (RFE) feature selection method, the 
performance of five different algorithms was compared. 
While in the third category, data augmentation was done 
employing the SMOTE oversampling method, and model 
performances were compared with and without.   

With dataset collected from the Murtala Mohammed 
Specialist Hospital, Kano, Nigeria [32] developed a 
supervised predictive model based on Logistic 
Regression (LR), Support Vector Machine (SVM), K-
Nearest Neighbours (KNN), Radom Forest (RF), Naïve 
Baiyes (NB), Gradient Boosting Classifier (GBC). In that 
study RF achieved the highest accuracy of 88.76 %, while 
RF and GBC had better receiver operating characteristic 
curve (ROC) of 86.28 %.   Lai and cohorts [33] used a 
dataset of 13,309 Canadian patients aged between 18 
and 90 years. In their research effort, RF was the best-
performing model with sensitivity and area under the 
receiver operating characteristic curve (AROC) of 84% 
and 73.4 %, respectively. 
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Abnoosian and co-investigators [34] proposed a 
multi-classification model framework to predict diabetes 
in three classes: namely; diabetic, non-diabetic, and pre-
diabetics. Their framework achieved accuracy, precision, 
recall, and F1-score values of 0.9887, 0.9861, 09792, 
0.9851, and 0.999, respectively. 

 

2. Method 
 

2.1. Dataset 
 

The dataset used in this study was sourced from the 
Kaggle database [35]. This dataset donated by 
Mohammed Mustafa, is a combination of demographic 
and medical data of patients, including their diabetes 
status. Pre-processing analysis showed that the dataset 
consists of 100,000   entries with 41,430 males, 58,552 
females, and 18 others, with no missing values; It has 
eight features, namely: gender, age, hypertension, heart 
disease, smoking history, body mass index (BMI), 
haemoglobin A1c (HbA1c) level, and blood glucose level; 
gender and smoking history were categorical features 
while the rest of the features were numerical; the 
smoking history feature has three categories: current, 
never, and no info. Further pre-processing analysis 
shows that there were 8500 diabetics and 91500 non-
diabetics in the dataset, indicating an imbalance in the 
dataset. Two approaches were used to handle the 
imbalance in the dataset before experimentation. First, 
the dataset was augmented using the SMOTE 
oversampling method. This resulted in the dataset being 
augmented to 158100 entries. Secondly, the dataset was 
reshuffled and the size was reduced to 17,000 entries, 
with 8500 diabetics and 8500 non-diabetics. 

 
2.2 Data analysis 

 
To determine the inter-relationship between the 

different features of the dataset, a correlation analysis 
was carried out on the original unbalanced and the 
reduced-balanced datasets. Figure 1 and 2 display the 
correlation heat map of the unbalanced and reduced-
balanced datasets, respectively. These heat maps show 
the correlation coefficients (R-value) between respective 
features, and also with the target feature (diabetes). 
These coefficients indicate the strength and direction of 
the relation. These coefficients indicate the strength and 
direction of the relation.  

For further analysis, features with continuous data 
fields such as age, BMI, HbA1c level, and blood glucose 
levels were modified into categorical fields. To this end, 
the age feature was split into four fields (< 40, 40 – 49, 50 
– 60, and > 60 yrs). On the other hand, the BMI feature 
was split into three fields (< 18.5, 18.5 – 25, 25 – 30, > 30 
kg/m-2), the HbA1c level was split into three fields (< 5.7, 
5.7 – 6.4, > 6.4 mmol/mol), and the blood glucose level 
was also split into three fields (< 126, 126 – 200, > 200 
µmol/dl). 

Figure 3 - 9 show the distribution of diabetes across 
the various categorical fields of these features. These 
distributions show the predisposition to diabetes of 
 

people across the categorical field groupings, for the 
respective features. 

 

 
Figure 1. The heat map of the unbalanced dataset. 

 

 
Figure 2. The correlation heat map of the balanced 

dataset. 
 

 
Figure 3. Diabetes distribution across gender groups. 
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Figure 4. Diabetes distribution across age groups. 

 

 
Figure 5. Diabetes distribution across heart disease 
status (On the x-axis: 0 = no heart disease, 1 = heart  

disease). 
 

 
Figure 6: Diabetes distribution according to smoking 

history (x-axis: not current = not currently smoking, no 
info = no information, never = never smoked, former = 
former smoker, current = current smoker, ever = ever 

smoking). 

 
Figure 7. Diabetes distribution across bmi groupings. 

 

 
Figure 8. Diabetes distribution across HbA1c groups. 

 

 
Figure 9. Diabetes distribution according to blood 

glucose level.  
 

2.3 Experimentation 
 
In this study, the PyCaret (version 3.0.2), a Python 

library, was employed for the investigation. The PyCaret 
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library is preloaded with fifteen (15) models (classifiers). 
These are: gradient boosting classifier (GBC), light 
gradient boosting machine (LGBM), adaptive boosting 
classifier (ADA), extreme gradient boosting (xgboost), 
random forest classifier (RF), extra trees classifier (ET), 
logistic regression (LR), linear discriminant analysis 
(LDA), k-nearest neighbors’ classifier (KNN), decision 
tree classifier (DT), SVM-linear kernel (SVM) ridge 
classifier (RIDGE), dummy classifier (dummy), naïve 
bayes (NB), and quadratic discriminant analysis (QDA). 
The dataset was split into training and test sets using the 
PyCaret setup. The default setting of 0.3 was retained in 
splitting the dataset, thus, allocating 70 % of the dataset 
for training the model and 30 % for testing or evaluation. 
The setup was first initialized with the original, 
unbalanced dataset of 100,000 entries. The 15 classifiers 
were compared, where GBC was the best-performing 
model with an accuracy, AUC, recall, precision, and F1-
score of 97.23 %, 97.91 %, 68.37 %, 98.60 %, and 80.74 
%, respectively, followed by ADA, and LGBM, with 
accuracies of 97.22 % and 97.19 %, respectively. The 

best-performing model, GBC, was further tuned with 10-
fold cross-validation to achieve an average accuracy of 
97.20 %, with an average recall of 68.25 %. Next, the 
setup was initialized with the augmented dataset of 
158100 entries. This was an attempt to improve on the 
recall. With the augmented dataset, the LGBM was the 
best-performing classifier with an average accuracy of 
97.15 % and recall of 68.86 %, following a 10-fold cross-
validation. There was no significant improvement in the 
recall with the augmented dataset. Thereafter, the setup 
was initialized with the reduced-balanced dataset of 
17,000 entries, having 8,500 diabetics and 8,500 non-
diabetics. With this setup (utilizing the reduced-balanced 
dataset), the 15 models were again compared. The best 
four (4) performing models from this setup were GBC, 
ADA, LGBM, and XGBOOST, achieving accuracies of 91.25 
%, 91.21 %, 90.83 %, and 90.71 %, respectively with 
recalls of 92.30 %, 92.12 %, 91.78 %, and 91.28 %. The 
recalls with this setup were significantly improved. Table 
1 shows the best four (4) classifiers with the different 
versions of the dataset. 

 
Table 1. Best four models with different versions of the dataset. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2. Performance of tuned GBC, ADA, LGBM, xgboost, and NB classifiers. 

Model  Accuracy AUC Recall Precision F1-score 

gbc 
Mean 0.9119 0.9780 0.9212 0.9046 0.9127 

Std 0.0105 0.0034 0.0143 0.0131 0.0105 

ada 
Mean 0.9115 0.9791 0.9224 0.9030 0.9125 

Std 0.0091 0.0029 0.0116 0.0129 0.0088 

lgbm 
Mean 0.9097 0.9758 0.9240 0.8985 0.9110 

Std 0.0069 0.0034 0.0133 0.0103 0.0070 

xgboost 
Mean 0.8974 0.9769 0.9751 0.8441 0.9048 

Std 0.0083 0.0035 0.0036 0.0117 0.0070 

naive 
Mean 0.8303 0.9069 0.8173 0.8390 0.8280 

Std 0.0137 0.0107 0.0170 0.0133 0.0142 

 
Table 3. Performance of the different stacked models. 

  Accuracy AUC Recall Precision F1-score 
Stacked model of tuned gbc, ada, lgbm, 

xgboost, with untuned nb as meta_model 
Mean 0.9067 0.9741 0.9513 0.8736 0.9107 

Std 0.0083 0.0043 0.0101 0.0117 0.0077 
Stacked model of tuned gbc, ada, lgbm, with 

tuned nb as meta_model 
Mean 0.9098 0.9724 0.9168 0.9043 0.9104 

Std 0.0080 0.0047 0.0138 0.0101 0.0082 
Stacked model of tuned gbc, ada, lgbm, with 

tuned gbc as meta_model 
Mean 0.9112 0.9783 0.9203 0.9040 0.9120 

Std 0.0075 0.0029 0.0155 0.0118 0.0077 
Stacked model of tuned gbc, ada, lgbm, with 

tuned ada as meta_model 
Mean 0.9120 0.9779 0.9249 0.9018 0.9131 

Std 0.0091 0.0028 0.0180 0.0089 0.0096 
Stacked model of tuned gbc, ada, lgbm, with 

tuned lgbm as meta_model 
Mean 0.9113 0.9782 0.9222 0.9028 0.9123 

Std 0.0088 0.0028 0.0154 0.0117 0.0090 

 
The best 3 performing models were then separately 

created and tuned (Table 2). These tuned models were 
then stacked to produce a more robust model. After 
experimenting with GBC, ADA, LGBM, XGBOOST, and NB 

Dataset Model Accuracy AUC Recall Precision F1 

imbalanced 

gbc 0.9723 0.9791 0.6837 0.9860 0.8074 
ada 0.9722 0.9790 0.6929 0.9715 0.8088 

lgbm 0.9719 0.9788 0.6887 0.9734 0.8066 
xgboost 0.9715 0.9779 0.6961 0.9568 0.8058 

augmented 

lgbm 0.9715 0.9787 0.6886 0.9659 0.8039 
xgboost 0.9709 0.9779 0.6939 0.9501 0.8020 

gbc 0.9683 0.9757 0.7151 0.8907 0.7931 
rf 0.9677 0.9613 0.6983 0.8995 0.7861 

reduced-balanced 

gbc 0.9125 0.9788 0.9230 0.9042 0.9134 
ada 0.9121 0.9786 0.9212 0.9049 0.9129 

lgbm 0.9083 0.9774 0.9178 0.9008 0.9092 
xgboost 0.9071 0.9761 0.9128 0.9027 0.9077 
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as the meta-model (Table 3), the ADA classifier was 
adapted as the meta-model, since it achieved a higher 
recall without sacrificing much accuracy and precision. 
Although with the NB classifier as the meta-model, the 
stacked model achieved the highest recall of 95.13 %, 

accuracy, and precision were sacrificed. The final model 
therefore was a stack of GBC, ADA, and LGBM, with ADA 
as the meta-model. Figure 10 shows the framework for 
the model development. 

 
 

 
Figure 10. Framework for the model development. 

 
2.4 Evaluation metrics 

 
The outcomes of predictions from the model 

developed were assessed using the following metrics: 
Confusion matrix, Accuracy, AUC, Recall, Precision, and 
F1-score. These are respectively defined as follows:  

 
2.4.1 Confusion matrix 

 
This is a matrix (Figure 11) used for the evaluation of 

a model’s overall performance, highlighting, True 
Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN) predictions of a classification 
model [36 - 38]. It compares the actual target values with 
the values predicted by the classification model. It is a 
matrix summarizing the number of correct and incorrect 
predictions by the classifier. A confusion matrix forms 
the basis for the calculation of other performance metrics 
such as accuracy, precision, recall, and F1-score. 

 

 
Figure 11. Confusion matrix highlighting the positive 
(TP), true negative (TN), false positive (FP), and false 

negative (FN) predictions of a classification model. 
 

2.4.2 Accuracy 
 

The accuracy of a classification model is the ratio of 
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correct predictions to the total number of predictions 
(Equation 2).  
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 
It is a measure of how often a model makes correct 

predictions. The accuracy metric, however, is not suited 
for imbalanced data. For instance, if the model predicts 
that all the predicted values are in the majority class, the 
accuracy will be high but the model itself is not accurate. 

 
2.4.3 Precision 

 
The precision of a classification model is the ratio of 

the total number of correctly predicted positive classes 
to the total number of predicted positive classes 
(Equation 3). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 
In a nutshell, it gives us a measure of how many 

predictions are actually positive out of all the positive 
predictions. 
 
2.4.4 Recall 
 

Recall, also referred to as the sensitivity of a 
classification model is a measure of actual observations 
that are correctly predicted (Equation 4). It is thus a 
measure of how many positive classes are predicted as 
positive, given as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 
Recall is an important metric in the present study 

where actual positive cases mustn't go undetected.  
 

2.4.5 F1-Score 
 
F1-Score is the harmonic mean of the precision and 

recall of a classification model. It is defined in Equation 5.  
 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (5) 

 
F1-Score maintains the balance between Recall and 

Precision of a classification model.  
 
3. Results and discussion 
 

Figure 1 and 2 show that with the unbalanced dataset, 
all the features have a weak but positive correlation with 
one another and with diabetes. However, with the 
reduced-balanced dataset, all the features have a weak 
positive correlation with one another, except for 
HbA1c/diabetes and blood glucose level/diabetes which 
have R-values of 0.6 and 0.54, respectively. Pre-modeling 
analysis of the reduced-balanced dataset Figures 3 to 9 
show the predisposition to diabetes as follows: People 
above 50 years of age; individuals with heart disease; 
BMI greater than 30 kg/m2; HbA1c level above 6.4 

mmol/mol; and blood glucose level above 200 mg/dl; 
respectively are predisposed to diabetes.   

The final model in this study is a stack model 
consisting of GBC, ADA, and LGBM with ADA as the meta-
model. Figure 12 depicts the confusion matrix of the final 
model based on the reduced-balanced dataset of 17,000 
entries. On the other hand, Figure 13 shows the 
classification report, while Figure 14 and 15 show the 
class prediction error, and precision-recall curve, 
respectively, of the stack classifier. The confusion matrix 
(Figure 12) shows that out of the 5,100 entries in the test 
set, the diabetic and non-diabetic classes have 2,550 
entries each. Of the 2,550 diabetics, the model predicted 
2,374 correctly and only 176 incorrectly. On the other 
hand, 2,290 of the 2,550 non-diabetics were correctly 
predicted by the model while 260 were incorrectly 
predicted.  This gives an overall accuracy of 91.45 % for 
the model. A comparison of the performance of the model 
developed in this study with other studies is shown in 
Table 4. 

 

 
Figure 12. The confusion matrix of the stacked 

classifier used for predicting diabetes. 
 

Table 4. Comparison of present study with similar 
studies. 

Accuracy 
(%) 

AUC  
(%) 

Recall  
(%) 

Precision  
(%) 

Reference 

91.12 97.83 92.03 90.40 Present study 
92.26 93.0 95.26 79.72 28 
78.7 - - - 29 
87.3 - - - 7 

- 95.0 78.9 93.4 8 
87.26 - - - 30 
98.17  97.00 99.00 31 
88.76 - - - 32 

- - 73.4 - 33 
98.87 - 97.92 98.61 34 

 
Furthermore, the classification report (Figure 13) 

shows that the model has a sensitivty (ability to correctly 
predict positive cases) of 92.9 % and specificity (ability 
to predict true negatives) of 92.6 %. This high values for 
both sensitivity and specificity are a pointer to the 
model’s great potential and efficacy to assist medical 
practioners in early diagnosis and treatment of diabetic 
patients. It is important to stress that the sensitivity 
(recall) of a classification model is an important metric 
that shows the sensitivity of the model, particularly 
towards the positive class. A high accuracy, or precision 
alone does not speak to the sensitivity or otherwise of a 
classification model. The values of both the sensitivity 
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and specificity of the model shows that the model is 
“sensitive” to both diabetics and non-diabetics. For a 
disease like diabetes where early detection is crucial, a 
predictive model designed for the detection of the 
disease in patients must be sensitive to the positive class 
in particular. It is not enough for a predictive model of 
this nature to have high accuracy and precision; it must 
also have high sensitivity towards the positive class. This 
ensures that positive cases are not easily missed which 
will aid in the early diagnosis and treatment of patients. 
The authors believe that a recall of 92.9 % for the positive 
class is a good starting point while seeking 
improvements.  

Furthermore, the prediction error plot (Figure 14) 
shows that fewer diabetic cases were falsely classified as 
non-diabetic than non-diabetic cases that were falsely 
classified as diabetic. This again highlights the sensitivity 
of the model to the diabetic class. Further still, Figure 15, 
precision-recall curve, shows that the AUC (the blue 
shaded area) is large, which is a mark of a good model.  

 

 
Figure 13. Classification report for the stacked classifier 
of GBC, ADA, and LGBM with ADA as the meta-model. 
 

 
Figure 14. Class prediction error of the stacked 

classifier. 

 
Figure 15. Precision-Recall curves of the stacked 

classifier. 
 

4. Conclusion  
 

In this study, a model was developed for classifying 
diabetes in humans, using a modified diabetes dataset 
sourced from the Kaggle database. The dataset was 
modified to have a balanced dataset which ensures a 
good recall for the model. The model is intended to aid 
medical practitioners in the diagnostic process of 
diabetes. The model developed in this study was a stack 
model consisting of GBC, ADA, and LGBM, with the ADA 
classifier as the meta-model. This stack model achieved 
an average accuracy, AUC, recall, precision, and F1-score 
of 91.12 ± 0.75 %, 97.83 ± 0.29 %, 92.03 ± 1.55 %, 90.40 
± 1.01 %, and 91.12 ± 0.77 %, respectively. The current 
model achieved a relatively high recall (sensitivity) 
without sacrificing accuracy and precision. Of particular 
note is the high AUC. The high AUC, high recall, and 
precision of the model highlight its potential clinical 
value and efficacy in assisting medical practitioners in 
diagnosing diabetes. While its high AUC highlights its 
overall good performance, its high recall means that very 
few positive cases will be wrongly classified as negative 
(low false negative rate), ensuring that positive cases are 
not easily misdiagnosed, which in turn will enhance early 
detection and treatment. Equally important is the high 
precision of the model, indicative of its low false positive 
rate, meaning that non-diabetics will not be easily 
misdiagnosed as diabetics. For a predictive model of this 
nature, the model must be sensitive to the positive class, 
ensuring that positive cases are easily captured. 
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