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   Abstract 
 

Here we analytically derive the eigenspectra of non-Hermitian systems with an odd number of 

channels in a scheme that eliminates the requirement of all-to-all coupling of the channels. The 

calculated spectrum displays coexisting parity-time broken and parity-time symmetric modes for any 

choice of coupling and gain/loss values except for the case of N=3 where a certain range of coupling 

and gain/loss parameters are required for the coexistence of parity-time broken and parity-time 

symmetric modes. 

 
 

 

 

1. Introduction1 

 

Interest in non-Hermitian systems was ignited by the 

end of the twentieth century following Bender and 

Boettcher’s seminal paper [1], in which they showed that 

non-Hermitian Hamiltonians can have real spectra if they 

are invariant under parity-time reversal (PT) transformation. 

This necessary but not sufficient condition is then classified 

by Mostafazadeh, revealing that PT-symmetric 

Hamiltonians fall under the class of pseudo-Hermitian 

Hamiltonians which possess real spectra [2]. Thus it is 

understood that for a certain parameter range, PT-symmetric 

Hamiltonians display real spectra. Then a plethora of 

applications of PT-symmetry followed, demonstrating 

various exploitations of PT-symmetry in optical and 

photonic systems [3-8]. Over the last decade, the interest in 

non-Hermitian systems continued, in Floquet systems 

[9,10], waveguides [11] and single-mode lasers [12].   

The coexistence of real and complex eigenvalues gives 

rise to many interesting features for non-Hermitian systems. 

It is known that the coexistence of PT-symmetric and PT-
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broken phases requires physical dimensions higher than 

one, or equivalently at least two input and two output 

channels [7]. However, it was theoretically shown that it is 

possible to obtain a mixing of PT-broken and PT-symmetric 

phases with two channels by introducing other degrees of 

freedom such as polarization [13] and spin [14]. 

Furthermore, possible applications of four-channel PT-

symmetric systems were investigated [15] and the analytical 

calculations to obtain the eigenspectra of N-channel PT-

symmetric systems for an even number of channels were 

performed [16]. One drawback of the mentioned N-channel 

configuration is that it requires all-to-all coupling of the 

channels. In this manuscript, we will study an alternative 

case which possesses equal richness in terms of physics 

without all-to-all coupling. Here we analytically study the 

odd-channel case and obtain the eigenspectra for N-channel 

non-Hermitian systems consisting of a neutral channel and 

(N-1)/2 pairs of gain and loss channels which only couple to 

the neutral channel. Such platforms could be exploited for 

realizing PT optoelectronic oscillators [17] with extended 

features suggested for the all-to-all coupling case [15]. 
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Therefore, lifting the necessity of all-to-all coupling opens 

the path for possible experimental demonstrations of the 

general scheme we suggest here.     

 

2. Methods 

 

Before starting the calculations, it would be necessary 

to clarify the terminology used throughout the paper. In all 

cases studied, we start with a non-Hermitian but PT-

symmetric matrix. Then we calculate the eigenspectrum. 

When the eigenvalues are real we say the system is in PT-

symmetric phase whereas for the complex eigenvalues, we 

say the system is in the PT-broken phase. 

 

2.1. Three-Channel Case 

 

It is necessary to clarify that for the neutral channel we 

use in all cases, we will neglect any possible phase term 

since this is not the main interest of this paper. The inclusion 

of such phase terms would be interesting and would be the 

subject of a separate work by itself. 

As a warm-up, we start with the simplest odd-channel 

case, namely three channels. We study the case with one 

gain, one loss and one neutral channel as shown in Figure 1. 

We consider this case (and the other cases that will follow) 

under the following assumptions: (i) All channels have the 

same frequency ω. (ii) Gain and loss channels have equal 

gain/loss values which we set to γ. (iii) Gain and loss 

channels only couple to the neutral channel with a coupling 

constant κ.    

 

Figure 1. Schematic description of the 3-channel 

system with one loss, one gain and one neutral channel. 

Gain and loss channels only couple to the neutral channel 

 

The coupled mode equations for three channels can be 

expressed as  where dot denotes time 

derivative,  are the amplitudes in 

respective channels  and  is the dynamical matrix 

given by: 

 

 (1) 

 

from which the eigenfrequencies can be calculated by 

solving (where 

is  unit matrix) that yields: 

 

                                                                        

                                         

                                                                                           

                        

                                                                                    

(2) 

 

As it can be seen from Equation (2), the system is in 

PT-symmetric phase for 2κ2 > γ2 , whereas for  2κ2 < γ2 the 

it is in mixed phase, with one eigenvalue being real and 

other two being complex. 

 

2.2. Five-Channel Case 

 

Figure 2. Schematic description of the five-channel system 

with two loss channels, two gain channels and one neutral 

channel. Gain and loss channels only couple to the neutral 

channel 

 

Next, we study the five-channel case. The pictorial 

description is given in Figure 2. Coupled mode equations 

for the five-channel case is given by  with 

 and the dynamical matrix given 

by: 
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                                                                                          (3) 

The eigenspectrum can be deduced by solving    

where this time is five by 

five: 

 

There is a crucial difference between the three-channel 

case and the present case that now the system cannot be 

purely in the PT-symmetric phase, with one eigenvalue 

always being real, two of them being complex and the other 

two being real for 4κ2 > γ2 and complex for 4κ2 < γ2. 

 

2.3. N-Channel Case 

We finally derive the eigenspectrum for the most 

general case, i.e. N-odd channels. The schematic view is 

given in Figure 3. The coupled mode equations have the 

form  with  and                                         

 

the dynamical matrix given by: 

                                                          (5) 

 

                                                                             (6a) 

                 (6b)                                       

To obtain the eigenvalues we solve    

(    is N by N): 

  

For the case of N-channels, as a generalization of the 

five-channel case studied above, PT-broken and PT-

symmetric phases coexist for any value of κ and γ. One of 

the eigenvalues is always real, whereas two pairs of 

eigenvalues with (N-3)/2-degeneracy are complex. The final 

two eigenvalues are real for (N-1)κ2 > γ2 and complex for 

(N-1)κ2 < γ2.   

 

2.4. Symmetries of the Dynamical Matrix 

 

It is noteworthy to show the relevant symmetries of the 

dynamical matrix for the N-odd channel case. The 

dynamical matrices we studied here are all non-Hermitian. 

Further, they are PT-symmetric, which requires their 

invariance under PT transformation, or in other words, PT 

operator commutes  which is satisfied as 

shown below: 

 

                                                                                                                                

(8)          

 

Here  is given by Equations (5,6) and parity and 

time reversal transformations are given by: 

 

                      (9)     

 

where  is N by N and  is complex conjugation. 

 

 

 

 

3. Results and Discussion 

 

Different than the all-to-all coupling case for N-

channels (N even) [16], our results showed that for the case 

without all-to-all coupling in the odd-channel case, one 

always ends up with mixing of PT-broken and PT-

symmetric phases (except for the N=3 case discussed 

below). Equations 7(a-c) show that for every value of κ and 

γ coexistence of PT-broken and PT-symmetric phases is 

obtained. The advantage of the suggested scheme is due to 

the lifting of the necessity of all-to-all coupling which is 

experimentally challenging to satisfy. 
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The scheme studied here yields at least one real 

eigenvalue (system being in PT-symmetric phase), in 

contrast with the all-to-all coupling case in which real 

eigenvalues are only obtained for a certain range of κ and γ. 

Therefore, compared with the all-to-all coupling scheme, 

the odd-channel scheme studied here is more favorable for 

obtaining coexisting PT-symmetric and PT-broken phases. 

The only exception is the special case of the suggested 

scheme for N=3, in which for 2κ2 > γ2 the system is purely 

in the PT-symmetric phase and coexistence of PT-broken 

and PT-symmetric phases only arises when 2κ2 < γ2 as seen 

from Equations (2a-b). However, starting with the N=5 case, 

the system always displays the coexistence of PT-broken 

and PT-symmetric phases. 

 

4. Conclusions 

 

In conclusion, we analytically derived the eigenspectra 

for the (odd) N-channel non-Hermitian systems that do not 

rely on all-to-all coupling of its channels. We showed that 

except for the case of N=3, all other configurations always 

yield a mixing of PT-broken and PT-symmetric phases 

independent of the values of κ and γ. Thus the scheme 

suggested here as compared to all-to-all coupling schemes 

has the advantage of yielding coexisting PT-symmetric and 

PT-broken phases without the need of tuning κ and γ. 

Moreover, in terms of experimental implementation, the 

suggested scheme here is more favorable, since it eliminates 

the requirement of all-to-all coupling. 
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