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1. INTRODUCTION  
 

Robot swarms are important for automation systems in many 

areas, such as search and rescue operations, environmental 

monitoring, environmental cleaning, area surveillance, 

agricultural activities, and transportation of heavy loads [1-5] . 

Unmanned aerial vehicle (UAV) swarms provide a 

collaborative structure to perform complex operations with a 

single independent UAV.  

Swarm robot systems are generally controlled through two 

main methods: centralized and distributed. In centralized 

systems, control originates from a single central point. On the 

other hand, in decentralized systems, each agent operates 

autonomously, making independent decisions and taking 

actions without relying on a central control point. 

Various methods have been employed in the design of 

distributed UAV swarm control. These include a hybrid-

flocking control algorithm, amalgamating vector field 

guidance, augmented Cucker-Smale model, and potential field 

techniques to attain path following, collective flocking 

behavior, and collision avoidance [6]. Another approach 

involves a mixed game theory utilizing a hierarchical learning 

algorithm for large-scale multi-agent systems, employing 

cooperative game, Stackelberg game, and mean field game for 

efficient coupling between leaders and followers [7]. 

Additionally, a distributed method, relying on monocular 

vision information, integrates a control model, target detection 

through a modified YOLOV3-tiny method, and orientation and 

distance estimation using geometric approaches [8]. Zhu and 

Deng proposed a distributed swarm control framework with 

limited interaction. In this framework, UAVs select limited 

interactive neighbors, combining interaction force and obstacle 

avoidance to ensure safety and effective guidance [9]. 

Various strategies are employed in the formation control of 

robot swarms, including leader-follower [10], virtual structure 

[11], and behavioral-based approaches [12]. 

The leader-follower strategy involves designating one agent as 

the leader, with the remaining agents following its movements. 

This study adopts the leader-follower strategy due to its 

capacity to minimize the number of connections. Numerous 

studies have explored variations of this strategy, employing 

different methodologies. 

Zhang et al. introduced three strategies for formation 

reconfiguration, focusing on leader disengagement, follower 

detachment, and adding new members to minimize the need for 

frequent connection changes [13]. Restrepo and Loria proposed 
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two controllers for formation-tracking control of velocity-

controlled unicycles in a leader-follower configuration, 

addressing scenarios with known and unknown leader 

velocities [14]. Lee et al. conducted a study on swarm control 

algorithms for unmanned surface vehicles (USVs), validating 

the effectiveness of a leader-follower swarm control method 

through sea area tests [15]. Pauli and Fichter proposed a leader-

follower formation control algorithm for UAV swarms, 

ensuring precise lateral and vertical separation during turns and 

adeptly handling communication limitations among agents 

[16]. 

To use a leader-follower strategy in a distributed system, the 

leader robot must also be dynamically selected by the swarm 

agents. One approach utilizes behavior-based control and a 

repulsive force method to navigate maze-like environments, 

automatically designating a leader when robots are stranded 

[17]. Another strategy concentrates on choosing a minimal set 

of leaders, employing the sub modularity ratio and defining 

metrics based on consensus tracking criteria [18]. 

 

The study encompasses several key aspects, including the 

dynamic determination of a single leader by swarm agents, the 

communication protocols and techniques employed in this 

process, the implementation of these protocols, and the 

subsequent testing of the architecture. Upon reviewing the 

literature, it became evident that existing research on 

distributed swarm systems is predominantly theoretical and 

algorithmic. This study aims to bridge this gap by adapting 

algorithms for the communication of a distributed swarm 

system and the navigation of agents to real hardware. The 

second section delves into the hardware structure, 

communication protocol, and autopilot software. Following 

this, the communication architecture, dynamic leader selection 

process, and leader tracking strategy are elucidated. The third 

section showcases the interface and simulation environment of 

the study. The final section engages in a comprehensive 

discussion of the results. 

 

2. MATERIALS AND METHODS 
 

This study involves multiple stages, particularly in 

implementing the leader-follower strategy. In this strategy, the 

robots are required to autonomously designate a leader and then 

organize themselves into a formation around this leader, 

following them to the specified location. The consecutive steps 

for these processes are detailed below. 

 

2.1. Materials 
The study is designed to be implemented on real hardware, 

and for this purpose, Pixhawk has been chosen as the hardware 
for autonomous flight control. Pixhawk, an open-source 
platform for autonomous flight control hardware and software, 
includes a control board that seamlessly integrates with diverse 
sensors and actuators, providing extensive capabilities for 
flight control and automation [19]. Widely employed in various 
robotic applications like multirotor vehicles, drones, and 
autonomous vehicles, Pixhawk serves as a standard control 
platform. Several autopilot software, including Ardupilot and 
PX4, have been developed based on this standard. 

Ardupilot and PX4 are the most popular open-source 

autopilot systems. They are designed to operate a wide range 

of autonomous vehicles, including submarines, rotary-wing 

platforms, and fixed-wing aircraft [20]. 

PX4 is an embedded robotics middleware and programming 

environment with a multithreaded, publish-subscribe design 

pattern. It offers a software interface for microcontroller 

applications. The PX4 autopilot platform can operate 

independently on Pixhawk standard hardware or be coupled 

with a companion computer for tasks demanding additional 

processing power or an external GPU [21]. The PX4 autopilot 

software was used because it is an open-source platform, uses 

an open-source hardware standard, and is well integrated with 

widely used software such as ROS2. 

ROS is an open-source software environment tailored for 

both commercial and research-based robotic applications [22]. 

It's preferred for its versatility, enabling development in various 

languages, fostering communication between processes 

through a publisher-subscriber architecture, supporting project-

specific message types, allowing packaging and sharing of 

applications, and providing extensive package support for 

common robotic challenges. ROS features tools like RVIZ for 

data visualization [23]. In ROS, processes are termed nodes, 

and they communicate via messages, with publisher nodes 

sending messages to subscriber nodes through topics [24]. 

ROS2 was created to address the limitations of ROS, which 

include a centralized network structure, a lack of network 

security mechanisms, and dependence on third-party software 

for integration into microprocessors [25]. ROS2 adopts a 

distributed network system, employing the network layer's 

Data Distribution Service (DDS). Additionally, for 

communication between drones and between drones and 

ground stations, the Zenoh protocol was implemented. 

Zenoh, a Pub/Sub-Query protocol, intricately unifies 

computations, data in motion, and data at rest. It was 

purposefully designed to cater to the demands of the shift from 

micro-controllers to the cloud, offering a seamless integration 

of diverse network topologies and technologies. This enables 

Zenoh to deliver messages with heightened speed and 

efficiency, fulfilling the need for high-density bandwidth while 

keeping latency to a minimum. As a result, it has evolved into 

an essential component of the Cloud-to-Edge Continuum [26]. 

Zenoh facilitates communication between two processing 

units on the same computer and extends its functionality to 

units on different computers within the same local network. 

This functionality resembles the DDS network software found 

in ROS2, sharing the dynamic discovery feature with DDS. 

Notably, Zenoh exhibits greater efficiency than DDS in 

wireless networks[27]. In the upcoming swarm system design, 

where swarm agents lack specific IP addresses and need to 

communicate via RF communication, the Zenoh protocol will 

be employed. This choice is driven by Zenoh's capability to 

operate in systems without IP addresses. Consequently, swarm 

agents will communicate through the serial interface provided 

by telemetry modules, utilizing the Zenoh protocol. 

Gazebo is a 3D simulation platform that enables the 

development and testing of robots to be operated in indoor and 

outdoor environments [28]. It is frequently used in robotics 

research projects, competitions and commercial applications. 

PX4 autopilot software supports the simulation of rotary-wing 

platforms, fixed-wing, and VTOL robots with the Software In 

The Loop technique in development processes using the 

Gazebo environment. The Gazebo Garden version was used 

during the study. 
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The UAV used for this research is based on a Holybro X500 

quadrotor equipped with a Pixhawk flight controller. The 

appearance of the robot in the simulation environment is given 

in the Figure 1. 

 

 
 

Figure 1. X500 in Gazebo Simulation 

 

2.2. Communication Architecture 
 

A crucial aspect of a distributed swarm architecture is the 

communication mechanism among swarm agents and other 

system elements. To establish a distributed framework, each 

agent must support peer-to-peer communication. Defining the 

communication protocols and message formats for these 

interactions is imperative. For agent-to-agent communication, 

the "swarm/<agent_name>" topical format is utilized when one 

agent sends a message to another. For instance, if agent1 

intends to convey a message to agent2, it sends a P2P message 

to the "swarm/agent2" topical. This P2P message comprises the 

sender's name, the message type, and the P2PType data, 

encapsulating message-specific information. A P2P message 

includes 4 types of messages. These are: 

• Heartbeat 

• HeartbeatAck 

• Pooling 

• Selection 

 
HeartBeat Message: A dynamically generated swarm leader 
sends the Heartbeat message to the swarm members. This 
message indicates that the swarm is connected and allows the 
swarm leader to assign tasks to the swarm members. 

HeartbeatAck Message: The HeartbeatAck message indicates 
the message the swarm member sends to the leader. The swarm 
member sends the swarm leader position and orientation data 
about itself in this message. This message also determines the 
status of the swarm member's connection to the leader. 

Pooling Message: Pooling message, a type employed for 
dynamic swarm leader selection, comprises four subtypes. 
These are: 

• StartPool 

• StartPoolAck 

• SyncPool 

• SyncPoolAck 

 

StartPool Message One agent sends a StartPool message to 
another agent to initiate the pooling protocol to create a swarm. 

StartPoolAck Message The "StartPoolAck" message serves 
as the response to an incoming "StartPool" message. 
Depending on the agent's present state, it dispatches a 
"Success" message if it is available and an "AlreadyInPool" 
message if it is already part of a pool. The "AlreadyInPool" 
message contains details about the current pool state. 

SyncPool Message The "SyncPool" message is sent to 
agents during the pool creation process to synchronize the 
instantaneous pool with other potential swarm agents at a 
specific frequency. This message contains the pool data 
maintained by the agent. 

SyncPoolAck Message SyncPoolAck message is sent by the 
agent receiving the SyncPool message to the sending agent as 
a reply. If the pools of the agents are the same, the 'Same' 
message is sent; if they are different, a 'Different' message is 
sent. The ‘Different’ message also holds the names of the 
elements in the pool. It also contains the status of whether the 
agent's pool is locked or not. 

Selection Message: The Selection message dynamically 

specifies the type of message that each agent shares its selection 

with the other agents in the pool with a specific frequency in 

the selection part, which is the last part of the swarm leader 

selection process. 

 

2.3. Dynamic Leader Selection 
 

In order to have a distributed architecture, a swarm system 
should not be utterly dependent on any central authority. 
However, swarm systems with a fully distributed architecture 
are subject to communication constraints. A simple calculation 
of the number of connections is shown in equation 1. 

𝑐 =
(𝑛−1)×𝑛

2
   (1) 

 

Here: c is connection count; n is agent count. 

For example, if a swarm system with ten agents wants to 

create a communication topology between each agent, it must 

create 45 peer-to-peer channels. For these reasons, the swarm 

system is designed to determine the swarm's leader and 

maintain this connection dynamically. 
The process of dynamically selecting a leader consists of the 

following sub-parts. 

- Selection pool initialization phase 

- Expanding the selection pool 

- Phase to lock the selection pool 

- Election phase 

- Leader selection 

Selection pool initialization: While in this state, the agent 
broadcasts a self-introduction message via the 
“swarm/advertize“ topical. Through this topic, the agent 
signals its readiness for potential connections and swarming, 
accompanied by sending its name to facilitate establishing a 
connection. Simultaneously, all available agents monitor this 
topic, including the agent who transmitted this message. 
Another agent receiving this message sends a “StartPool” 
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message to the sending agent. Then, it waits for the 
“StartPoolAck” message to arrive. The agent receiving the 
“StartPool” message, if it is not already in a pool, sends a 
Success message to start the pool and gives feedback to the 
other agent. However, if it is already in a pool and this pool is 
still accepting members, it sends an “AlreadyInPool” message 
and adds the agent that sent the message to the group. If the 
recipient of the “StartPool” message is not in any of these 
situations, it ignores the incoming message and does not send 
any response. 

Expanding the selection pool: After the pool is initialized for 
dynamic leader election, the agents perform two types of 
operations.  

- Send a pooling request to agents sending ‘Advertize’ 
messages 

- Ensuring pool synchronization between agents in the pool 

Agents that are expanding the pool also keep the last time it 
was updated. This time, data is updated if a member is added 
or removed from the pool, preventing the pool from being 
created and closed immediately. If a new member is added to 
the pool, the time data is updated, and as a result of 
synchronization messages, other agents also update their pools 
and the time data they keep. 

Lock Selection Pool: Once the selection pool stabilizes for two 

seconds, it becomes locked for all agents. Agents that have 

successfully locked the pool continue transmitting SyncPool 

messages to others in the pool at a specific frequency. If there 

are agents whose pools are still unlocked, the pool locking 

status is indicated with the SyncPoolAck message. This ensures 

that if, for any reason, there are agents whose pools remain 

unlocked, the synchronization of pool locking among all agents 

is guaranteed. In the case where received pools differ, both 

agents merge their pools. Following the pool merging process, 

other agents update their pools through synchronous messages 

sent to one another. Similar to expanding the selection pool, the 

last update time is retained in the case of locking. This time, 

data is updated during an asynchronous state, and if there is no 

update for two seconds, the pool selection process is initiated. 

 
Election Phase:  The voting process can be tailored to the 
specific swarm architecture or problem at hand. In the devised 
architecture, each agent autonomously casts a vote for itself as 
the potential swarm leader, with each vote assigned a weight 
and randomized during implementation. Agents within the pool 
exchange their votes at a designated frequency. Upon receiving 
a vote message, the recipient agent scrutinizes the incoming 
vote. If it is still locked within the pool, the agent promptly 
updates its status to "Selection" and initiates the voting process. 
If the incoming vote weight surpasses its own, the agent 
updates its vote with the incoming one and the corresponding 
time variable. 

Conversely, if the incoming vote carries less weight, the 
agent maintains its current vote. This mechanism ensures 
unanimity and synchronization among the agents. If, after 2 
seconds, the voting pool converges on a consistent vote, the 
leader selection process within the pool is triggered, similar to 
other scenarios. 

Leader Selection: Once a unanimous vote is secured in the 
election pool, the leader initiates a heartbeat message 
transmission to its swarm at a specified frequency. This 
transmission serves the dual purpose of confirming the leader's 

continued activity and assigning tasks to the swarm members. 
Concurrently, the leader awaits the reception of 
“HeartBeatAck” messages, indicating the ongoing activity of 
swarm members and facilitating the exchange of necessary 
data, such as Pose messages. If a “HeartBeatAck” message isn't 
received from a swarm member within a defined timeframe, the 
leader expels that agent from the swarm and discontinues the 
transmission of heartbeat messages to them. Conversely, if a 
swarm member fails to receive a heartbeat message from the 
leader within a specified period, it refrains from sending a 
“HeartbeatAck” message. Even if a heartbeat message is 
received subsequently, the swarm member departs from the 
swarm, opting to join another or create a new one. The flow 
chart of the leader selection process is shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Leader Selection Flow Cart 

 

2.4. Formation Process 
The strategy involves the leader robot moving to a 

predefined target point while the other robots follow it. 

Continuous communication is essential between the leader and 

the followers. The leader robot continuously broadcasts its 

orientation and position, which is then transmitted to the 

follower robots. The followers, utilizing the leader's position, 

maintain a predetermined formation by following the leader's 

movements. The leader's current location serves as the goal for 

the follower robots, and they align their orientation with that of 

the leader. Throughout the tracking process, a constant distance 

between the leader and the followers is maintained. 
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Figure 3. Leader-Follower Formation Scheme 

 

In Figure: 

XL, YL : leader's position,  

θL :is the leader's orientation 

XF, YF: follower robot's position 

θF :follower robot's orientation. 

 l :the distance between the leader and the follower. 

Equation 2 shows the distance between the leader robot and 

the follower robot.  

 

𝑑𝑖𝑠𝑡 (𝑙) = √(𝑋𝐿 − 𝑋𝐹)2 + (𝑌𝐿 − 𝑌𝐹)2  (2) 

 

 

The PX4 autopilot software employs a position controller for 

guiding swarm agents from point A to point B. Using the 

Kalman Filter algorithm, a position estimation method, the 

position controller establishes a local coordinate plane, 

referencing the global position at the start time. Upon receiving 

a follow command from the leader through the interface, the 

leader communicates with each swarm agent, specifying the 

agent to be followed, the following direction, and the general 

heading angle for leader-follow navigation. Swarm members 

utilize peer-to-peer communication to subscribe to the Pose 

data of the designated agent. After receiving the agent's name, 

they follow the leader's command, creating a 10-meter vector 

in the opposite direction of the swarm's head rotation angle and 

a 5-meter direction vector based on the specified direction for 

the agent to stay. Position determination is accomplished by 

adding these vectors to the position of the agent being followed. 

 

3. EXPERIMENTS  
 

Swarm ground control station software has been developed 

for efficient swarm management, allowing dynamic 

connections and individual control of each agent. Agents 

introduce themselves to the ground control station via the 

swarm/GSAdvertize topical. The ground control station 

software consistently monitors this topic, sending connection 

requests to agents that identify themselves and initiate the 

connection. For the connection to be maintained, the agent 

must send a Heartbeat command with a specific frequency, 

indicating that the connection is active; otherwise, it 

disconnects from the ground control station software. To 

facilitate location tracking and control of swarm agents across 

the global map, a map interface was developed using 

OpenStreetMap data. This interface displays the locations of 

agents connected to the ground control station. The general 

map view of the ground control station is shown in Figure 4. 

 

 
 
Figure 4. General Map View 

 

A close-up map view of the ground control station is shown in 

Figure 5. 

 

 
 

Figure 5. Close-up Map View 

The interface enables the selection of the agent to be controlled, 

displaying instant telemetry data and the control panel of the 

selected agent. Additionally, individual swarm agents can be 

moved from one point to another using position controllers. 

The user interface for position control of the swarm agents is 

shown in Figure 6. 
 

 

Figure 6. Position Controller User Interface 
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The position of the swarm robots in the Gazebo simulation 

environment is shown in Figure 7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Swarm Robots in Gazebo Simulation 

 

With the selection of the leader agent, the swarm system can be 

commanded to enter the leader-following state. Figure 8 shows 

the follower robots forming a v-formation behind the leader 

robot. 

 
Figure 8. Swarm Robots in V-Formation 

 

 

The view of the leader following the process in the Gazebo 

simulation environment is shown in Figure 9. 
 

4. CONCLUSION  
 

This study delves into the intricate realm of swarm systems 
with distributed architectures, acknowledging the inherent 

complexity compared to centralized architectures. The focal 
point is the analysis of formation control within a distributed 
architecture designed to operate on tangible hardware. 

Utilizing PixHawk, an open-source autonomous flight 

control hardware and software platform, PX4 as open-source 

autopilot software, and employing ROS2 for implementation, 

the study takes a practical approach. Gazebo serves as the 

simulation environment for testing. Because swarm agents lack 

IP addresses in this system, communication relies on the Zenoh 

protocol. A standardized communication process is established 

for dynamic leader selection, and specific message formats are 

crafted for agents to execute these operations. Each robot is 

assigned a randomly determined vote weight during the leader 

election, and the leader is determined based on accumulated 

votes. The simulation demonstrates the leader's announcement 

and subsequent command for followership, adopting a V-

formation for navigation. Simulation outputs affirm the 

successful realization of the study. Future endeavors involve 

extending the study to explore alternative leader selection 

methods and accommodating multiple leaders. 

 
 

Figure 9. Leader Follower in Gazebo Simulation 
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