
Bitlis Eren Üniversitesi Fen Bilimleri Dergisi
BİTLİS EREN UNIVERSITY JOURNAL OF SCIENCE

ISSN: 2147-3129/e-ISSN: 2147-3188

VOLUME: 13 NO: 2 PAGE: 492-504 YEAR: 2024

DOI:10.17798/bitlisfen.1434925

492

Optimizing Speech to Text Conversion in Turkish:

An Analysis of Machine Learning Approaches

İzel Zeynep GENÇYILMAZ 1, Kürşat Mustafa KARAOĞLAN 1*

1Department of Computer Engineering, Faculty of Engineering, Karabuk University, Karabuk

(ORCID: 0009-0009-0025-3394) (ORCID: 0000-0001-9830-7622)

Keywords: Speech to Text

Conversion, Natural Language

Processing, Convolutional

Neural Network, Convolutional

Recurrent Neural Network,

Machine Learning, Deep

Learning.

Abstract

The Conversion of Speech to Text (CoST) is crucial for developing automated

systems to understand and process voice commands. Studies have focused on

developing this task, especially for Turkish-specific voice commands, a strategic

language in the international arena. However, researchers face various challenges,

such as Turkish's suffixed structure, phonological features and unique letters, dialect

and accent differences, word stress, word-initial vowel effects, background noise,

gender-based sound variations, and dialectal differences. To address the challenges

above, this study aims to convert speech data consisting of Turkish-specific audio

clips, which have been limitedly researched in the literature, into texts with high-

performance accuracy using different Machine Learning (ML) models, especially

models such as Convolutional Neural Network and Convolutional Recurrent Neural

Network (CRNN). For this purpose, experimental studies were conducted on a

dataset of 26,485 Turkish audio clips, and performance evaluation was performed

with various metrics. In addition, hyperparameters were optimized to improve the

model's performance in experimental studies. A performance of over 97% has been

achieved according to the F1-score metric. The highest performance results were

obtained with the CRNN approach. In conclusion, this study provides valuable

insights into the strengths and limitations of various ML models applied to CoST. In

addition to potentially contributing to a wide range of applications, such as

supporting hard-of-hearing individuals, facilitating notetaking, automatic captioning,

and improving voice command recognition systems, this study is one of the first in

the literature on CoST in Turkish.

1. Introduction

Natural Language Processing (NLP) is a pivotal field

in computer science, focusing on enabling computers

to understand and interpret human languages [1].

Language can be classified into three primary types:

spoken, written, and sign language [2]. The

conversion of spoken words into written text not only

assists individuals with hearing impairments in

comprehending others but also enhances our capacity

to concentrate on presentations or lectures without

note-taking. Conversion of Speech to Text (CoST)

integration with smart devices and home systems, like

Siri or Alexa, further enriches our daily interactions.

Historically, speech analysis techniques have evolved

significantly. In the early 2000s, speech analysis

heavily relied on the utilization of the Hidden Markov

* Corresponding author: kkaraoglan@karabuk.edu.tr Received:10.02.2024, Accepted:20.03.2024

Model (HMM) and Gaussian Mixture Model

techniques [3]. HMMs employed a statistical

modeling approach to comprehend the correlation

between hidden states and transition probabilities,

necessitating extensive data to achieve satisfactory

results in tasks like classification or recognition [4].

In the context of speech processing, HMMs exhibited

limited accuracy rates, particularly in terms of

accuracy in data-scarce environments [5].

Consequently, attaining a high success rate in

CoST presented challenges in the 2000s. However, in

the 2010s, Long Short-Term Memory (LSTM) and

Gated Recurrent Unit (GRU) models emerged, known

for their enhanced accuracy [6]. LSTM, a variation of

Recurrent Neural Network (RNN), was designed to

address the challenge of long-term dependencies, thus

incorporating a memory cell controlled by gates that

https://dergipark.org.tr/tr/pub/bitlisfen
https://doi.org/10.17798/bitlisfen.1434925
https://orcid.org/0009-0009-0025-3394
https://orcid.org/0000-0001-9830-7622
mailto:kkaraoglan@karabuk.edu.tr

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

493

determine the information to be retained or forgotten

within the network [7]. Leveraging this attribute

empowers LSTM to keep past information

proficiently, amplifying its efficacy when dealing

with intricate sequential assignments like natural

language or speech signal processing [8]. On the other

hand, GRU, a more efficient counterpart to LSTM,

offers quicker processing and reduced computational

demands. Nevertheless, despite these advantages,

GRU sometimes they may fall short in NLP tasks that

require the recognition of extended sequences, like

CoST, or context-dependent aspects of language

where LSTM networks often excel due to their

enhanced ability to retain long-term data

dependencies [9]. This discrepancy arises from its

limited ability to capture long-term dependencies as

effectively as LSTM. Over the past few years,

significant progress has been witnessed in deep

learning techniques and their integration into NLP,

leading to rapid improvement in success rates [10].

Through the strategic utilization of methodologies

like deep neural network (DNN), Convolutional

Neural Network (CNN), and RNN, remarkable strides

have been made, resulting in notably elevated levels

of performance [11], [12]. While significant strides

have been achieved in deep learning for speech

processing, several challenges must be addressed.

These hurdles encompass a need for substantial

labelled data, the pursuit of model interpretability,

and varying environmental conditions [13]. These

environmental factors contain various variables,

ranging from word count, gender-specific voices, and

ethnic origins to audio quality, duration, and

vocabulary representation within the dataset.

Addressing these intricacies is pivotal for further

advancement in the field. Our study tackles these

challenges by employing and comparing different ML

techniques. Utilizing a comprehensive Kaggle

dataset, curated by Kurtkaya, which comprises 26,485

one-second Turkish audio recordings across 14

various commands, our objectives are twofold [14].

This study aims to enhance the accuracy and

efficiency of CoST in Turkish, thereby significantly

contributing to the broader field of NLP and

automated voice recognition systems. The

comparison of various Machine Learning (ML)

techniques, focusing on deep learning and CNN,

endeavors to find the most effective and accurate

results. By optimizing parameters such as the number

of epochs and other hyperparameters, an

improvement in the model's performance is sought,

and novel insights are provided by contrasting the

findings of this study with other similar works.

This study is organized into four main

sections. The first section provides an introduction.

The second section is a comprehensive literature

review that sets the stage for the research, delves into

the goals and overarching framework, gives details of

the methodology, and explores the approaches and

techniques employed. The third section evaluates

criteria, hyperparameters, and comparative results.

The fourth and final section discusses the detailed

findings and offers suggestions for future research.

2. Material and Method

The dataset details are outlined initially, followed by

a discussion on the pre-processing steps and the

proposed approach to speech recognition. The

architecture of the proposed model is detailed after

that, with a specific focus on constructing the CNN

and CRNN models. The dataset encompasses a

collection of 26,485 audio recordings featuring a

spectrum of 14 distinct commands. Each audio

recording has been meticulously standardized to

precisely 1 second, with a chosen sampling frequency

of 16 kHz. Table 1 provides a comprehensive

statistical overview, encapsulating key aspects and

metrics that define the dataset's composition and

characteristics.

Table 1. Summary of Dataset Characteristics and Features

Feature Description

Total Audio Files 26485

Command Instances

Open - (Aç): 1995

Cancel - (İptal): 1952

Left - (Sol) : 1910

Up - (Yukarı) : 1892

Stop - (Dur) : 1887

Forward - (İleri) : 1886

Yes - (Evet) : 1885

Right - (Sağ) : 1883

Close - (Kapa) : 1882

Continue - (Devam) : 1880

Start - (Başlat) : 1879

Down - (Aşağı) : 1870

No - (Hayır) : 1843

Sampling Frequency 16 kHz

2.1. Speech Classification

In this section, the description of speech classification

is provided, along with some fundamental

terminologies encountered during our speech

processing work. Waveform is a diagrammatic

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

494

representation that aids in examining the

displacement of sound waves over time alongside

other essential parameters [15]. Frequency pertains to

the rate at which the waveform repeats within one

second. The highest point on the waveform is called

the crest, while the lowest point is known as the

trough. Amplitude signifies the distance from the

center line to the crest or trough [16]. Spectrogram

visually depicts an audio signal's evolving frequency

spectrum over time [17]. This powerful tool is

employed for sound signal analysis and finds utility

in tasks such as identifying different sounds in a

recording, analyzing pitch and timbre, monitoring the

temporal evolution of sound, and detecting and

categorizing noise [18].

Mel-Frequency Cepstral Coefficient (MFCC)

denotes a method of extracting features that represent

the spectral characteristics of an audio signal [19].

MFCCs apply Mel filtering to the logarithm of the

signal's power spectrum. Subsequently, they compute

the discrete cosine transform of the filtered signal.

Popular libraries like Librosa or Sox are commonly

utilized to extract MFCC coefficients from audio

signals [20]. Sound classification encompasses the

automated attribution of labels to audio recordings.

Diverse techniques are employed to accomplish this

objective, with spectrograms and MFCCs emerging

as the most prevalent approaches [21]. Spectrograms

are leveraged to distil distinctive attributes from

assorted sound recordings. In the subsequent feature

extraction stage, our model leverages MFCCs to

apply ML techniques. Several vital advantages

underpin the choice of MFCCs over spectrograms.

Firstly, spectrograms often possess high-dimensional

characteristics, slowing the model training process

and requiring powerful computational resources. In

contrast, MFCCs offer a more compact and efficient

representation. Secondly, while spectrograms linearly

process frequencies, MFCCs are designed to emulate

the non-linear auditory perception of the human ear.

This is particularly beneficial in CoST, as it allows for

a more natural interpretation of audio data. However,

it is noteworthy that spectrograms can be more

effective than MFCCs in handling high frequencies

[22]. Lastly, spectrograms' critical limitation is their

reduced capability to accurately represent the

temporal variations in sound within specific time

intervals [23]. MFCCs, by design, provide a more

detailed and precise reflection of these material

changes, making them a more suitable choice for our

CNN model's requirements [24].

In the study, one of the procedural steps

involved using the 'path' column in the 'dataBase.xlsx'

file, primarily to reference and retrieve audio files

with .wav and .mp3 extensions from various

directories using the' os.walk(directory_path)'

command. For organizational purposes, these files

were initially stored on an empty list. Subsequently,

we prepared additional empty lists for labeling and

calculating MFCC. The MFCC for each audio file

was computed using the 'librosa.feature.mfcc'

command. The labelling process utilized the file paths

of the audio files, a method chosen for its

straightforwardness as each audio file was

systematically stored in its corresponding folder.

Labelling was executed using the' os.path.

Since the folder names and labels encompass

the names of 14 distinct commands, these were

initially in string format. However, we converted

these string labels into integer values to enhance the

model's performance. This numerical representation

is crucial as it facilitates the model's ability to process

and understand the data more effectively.

Another vital aspect of our methodology was

dividing data into training and test sets, with the test

size set at 20%. This split is essential for evaluating

the model's performance under varied conditions [25].

The research encompassed an array of ML models:

Support Vector Machine (SVM), K-Nearest

Neighbors, Decision Tree (DT), Random Forest (RF),

Gaussian Naive Bayes (GNB), LSTM, GRU, CNN,

and Convolutional Recurrent Neural Networks

(CRNN). The prediction phase involved using the

trained models to classify audio clips into their

respective voice command categories. This step has

been performed to determine the practical

applicability of the models in real-world scenarios,

such as voice command recognition systems. In the

final phase, the performance of each model was

compared using key metrics such as Accuracy,

Precision, Recall, F1-Score, Receiver Operating

Characteristic (ROC) curve, and Area Under the

Curve (AUC).

Furthermore, hyperparameters were

optimized to improve the performance of the models.

This phase yielded insights into the strengths and

weaknesses of each model, while also elucidating the

potential and limitations of various ML approaches in

CoST.

To concisely encapsulate, the steps in our

study were as follows:

 Retrieval of audio files from the designated

directory.

 Calculation of MFCCs for each audio file

using Librosa.

 Utilization of the folder names as labels for

the audio files.

 Segregation of the dataset into training and

testing subsets.

 Employing various ML techniques.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

495

 Comparing the results and optimizing

hyperparameters for improved outcomes.

Figure 1 is provided to enhance understanding of the

proposed approach structure.

2.2. Architecture of CNN Model

The CNN architecture is a deep learning model

widely utilized for tasks like image classification

[26], [27].

.

Nevertheless, thanks to recent advancements

in learning methodologies, CNN has also

demonstrated remarkable achievements in speech

processing [20], [28], [29], [30], [31]. Convolutional

layers employ filters to process the input data,

generating feature maps [32].

𝐱𝐥(𝐭, 𝐟) = ∑
𝐚=−𝐩

𝐩

∑
𝐛=−𝐩

𝐩

𝐰𝐚𝐛𝐱𝐥−𝟏(𝐭 + 𝐚)(𝐟 + 𝐛) + 𝐛 (1)

Figure 1. Structure of the proposed CoST approach.

Formula (1) is a mathematical expression of a

convolution operation commonly used in neural

networks [33]. The equation above represents the

value at time t in the l-th layer and frequency f. The

formula includes two nested sums. In the first sum,

the variables a and b take values from -p to p. In the

second sum, the variables a and b also take values

from -p to p. The convolution operation in speech

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

496

processing, like the spatial dimensions in image

processing, is performed by summing neighboring

values in the time and frequency dimensions [34].

Weights represent the learnable parameters of the

filters, and the bias term (b) is added to the weighted

sum.

The formula calculates an output in the

current layer by taking the surrounding sum of the

inputs from the previous layer and appropriately

weighing each output [35]. With this formula, in CNN

architecture, the network learns to extract relevant

features from the input spectrogram and performs the

task of speech recognition [36], [37]. The Keras

Sequential model facilitates the construction of

linearly arranged neural architectures, enabling the

seamless integration of layers, like fully connected or

convolutional layers, each with singular input and

output tensors [38]. Its efficacy is simplifying

unidirectional data flow in various standard neural

network applications. The usage of the Sequential

API is convenient. The reason for using Sequential in

our model is that it allows us to easily stack the

desired layers in the desired order, enabling the

straightforward creation of a model.

The model is architecturally composed of five

layers intricately designed to work harmoniously. The

first and second layers are similar, each consisting of

a Convolutional 2D (Conv2D) layer, followed by a

MaxPooling2D layer, and a Dropout layer. These

layers are for feature extraction and reducing

overfitting [39], [40]. The third layer is a Flatten layer,

serving as a bridge between the convolutional and

dense layers by converting the 2D feature maps into a

1D feature vector, crucial for subsequent processing

[41]. In the fourth layer, we have a fully connected

Dense layer coupled with a Dropout layer.

The dense layer plays a key role in combining

the complex features learned by earlier layers in a

flexible, non-linear way [42]. The fifth and final layer

is another Dense layer, responsible for output and

utilizing a SoftMax activation function, making it

suitable for multi-class classification tasks. Overall,

the model includes two Convolutional layers, two

Max-Pooling layers, one Flatten layer, two Dense

layers, and three Dropout layers, with one layer

designated for output. It is meticulously compiled

with the Categorical Cross Entropy loss function and

optimized using the Adam optimizer, ensuring

effective training and performance. For a clearer

understanding of the model's structure and layers,

refer to the following table:

Table 2. Details of the applied layers

Layers

Number Types

1 Conv2D, MaxPooling2D, Dropout

2 Conv2D, MaxPooling2D, Dropout

3 Flatten

4 Dense (Fully connected), Dropout

5 Dense (Output with SoftMax)

The first layer applies convolution operations

to the audio signal, using 32 filters of size 3x3, each

capturing distinct frequency components and their

temporal changes. The command

"model.add(Conv2D(32, kernel_size=(3, 3),

activation='ReLU', input_shape=(X_train.shape[1],

X_train.shape[2], 1)))" implements this convolution

operation.

The second layer’s MaxPooling operation

reduces the feature map's size, decreasing the number

of parameters and risk of overfitting while improving

computational efficiency [32], [43]. The command

"model.add(MaxPooling2D(pool_size=(2, 2)))" is

used for this purpose, employing a 2x2 pooling

region. The Dropout layer, applied in both the first

and fourth layers with a rate of 25%, aims to mitigate

overfitting by randomly deactivating input units

during each update cycle [40]. Following this, the

procedures of Conv2D, MaxPooling2D, and Dropout

layers are repeated, with the second Conv2D layer

employing 48 filters. This increase in filters allows for

capturing a broader range of complex features.

The Flatten layer converts the multi-dimensional

feature map into a one-dimensional vector, formatted

for input into a fully connected dense layer. The

command "model.add(Flatten())" facilitates this

transformation.

The subsequent Dense layer, connected to

every neuron in the preceding layer, enhances the

model's ability to recognize intricate patterns. The

command "model.add (Dense (128,

activation='ReLU'))" sets the neuron count and

incorporates the 'ReLU' activation function.

The final output layer, with neurons equal to

the total class count, employs the "softmax" activation

function to provide probabilistic class predictions.

The model is trained using the categorical cross-

entropy loss function, which is ideal for multi-class

classification. The Adam optimizer dynamically

adapts the learning rate for each parameter,

facilitating faster convergence and achieving superior

performance compared to traditional optimization

algorithms. [44]. The model's weights are adjusted

throughout the training process to minimize the loss

function, enabling it to recognize speech commands

effectively.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

497

2.3. The Architecture of CRNN Model

The architecture of the proposed CRNN model

combines the strengths of both CNN and LSTM

layers using the sequential model framework. This

approach ensures seamless data flow from one layer

to the next.

The model has five essential layers, each

serving a specific function. Initially, the model begins

with a Conv2D layer, which applies 2D convolutions

to the input data, extracting critical features from the

audio signals. In this initial stage, the layer utilizes 32

filters of size 3x3 each, employing the 'ReLU'

activation function to maintain positive values while

setting negative values to zero. Following the

Conv2D layer, the MaxPooling2D layer selects the

highest value among neighboring pixels within a 2x2

area, effectively reducing the dimensions of the

feature maps. This helps the model generalize better

by reducing its sensitivity to minor variations in the

data. It achieves this by introducing stochasticity

using a dropout mechanism, which randomly

deactivates a portion (e.g., 25%) of the units in each

layer during training. This prevents overfitting and

encourages the model to learn more robust

representations [39]. As the model progresses, an

additional Conv2D layer with 64 filters is introduced,

mirroring the initial layer in its composition.

The data shape transforms within the Reshape

layer, adapting it seamlessly for processing by the

subsequent LSTM layer. This LSTM layer, equipped

with 64 internal units, is designed to handle sequential

data, like sentences or time series, expertly. The

network culminates in two Dense layers. The first

one, housing 128 neurons, utilizes the ReLU

activation function to introduce non-linearity. This

layer is followed by another Dropout mechanism,

strategically removing 25% of its neurons during

training to curb overfitting. Finally, the last Dense

layer leverages the SoftMax activation function to

produce probabilistic predictions for each class,

ensuring they all add up to 100%. The configuration

of 64 units in the LSTM layer and 128 units in the

Dense layer is not arbitrarily but meticulously chosen

through hyperparameter tuning. These specific values

were carefully selected through experiments to strike

a balance between model performance and

complexity, yielding the most optimal outcome.

3. Evaluation Metrics and Hyperparameters

This section is meticulously designed to

comprehensively understand the methodology and

outcomes associated with the study in question.

Initially, the evaluative metrics employed to gauge

the efficacy of the models are elucidated.

Subsequently, an exposition on selecting

hyperparameters for the training phase is proffered,

covering a spectrum of parameters and configurations

meticulously adjusted to optimize the models'

performance during the training regimen. In

culmination, a comparative scrutiny of the empirical

results is undertaken. The effectiveness of various

machine learning methodologies and the model is

assessed using criteria such as ROC curves, accuracy,

recall, precision, F1-score, True Positive Rate (TPR),

and False Positive Rate (FPR) scores.

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)

(2)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)

(3)

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)

(4)

𝑭𝟏𝑺𝒄𝒐𝒓𝒆 = 𝟐 ⋅
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ⋅ 𝑹𝒆𝒄𝒂𝒍𝒍)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

(5)

TPR =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵

(6)

FPR =
𝑭𝑷

𝑭𝑷 + 𝑻𝑵

(7)

In the assessment of the efficacy of

classification models, we depend upon four principal

metrics: True Positive (TP), True Negative (TN),

False Positive (FP), and False Negative (FN). TP

denotes the quantity of accurately recognized positive

instances, whereas TN pertains to the correct

identification of negative cases. In contrast, FP refers

to the quantity of positive predictions made in error,

and FN represents the true positive cases that were

overlooked.

 Accuracy is expressed as the quotient of the

sum of true positives and true negatives over the total

number of cases. Accuracy shines when dealing with

balanced data and similar costs for incorrect

predictions. However, its utility wanes in the presence

of imbalanced class distributions, where it may offer

a misleadingly optimistic view of the model's

performance.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

498

Precision is the ratio of correctly predicted

positive observations to the total predicted positives.

Recall is the ratio of correctly predicted positive

observations to all observations in the actual class.

F1-Score is the harmonic means of Precision and

Recall and thus conjoins the properties of both

metrics. ROC curve illustrates the relationship

between the TPR and the FPR across various

classification thresholds. AUC quantifies the total

performance of the model by measuring the area

beneath the ROC curve [45].

The cross-validation technique constitutes an

esteemed metric to gauge the proficiency of a model's

generalization capabilities concerning unseen data

[46]. It plays a pivotal role in circumventing the

predicament of overfitting, where the model

demonstrates superior efficacy on the dataset utilized

for training [47]. It is a mechanism for adjudicating

amongst diverse model candidates, thereby

evaluating their capacity for generalization. Various

methodologies of cross-validation prevail, including

but not limited to k-fold, leave-one-out, and stratified

cross-validation, each presenting its unique set of

benefits and limitations contingent upon the dataset

and the task at hand [25]. Within the ambit of our

model, k-fold cross-validation has been

predominantly employed. This technique augments

the duration of training in comparison to a singular

train-test partition, attributing to multiple iterations of

training. While it diminishes the propensity for

overfitting, it may concurrently engender a modicum

of bias contingent upon the selection of folds [48]. It

is ubiquitously recognized as a robust method for the

selection of models and the fine-tuning of

hyperparameters.

The practice of executing k-fold cross-

validation repetitively, for instance, tenfold, and

calculating the mean of the outcomes, furnishes a

more steadfast and dependable gauge of model

efficacy [49]. In the case of our model, a criterion of

twenty iterations has been adopted. A superior cross-

validation indicates a model's enhanced

generalization ability [50]. It is imperative, however,

to eschew exclusive reliance on cross-validation as

the sole criterion for decision-making [51]. Other

aspects, such as the model's complexity,

interpretability, and other evaluation metrics, should

be considered in the final adjudication process.

3.1 Hyperparameters for Training

Hyperparameters constitute configurational

parameters employed to architect the learning

schema, significantly impacting the efficacy of the

models [52]. The different approaches have been

tested and considered industry best practices. For

example, the Adam optimizer has been chosen based

on findings in [53], dropout rates have been selected

based on findings in [40] and the number of epochs

has been selected with the hands-on experiments

considering training duration. The scenario of

overfitting was considered, and early stopping was

employed.

A detailed overview of the hyperparameters

used is presented in Table 3, which yielded

outstanding outcomes across various ML

methodologies.

4. Results

This section meticulously analyses the research

results and initiates a dialogue on prospective future

investigations. It is organized to initially present

several graphs that illuminate insights into model

performance and evaluation, followed by a discussion

on the findings.

Figure 2 compares accuracy, precision, recall,

F1-score, and cross-validation score across various

models, including CNN, CRNN, LSTM, RF, SVM,

GNB, KNN, GRU and DT.

Figure 2. Comparative results for CoST task in Turkish.

Figure 3 illustrates the ROC curve for the

CRNN model. Furthermore, additional graphs

showcase the training and validation loss and

accuracy rates over epochs for the models,

highlighting their learning trajectory and capability to

generalize over time. Subsequently, the discussion

focuses on the notable outcomes and their

contributions to the existing knowledge, alongside

exploring potential avenues for further research.

Figure 4 shows the loss during training (in

blue) and validation (in red) across epochs. If the

validation loss increases, it could be a sign of

overfitting. In the proposed model, the validation loss

decreased over time.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

499

Table 3. Hyperparameters for training process

Model Name Hyperparameters Model Name Hyperparameters

RF

 Number of Estimators: 100

Criterion: Gini

Max Depth: None

Min Samples Split: 2

Min Samples Leaf: 1

Max Features: Auto

Random State: None

LSTM

Number of LSTM Units: 64

Number of Dense Units: 64

Dropout Rate: 0.3

Batch Size: 32

Optimizer: Adam

Loss: Categorical Cross-Entropy

Early_Stopping=True

CRNN

 Conv2D Filters: 32, 64

Conv2D Kernel Size: (3, 3)

Conv2D Activation: ReLU

Conv2D Padding: Same

MaxPooling Pool Size: (2, 2)

MaxPooling Strides: None

MaxPooling Padding: Valid

LSTM Units: 64

First Dense Activation Function: ReLU

Last Dense Activation Function: Softmax

Number of Dense Units: 128

Optimizer: Adam

Loss: Categorical Crossentropy

Batch Size: 32

Early_Stopping=True

CNN

Conv2D Filters: 32, 64

Conv2D Kernel Size: (3, 3)

Conv2D Activation: ReLU

MaxPooling Pool Size: (2, 2)

Dense Units: 128

Dense Activation: ReLU

Dropout Rate: 0.25

Output Activation: Softmax

Loss: Categorical Crossentropy

Optimizer: Adam

Batch Size: 32

Early_Stopping=True

DT

 Criterion: Gini

Splitter: Best

Max Depth: None

Min Samples Split: 2

Min Samples Leaf: 1

GRU

Number of GRU and Dense Units: 128

Early_Stopping=True

Dropout Rate: 0.5

Activation of Dense Layer 1: ReLU

Activation of Dense Layer 2: Softmax

KNN

 Number of Neighbors: 3

Weight: Uniform

Algorithm: Auto
SVM

C: 1

Kernel: RBF

Gamma: Scale

Figure 3. The ROC curve plots the performance of the implemented CRNN model.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

500

Figure 4. Visualizations depicting the training and validation loss progress of the model over time.

Figure 5 displays the accuracy during training

(in blue) and validation (in red) across epochs.

Increasing accuracy over time is a good sign, showing

that the model is effectively learning to classify the

data. Consistently higher validation accuracy than

training accuracy indicates that the proposed model is

generalizing well.

Figure 5. Visualizations illustrating the training and validation accuracy progress of the model over time.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

501

Table 4 compares eight different ML models,

evaluating their strengths and limitations across five

key performance indicators: accuracy, precision,

recall, F1 score, and cross-validation score. The

CRNN model is pre-eminent, boasting the apex of

accuracy (0.96468), while the CNN model eclipses its

counterparts in both precision (0.97677) and F1 score

(0.97552).

 Moreover, the table furnishes statistical

insights by summarizing each metric's maximum,

minimum, mean, and standard deviation (Std) values.

This multifaceted metric evaluation not only

identifies the models that excel with the dataset in

question but also accentuates the imperative of

meticulously aligning ML methodologies with the

stipulated performance objectives and the inherent

characteristics of the dataset.

Table 4. Comparison of results obtained from various ML techniques in a table.

Proposed Approaches Learning Model Accuracy Precision Recall F1-Score

1st Approach CNN 0.95922 0.97677 0.97135 0.97552

2nd Approach CRNN 0.96468 0.96188 0.96168 0.96164

3rd Approach LSTM 0.72965 0.74829 0.72921 0.71210

4th Approach RF 0.92694 0.9268 0.92691 0.92672

5th Approach SVM 0.90976 0.90966 0.90985 0.90963

6th Approach KNN 0.90070 0.9036 0.90075 0.90143

7th Approach GNB 0.79687 0.80101 0.79657 0.79662

8th Approach DT 0.73532 0.73513 0.73516 0.73486

9th Approach GRU 0.87710 0.88287 0.87710 0.876824

 Max.: 0.96468 0.97677 0.97135 0.97552

 Min.: 0.72965 0.73513 0.72921 0.71210

 Mean: 0.86539 0.87039 0.86643 0.86481

 Std.: 0.09688 0.09526 0.09837 0.10259

5. Conclusion and Discussion

This section thoroughly reviews the outcomes of our

research and initiates a discussion on possible future

directions. It begins by exploring the significant

findings and their impact on the current state of

knowledge. Further areas for research exploration are

identified. Different ML models were evaluated,

utilizing metrics including accuracy, precision, recall,

F1 score, and cross-validation score. Notably, the

CNN model exhibited exceptional effectiveness,

especially CoST in Turkish, achieving an accuracy

rate of 95.34% after 10 epochs, which improved to

95.92% upon reaching 20 epochs.

Moreover, it exhibited high precision, recall,

and F1 scores. Surpassing the CNN, the CRNN model

showed even higher accuracy, with 96.35% at 10

epochs and 96.46% at 20 epochs, alongside

exceptional precision, recall, and F1 scores,

indicating superior performance for this specific task.

As a side note, the epoch count has been increased to

30 in our methodology. However, due to the

activation of the early stopping parameter set to true,

the system could identify the optimum number of

epochs without succumbing to overfitting or

underfitting, thereby ensuring the robustness and

efficiency of the training process. On the contrary, the

LSTM model could have been more effective,

achieving only 73% accuracy, 75% precision, 73%

recall, and a 71% F1 score, suggesting it is a less

optimal choice for CoST in Turkish. Other models,

including Random Forest, SVM, KNN, Gaussian

Naive Bayes, GRU and Decision Tree, demonstrated

mixed results, with Random Forest achieving the

highest accuracy of 93%. There remains potential for

improvement in their performance compared to CNN

and CRNN. While direct comparison with existing

research is challenged by differences in

methodologies, datasets, and lack of enough literature

about CoST in Turkish, our work distinguishes itself

by offering a different solution, achieving outstanding

accuracy. Our CRNN model outperforms previous

research, achieving outstanding results with accuracy,

F1 score, and cross-validation score of 0.96. It

exceeds the capabilities of the DNN HM model

presented in the article 'Turkish Speech Recognition

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

502

Based on Deep Neural Networks' [54], which reports

a WER of 14.82 and an accuracy of 0.85. 'A Novel

End-to-End Turkish Text-to-Speech (TTS) System

via Deep Learning' [55] while prioritizing perceptual

quality with 4.49 MOS, our research achieves the

highest possible transcription accuracy.

This study marks a significant advancement

in speech recognition and NLP within the Turkish

language context as we look ahead to future

developments. Yet, several areas warrant further

investigation. Firstly, expanding the dataset size

would be crucial for future studies. A more extensive

and diverse dataset would enable a more

comprehensive evaluation of the models'

generalization capabilities and performance in real-

world scenarios. Secondly, the development of model

optimization techniques would be beneficial.

Investigating strategies such as hyperparameter

tuning, diversifying model architectures, and

optimizing data pre-processing steps could

significantly enhance the effectiveness of CNN,

CRNN, and other models. Thirdly, expanding the

scope of research to encompass complex tasks like

emotion recognition and speech variation analysis is

essential. Such advancements allow a more holistic

understanding of speech by considering tone,

emphasis, and emotional content. Finally, exploring

targeted applications and industrial implementations

of these models is imperative.

Evaluating the performance of CoST techniques in

domains like automatic captioning, virtual assistants,

and call center speech analysis would provide

valuable insights into the usability and effectiveness

of these technologies in practical settings. These

directions pave the way for future research in Turkish

speech recognition and contribute significantly to the

broader field of NLP, fostering the development of

more sophisticated speech recognition systems.

Contributions of the authors

This study has significantly profited from the diverse

expertise of its authors. Karaoğlan played a crucial

role in conceptualization, research design, editing,

supervision, project management, critical review, and

final approval. Gençyılmaz focused on the literature

review, data collection, data analysis, model

development, and manuscript writing.

Conflict of Interest Statement

There is no conflict of interest between the authors.

Statement of Research and Publication Ethics

The study complies with research and publication

ethics.

References

[1] S. McRoy, Principles of natural language processing. Susan McRoy, 2021.

[2] A. Akmajian, A. K. Farmer, L. Bickmore, R. A. Demers, and R. M. Harnish, Linguistics: An introduction

to language and communication. MIT press, 2017.

[3] M. Gales, S. Young, and Others, “The application of hidden Markov models in speech recognition,”

Foundations and Trends in Signal Processing, vol. 1, no. 3, pp. 195–304, 2008.

[4] M. L. P. Bueno, A. Hommersom, P. J. F. Lucas, and A. Linard, “Asymmetric hidden Markov models,”

International Journal of Approximate Reasoning, vol. 88, pp. 169–191, 2017.

[5] M. S. Barakat, M. E. Gadallah, T. Nazmy, and T. El Arif, “Investigating the effect of speech features and

the number of HMM mixtures in the quality HMM-based synthesizers,” in The International Conference

on Electrical Engineering, 2008, vol. 6, pp. 1–12.

[6] T. Hori, S. Watanabe, Y. Zhang, and W. Chan, “Advances in joint CTC-attention based end-to-end speech

recognition with a deep CNN encoder and RNN-LM,” arXiv preprint arXiv:1706. 02737, 2017.

[7] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory recurrent neural network architectures

for large scale acoustic modeling,” 2014.

[8] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the long short-term memory model,” Artificial

Intelligence Review, vol. 53, no. 8, pp. 5929–5955, 2020.

[9] S. Yang, X. Yu, and Y. Zhou, “Lstm and gru neural network performance comparison study: Taking yelp

review dataset as an example,” in 2020 International workshop on electronic communication and

artificial intelligence (IWECAI), 2020, pp. 98–101.

[10] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,” Advances

in neural information processing systems, vol. 27, 2014.

[11] M. Li et al., “The deep learning compiler: A comprehensive survey,” IEEE Transactions on Parallel and

Distributed Systems, vol. 32, no. 3, pp. 708–727, 2020.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

503

[12] K. Mohamad and K. M. Karaoglan, “Enhancing Deep Learning-Based Sentiment Analysis Using Static

and Contextual Language Models,” Bitlis Eren Universitesi Fen Bilimleri Dergisi, vol. 12, no. 3, pp. 712–

724, 2023.

[13] A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea, and S. Poria, “A review of deep learning

techniques for speech processing,” Information Fusion, p. 101869, 2023.

[14] Kurtkaya M, “Turkish Speech Command Dataset,” https://www.kaggle.com/, 2021. [Online]. Available:

https://www.kaggle.com/datasets/muratkurtkaya/turkish-speech-command-dataset/data. [Accessed: 18-

Apr-2024].

[15] M. Tohyama, Sound and signals. Springer Science & Business Media, 2011.

[16] F. Riehle, Frequency standards: basics and applications. John Wiley & Sons, 2006.

[17] J. O. Smith, “Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications. 2007.”

W3K Publishing, 2023.

[18] J. L. Flanagan, Speech analysis synthesis and perception, vol. 3. Springer Science & Business Media,

2013.

[19] S. A. Majeed, H. Husain, S. A. Samad, and T. F. Idbeaa, “Mel Frequency Cepstral Coefficients (MFCC)

Feature Extraction Enhancement in the Application of Speech Recognition: A Comparison Study,”

Journal of Theoretical & Applied Information Technology, vol. 79, no. 1, 2015.

[20] A. Sithara, A. Thomas, and D. Mathew, “Study of MFCC and IHC feature extraction methods with

probabilistic acoustic models for speaker biometric applications,” Procedia computer science, vol. 143,

pp. 267–276, 2018.

[21] P. Zinemanas, M. Rocamora, M. Miron, F. Font, and X. Serra, “An interpretable deep learning model for

automatic sound classification,” Electronics, vol. 10, no. 7, p. 850, 2021.

[22] Y. Jia et al., “Speaker recognition based on characteristic spectrograms and an improved self-organizing

feature map neural network,” Complex & Intelligent Systems, vol. 7, pp. 1749–1757, 2021.

[23] K.-H. N. Bui, H. Oh, and H. Yi, “Traffic density classification using sound datasets: an empirical study

on traffic flow at asymmetric roads,” IEEE Access, vol. 8, pp. 125671–125679, 2020.

[24] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation for environmental

sound classification,” IEEE Signal processing letters, vol. 24, no. 3, pp. 279–283, 2017.

[25] G. James, D. Witten, T. Hastie, R. Tibshirani, and Others, An introduction to statistical learning, vol. 112.

Springer, 2013.

[26] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and

application in radiology,” Insights into Imaging, vol. 9, pp. 611–629, 2018.

[27] K. O’shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint arXiv:1511.

08458, 2015.

[28] A. Adeel, M. Gogate, and A. Hussain, “Contextual deep learning-based audio-visual switching for speech

enhancement in real-world environments,” Information Fusion, vol. 59, pp. 163–170, 2020.

[29] H. Tian, S.-C. Chen, and M.-L. Shyu, “Evolutionary programming based deep learning feature selection

and network construction for visual data classification,” Information Systems Frontiers, vol. 22, no. 5, pp.

1053–1066, 2020.

[30] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language

processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55–75, 2018.

[31] G. Koppe, A. Meyer-Lindenberg, and D. Durstewitz, “Deep learning for small and big data in psychiatry,”

Neuropsychopharmacology, vol. 46, no. 1, pp. 176–190, 2021.

[32] Y. Chen, L. Li, W. Li, Q. Guo, Z. Du, and Z. Xu, “Chapter 6 - Deep learning processors,” in AI Computing

Systems, Y. Chen, L. Li, W. Li, Q. Guo, Z. Du, and Z. Xu, Eds. Morgan Kaufmann, 2024, pp. 207–245.

[33] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Computer

Vision--ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part I 13, 2014, pp. 818–833.

[34] K. Santosh, N. Das, and S. Ghosh, “Deep learning: a review,” Deep Learning Models for Medical

Imaging, pp. 29–63, 2022.

[35] M. M. Taye, “Theoretical understanding of convolutional neural network: Concepts, architectures,

applications, future directions,” Computation, vol. 11, no. 3, p. 52, 2023.

[36] Y. Wu, H. Mao, and Z. Yi, “Audio classification using attention-augmented convolutional neural

network,” Knowledge-Based Systems, vol. 161, pp. 90–100, 2018.

K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024

504

[37] K. M. Karaoglan and O. Findik, “Enhancing Aspect Category Detection Through Hybridised

Contextualised Neural Language Models: A Case Study in Multi-Label Text Classification,” The

Computer Journal, p. bxae004, 01 2024.

[38] F. Chollet, Deep learning with Python. Simon and Schuster, 2021.

[39] P. Galeone, Hands-on neural networks with TensorFlow 2.0: understand TensorFlow, from static graph

to eager execution, and design neural networks. Packt Publishing Ltd, 2019.

[40] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a simple way to

prevent neural networks from overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1, pp.

1929–1958, 2014.

[41] J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks for feedforward

acceleration,” arXiv preprint arXiv:1412. 5474, 2014.

[42] S. Ruder, “Neural transfer learning for natural language processing,” NUI Galway, 2019.

[43] C. Ozdemir, “Avg-topk: A new pooling method for convolutional neural networks,” Expert Systems with

Applications, vol. 223, p. 119892, 2023.

[44] A. G. Ganie and S. Dadvandipour, “From big data to smart data: a sample gradient descent approach for

machine learning,” Journal of Big Data, vol. 10, no. 1, p. 162, 2023.

[45] A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning

algorithms,” Pattern recognition, vol. 30, no. 7, pp. 1145–1159, 1997.

[46] H. Wang and H. Zheng, “Model Cross-Validation,” InEncyclopedia of Systems Biology, 2013.

[47] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[48] G. C. Cawley and N. L. C. Talbot, “On over-fitting in model selection and subsequent selection bias in

performance evaluation,” The Journal of Machine Learning Research, vol. 11, pp. 2079–2107, 2010.

[49] Y. Jung and J. Hu, “AK-fold averaging cross-validation procedure,” Journal of nonparametric statistics,

vol. 27, no. 2, pp. 167–179, 2015.

[50] G. Jiang and W. Wang, “Error estimation based on variance analysis of k-fold cross-validation,” Pattern

Recognition, vol. 69, pp. 94–106, 2017.

[51] R. B. Rao, G. Fung, and R. Rosales, “On the dangers of cross-validation. An experimental evaluation,”

in Proceedings of the 2008 SIAM international conference on data mining, 2008, pp. 588–596.

[52] E. Bartz, T. Bartz-Beielstein, M. Zaefferer, and O. Mersmann, Hyperparameter Tuning for Machine and

Deep Learning with R: A Practical Guide. Springer Nature, 2023.

[53] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint arXiv:1412. 6980,

2014.

[54] U. A. Kimanuka and O. Buyuk, “Turkish speech recognition based on deep neural networks,” Suleyman

Demirel Universitesi Fen Bilimleri Enstitusu Dergisi, vol. 22, pp. 319–329, 2018.

[55] S. Oyucu, “A Novel End-to-End Turkish Text-to-Speech (TTS) System via Deep Learning,” Electronics,

vol. 12, no. 8, p. 1900, 2023.

