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Abstract 

The Conversion of Speech to Text (CoST) is crucial for developing automated 

systems to understand and process voice commands. Studies have focused on 

developing this task, especially for Turkish-specific voice commands, a strategic 

language in the international arena. However, researchers face various challenges, 

such as Turkish's suffixed structure, phonological features and unique letters, dialect 

and accent differences, word stress, word-initial vowel effects, background noise, 

gender-based sound variations, and dialectal differences. To address the challenges 

above, this study aims to convert speech data consisting of Turkish-specific audio 

clips, which have been limitedly researched in the literature, into texts with high-

performance accuracy using different Machine Learning (ML) models, especially 

models such as Convolutional Neural Network and Convolutional Recurrent Neural 

Network (CRNN). For this purpose, experimental studies were conducted on a 

dataset of 26,485 Turkish audio clips, and performance evaluation was performed 

with various metrics. In addition, hyperparameters were optimized to improve the 

model's performance in experimental studies. A performance of over 97% has been 

achieved according to the F1-score metric. The highest performance results were 

obtained with the CRNN approach. In conclusion, this study provides valuable 

insights into the strengths and limitations of various ML models applied to CoST. In 

addition to potentially contributing to a wide range of applications, such as 

supporting hard-of-hearing individuals, facilitating notetaking, automatic captioning, 

and improving voice command recognition systems, this study is one of the first in 

the literature on CoST in Turkish. 
 

 
1. Introduction 

 

Natural Language Processing (NLP) is a pivotal field 

in computer science, focusing on enabling computers 

to understand and interpret human languages [1]. 

Language can be classified into three primary types: 

spoken, written, and sign language [2]. The 

conversion of spoken words into written text not only 

assists individuals with hearing impairments in 

comprehending others but also enhances our capacity 

to concentrate on presentations or lectures without 

note-taking. Conversion of Speech to Text (CoST) 

integration with smart devices and home systems, like 

Siri or Alexa, further enriches our daily interactions. 

Historically, speech analysis techniques have evolved 

significantly. In the early 2000s, speech analysis 

heavily relied on the utilization of the Hidden Markov 
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Model (HMM) and Gaussian Mixture Model 

techniques [3]. HMMs employed a statistical 

modeling approach to comprehend the correlation 

between hidden states and transition probabilities, 

necessitating extensive data to achieve satisfactory 

results in tasks like classification or recognition [4]. 

In the context of speech processing, HMMs exhibited 

limited accuracy rates, particularly in terms of 

accuracy in data-scarce environments [5].  

Consequently, attaining a high success rate in 

CoST presented challenges in the 2000s. However, in 

the 2010s, Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) models emerged, known 

for their enhanced accuracy [6]. LSTM, a variation of 

Recurrent Neural Network (RNN), was designed to 

address the challenge of long-term dependencies, thus 

incorporating a memory cell controlled by gates that 
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determine the information to be retained or forgotten 

within the network [7]. Leveraging this attribute 

empowers LSTM to keep past information 

proficiently, amplifying its efficacy when dealing 

with intricate sequential assignments like natural 

language or speech signal processing [8]. On the other 

hand, GRU, a more efficient counterpart to LSTM, 

offers quicker processing and reduced computational 

demands. Nevertheless, despite these advantages, 

GRU sometimes they may fall short in NLP tasks that 

require the recognition of extended sequences, like 

CoST, or context-dependent aspects of language 

where LSTM networks often excel due to their 

enhanced ability to retain long-term data 

dependencies [9]. This discrepancy arises from its 

limited ability to capture long-term dependencies as 

effectively as LSTM.  Over the past few years, 

significant progress has been witnessed in deep 

learning techniques and their integration into NLP, 

leading to rapid improvement in success rates [10]. 

Through the strategic utilization of methodologies 

like deep neural network (DNN), Convolutional 

Neural Network (CNN), and RNN, remarkable strides 

have been made, resulting in notably elevated levels 

of performance [11], [12]. While significant strides 

have been achieved in deep learning for speech 

processing, several challenges must be addressed. 

These hurdles encompass a need for substantial 

labelled data, the pursuit of model interpretability, 

and varying environmental conditions [13]. These 

environmental factors contain various variables, 

ranging from word count, gender-specific voices, and 

ethnic origins to audio quality, duration, and 

vocabulary representation within the dataset. 

Addressing these intricacies is pivotal for further 

advancement in the field. Our study tackles these 

challenges by employing and comparing different ML 

techniques. Utilizing a comprehensive Kaggle 

dataset, curated by Kurtkaya, which comprises 26,485 

one-second Turkish audio recordings across 14 

various commands, our objectives are twofold [14]. 

This study aims to enhance the accuracy and 

efficiency of CoST in Turkish, thereby significantly 

contributing to the broader field of NLP and 

automated voice recognition systems. The 

comparison of various Machine Learning (ML) 

techniques, focusing on deep learning and CNN, 

endeavors to find the most effective and accurate 

results. By optimizing parameters such as the number 

of epochs and other hyperparameters, an 

improvement in the model's performance is sought, 

and novel insights are provided by contrasting the 

findings of this study with other similar works.  

This study is organized into four main 

sections. The first section provides an introduction. 

The second section is a comprehensive literature 

review that sets the stage for the research, delves into 

the goals and overarching framework, gives details of 

the methodology, and explores the approaches and 

techniques employed. The third section evaluates 

criteria, hyperparameters, and comparative results. 

The fourth and final section discusses the detailed 

findings and offers suggestions for future research. 

 

2. Material and Method 

 

The dataset details are outlined initially, followed by 

a discussion on the pre-processing steps and the 

proposed approach to speech recognition. The 

architecture of the proposed model is detailed after 

that, with a specific focus on constructing the CNN 

and CRNN models. The dataset encompasses a 

collection of 26,485 audio recordings featuring a 

spectrum of 14 distinct commands. Each audio 

recording has been meticulously standardized to 

precisely 1 second, with a chosen sampling frequency 

of 16 kHz. Table 1 provides a comprehensive 

statistical overview, encapsulating key aspects and 

metrics that define the dataset's composition and 

characteristics. 

 
Table 1. Summary of Dataset Characteristics and Features 

Feature Description 

Total Audio Files 26485 

Command Instances 

Open - (Aç): 1995 

Cancel - (İptal): 1952 

Left - (Sol) : 1910 

Up - (Yukarı) : 1892 

Stop - (Dur) : 1887 

Forward - (İleri) : 1886 

Yes - (Evet) : 1885 

Right - (Sağ) : 1883 

Close - (Kapa) : 1882 

Continue - (Devam) : 1880 

Start - (Başlat) : 1879 

Down - (Aşağı) : 1870 

No - (Hayır) : 1843 

Sampling Frequency 16 kHz 

 

2.1. Speech Classification 

 

In this section, the description of speech classification 

is provided, along with some fundamental 

terminologies encountered during our speech 

processing work. Waveform is a diagrammatic 
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representation that aids in examining the 

displacement of sound waves over time alongside 

other essential parameters [15]. Frequency pertains to 

the rate at which the waveform repeats within one 

second. The highest point on the waveform is called 

the crest, while the lowest point is known as the 

trough. Amplitude signifies the distance from the 

center line to the crest or trough [16]. Spectrogram 

visually depicts an audio signal's evolving frequency 

spectrum over time [17]. This powerful tool is 

employed for sound signal analysis and finds utility 

in tasks such as identifying different sounds in a 

recording, analyzing pitch and timbre, monitoring the 

temporal evolution of sound, and detecting and 

categorizing noise [18].  

Mel-Frequency Cepstral Coefficient (MFCC) 

denotes a method of extracting features that represent 

the spectral characteristics of an audio signal [19]. 

MFCCs apply Mel filtering to the logarithm of the 

signal's power spectrum. Subsequently, they compute 

the discrete cosine transform of the filtered signal. 

Popular libraries like Librosa or Sox are commonly 

utilized to extract MFCC coefficients from audio 

signals [20]. Sound classification encompasses the 

automated attribution of labels to audio recordings.  

Diverse techniques are employed to accomplish this 

objective, with spectrograms and MFCCs emerging 

as the most prevalent approaches [21]. Spectrograms 

are leveraged to distil distinctive attributes from 

assorted sound recordings. In the subsequent feature 

extraction stage, our model leverages MFCCs to 

apply ML techniques. Several vital advantages 

underpin the choice of MFCCs over spectrograms.  

Firstly, spectrograms often possess high-dimensional 

characteristics, slowing the model training process 

and requiring powerful computational resources. In 

contrast, MFCCs offer a more compact and efficient 

representation. Secondly, while spectrograms linearly 

process frequencies, MFCCs are designed to emulate 

the non-linear auditory perception of the human ear. 

This is particularly beneficial in CoST, as it allows for 

a more natural interpretation of audio data. However, 

it is noteworthy that spectrograms can be more 

effective than MFCCs in handling high frequencies 

[22]. Lastly, spectrograms' critical limitation is their 

reduced capability to accurately represent the 

temporal variations in sound within specific time 

intervals [23]. MFCCs, by design, provide a more 

detailed and precise reflection of these material 

changes, making them a more suitable choice for our 

CNN model's requirements [24].  

In the study, one of the procedural steps 

involved using the 'path' column in the 'dataBase.xlsx' 

file, primarily to reference and retrieve audio files 

with .wav and .mp3 extensions from various 

directories using the' os.walk(directory_path)' 

command. For organizational purposes, these files 

were initially stored on an empty list. Subsequently, 

we prepared additional empty lists for labeling and 

calculating MFCC. The MFCC for each audio file 

was computed using the 'librosa.feature.mfcc' 

command. The labelling process utilized the file paths 

of the audio files, a method chosen for its 

straightforwardness as each audio file was 

systematically stored in its corresponding folder. 

Labelling was executed using the' os.path.  

Since the folder names and labels encompass 

the names of 14 distinct commands, these were 

initially in string format. However, we converted 

these string labels into integer values to enhance the 

model's performance. This numerical representation 

is crucial as it facilitates the model's ability to process 

and understand the data more effectively.  

Another vital aspect of our methodology was 

dividing data into training and test sets, with the test 

size set at 20%. This split is essential for evaluating 

the model's performance under varied conditions [25]. 

The research encompassed an array of ML models: 

Support Vector Machine (SVM), K-Nearest 

Neighbors, Decision Tree (DT), Random Forest (RF), 

Gaussian Naive Bayes (GNB), LSTM, GRU, CNN, 

and Convolutional Recurrent Neural Networks 

(CRNN). The prediction phase involved using the 

trained models to classify audio clips into their 

respective voice command categories. This step has 

been performed to determine the practical 

applicability of the models in real-world scenarios, 

such as voice command recognition systems. In the 

final phase, the performance of each model was 

compared using key metrics such as Accuracy, 

Precision, Recall, F1-Score, Receiver Operating 

Characteristic (ROC) curve, and Area Under the 

Curve (AUC). 

Furthermore, hyperparameters were 

optimized to improve the performance of the models. 

This phase yielded insights into the strengths and 

weaknesses of each model, while also elucidating the 

potential and limitations of various ML approaches in 

CoST.  

To concisely encapsulate, the steps in our 

study were as follows:  

 Retrieval of audio files from the designated 

directory. 

 Calculation of MFCCs for each audio file 

using Librosa. 

 Utilization of the folder names as labels for 

the audio files. 

 Segregation of the dataset into training and 

testing subsets.  

 Employing various ML techniques.  
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 Comparing the results and optimizing 

hyperparameters for improved outcomes. 

 

Figure 1 is provided to enhance understanding of the 

proposed approach structure. 

 

2.2. Architecture of CNN Model 

 

The CNN architecture is a deep learning model 

widely utilized for tasks like image classification 

[26], [27]. 

. 

Nevertheless, thanks to recent advancements 

in learning methodologies, CNN has also 

demonstrated remarkable achievements in speech 

processing [20], [28], [29], [30], [31]. Convolutional 

layers employ filters to process the input data, 

generating feature maps [32]. 

 

𝐱𝐥(𝐭, 𝐟) = ∑
𝐚=−𝐩

𝐩

∑
𝐛=−𝐩

𝐩

𝐰𝐚𝐛𝐱𝐥−𝟏(𝐭 + 𝐚)(𝐟 + 𝐛) + 𝐛    (1) 

 

Figure 1. Structure of the proposed CoST approach. 

 

Formula (1) is a mathematical expression of a 

convolution operation commonly used in neural 

networks [33]. The equation above represents the 

value at time t in the l-th layer and frequency f. The 

formula includes two nested sums. In the first sum, 

the variables a and b take values from -p to p. In the 

second sum, the variables a and b also take values 

from -p to p. The convolution operation in speech 
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processing, like the spatial dimensions in image 

processing, is performed by summing neighboring 

values in the time and frequency dimensions [34]. 

Weights represent the learnable parameters of the 

filters, and the bias term (b) is added to the weighted 

sum.  

The formula calculates an output in the 

current layer by taking the surrounding sum of the 

inputs from the previous layer and appropriately 

weighing each output [35]. With this formula, in CNN 

architecture, the network learns to extract relevant 

features from the input spectrogram and performs the 

task of speech recognition [36], [37]. The Keras 

Sequential model facilitates the construction of 

linearly arranged neural architectures, enabling the 

seamless integration of layers, like fully connected or 

convolutional layers, each with singular input and 

output tensors [38]. Its efficacy is simplifying 

unidirectional data flow in various standard neural 

network applications. The usage of the Sequential 

API is convenient. The reason for using Sequential in 

our model is that it allows us to easily stack the 

desired layers in the desired order, enabling the 

straightforward creation of a model.  

The model is architecturally composed of five 

layers intricately designed to work harmoniously. The 

first and second layers are similar, each consisting of 

a Convolutional 2D (Conv2D) layer, followed by a 

MaxPooling2D layer, and a Dropout layer. These 

layers are for feature extraction and reducing 

overfitting [39], [40]. The third layer is a Flatten layer, 

serving as a bridge between the convolutional and 

dense layers by converting the 2D feature maps into a 

1D feature vector, crucial for subsequent processing 

[41]. In the fourth layer, we have a fully connected 

Dense layer coupled with a Dropout layer.  

The dense layer plays a key role in combining 

the complex features learned by earlier layers in a 

flexible, non-linear way [42]. The fifth and final layer 

is another Dense layer, responsible for output and 

utilizing a SoftMax activation function, making it 

suitable for multi-class classification tasks. Overall, 

the model includes two Convolutional layers, two 

Max-Pooling layers, one Flatten layer, two Dense 

layers, and three Dropout layers, with one layer 

designated for output. It is meticulously compiled 

with the Categorical Cross Entropy loss function and 

optimized using the Adam optimizer, ensuring 

effective training and performance. For a clearer 

understanding of the model's structure and layers, 

refer to the following table: 

 

 

 

Table 2. Details of the applied layers 

Layers 

Number Types 

1 Conv2D, MaxPooling2D, Dropout 

2 Conv2D, MaxPooling2D, Dropout 

3 Flatten 

4 Dense (Fully connected), Dropout 

5 Dense (Output with SoftMax) 

 

The first layer applies convolution operations 

to the audio signal, using 32 filters of size 3x3, each 

capturing distinct frequency components and their 

temporal changes. The command 

"model.add(Conv2D(32, kernel_size=(3, 3), 

activation='ReLU', input_shape=(X_train.shape[1], 

X_train.shape[2], 1)))" implements this convolution 

operation.  

The second layer’s MaxPooling operation 

reduces the feature map's size, decreasing the number 

of parameters and risk of overfitting while improving 

computational efficiency [32], [43]. The command 

"model.add(MaxPooling2D(pool_size=(2, 2)))" is 

used for this purpose, employing a 2x2 pooling 

region. The Dropout layer, applied in both the first 

and fourth layers with a rate of 25%, aims to mitigate 

overfitting by randomly deactivating input units 

during each update cycle [40]. Following this, the 

procedures of Conv2D, MaxPooling2D, and Dropout 

layers are repeated, with the second Conv2D layer 

employing 48 filters. This increase in filters allows for 

capturing a broader range of complex features.  

The Flatten layer converts the multi-dimensional 

feature map into a one-dimensional vector, formatted 

for input into a fully connected dense layer. The 

command "model.add(Flatten())" facilitates this 

transformation.  

The subsequent Dense layer, connected to 

every neuron in the preceding layer, enhances the 

model's ability to recognize intricate patterns. The 

command "model.add (Dense (128, 

activation='ReLU'))" sets the neuron count and 

incorporates the 'ReLU' activation function.  

The final output layer, with neurons equal to 

the total class count, employs the "softmax" activation 

function to provide probabilistic class predictions. 

The model is trained using the categorical cross-

entropy loss function, which is ideal for multi-class 

classification. The Adam optimizer dynamically 

adapts the learning rate for each parameter, 

facilitating faster convergence and achieving superior 

performance compared to traditional optimization 

algorithms. [44]. The model's weights are adjusted 

throughout the training process to minimize the loss 

function, enabling it to recognize speech commands 

effectively. 
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2.3. The Architecture of CRNN Model 

 

The architecture of the proposed CRNN model 

combines the strengths of both CNN and LSTM 

layers using the sequential model framework. This 

approach ensures seamless data flow from one layer 

to the next.  

The model has five essential layers, each 

serving a specific function. Initially, the model begins 

with a Conv2D layer, which applies 2D convolutions 

to the input data, extracting critical features from the 

audio signals. In this initial stage, the layer utilizes 32 

filters of size 3x3 each, employing the 'ReLU' 

activation function to maintain positive values while 

setting negative values to zero. Following the 

Conv2D layer, the MaxPooling2D layer selects the 

highest value among neighboring pixels within a 2x2 

area, effectively reducing the dimensions of the 

feature maps. This helps the model generalize better 

by reducing its sensitivity to minor variations in the 

data. It achieves this by introducing stochasticity 

using a dropout mechanism, which randomly 

deactivates a portion (e.g., 25%) of the units in each 

layer during training. This prevents overfitting and 

encourages the model to learn more robust 

representations [39]. As the model progresses, an 

additional Conv2D layer with 64 filters is introduced, 

mirroring the initial layer in its composition.  

The data shape transforms within the Reshape 

layer, adapting it seamlessly for processing by the 

subsequent LSTM layer. This LSTM layer, equipped 

with 64 internal units, is designed to handle sequential 

data, like sentences or time series, expertly. The 

network culminates in two Dense layers. The first 

one, housing 128 neurons, utilizes the ReLU 

activation function to introduce non-linearity. This 

layer is followed by another Dropout mechanism, 

strategically removing 25% of its neurons during 

training to curb overfitting. Finally, the last Dense 

layer leverages the SoftMax activation function to 

produce probabilistic predictions for each class, 

ensuring they all add up to 100%. The configuration 

of 64 units in the LSTM layer and 128 units in the 

Dense layer is not arbitrarily but meticulously chosen 

through hyperparameter tuning. These specific values 

were carefully selected through experiments to strike 

a balance between model performance and 

complexity, yielding the most optimal outcome. 

3. Evaluation Metrics and Hyperparameters 

 

This section is meticulously designed to 

comprehensively understand the methodology and 

outcomes associated with the study in question. 

Initially, the evaluative metrics employed to gauge 

the efficacy of the models are elucidated. 

Subsequently, an exposition on selecting 

hyperparameters for the training phase is proffered, 

covering a spectrum of parameters and configurations 

meticulously adjusted to optimize the models' 

performance during the training regimen. In 

culmination, a comparative scrutiny of the empirical 

results is undertaken. The effectiveness of various 

machine learning methodologies and the model is 

assessed using criteria such as ROC curves, accuracy, 

recall, precision, F1-score, True Positive Rate (TPR), 

and False Positive Rate (FPR) scores. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
(𝑻𝑷 + 𝑻𝑵)

(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵)
 

(2) 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑷)
 

(3) 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

(𝑻𝑷 + 𝑭𝑵)
 

(4) 

𝑭𝟏𝑺𝒄𝒐𝒓𝒆 = 𝟐 ⋅
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ⋅ 𝑹𝒆𝒄𝒂𝒍𝒍)

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

(5) 

TPR =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

(6) 

FPR =
𝑭𝑷

𝑭𝑷 + 𝑻𝑵
 

(7) 

 

In the assessment of the efficacy of 

classification models, we depend upon four principal 

metrics: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). TP 

denotes the quantity of accurately recognized positive 

instances, whereas TN pertains to the correct 

identification of negative cases. In contrast, FP refers 

to the quantity of positive predictions made in error, 

and FN represents the true positive cases that were 

overlooked.  

 Accuracy is expressed as the quotient of the 

sum of true positives and true negatives over the total 

number of cases. Accuracy shines when dealing with 

balanced data and similar costs for incorrect 

predictions. However, its utility wanes in the presence 

of imbalanced class distributions, where it may offer 

a misleadingly optimistic view of the model's 

performance. 
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Precision is the ratio of correctly predicted 

positive observations to the total predicted positives. 

Recall is the ratio of correctly predicted positive 

observations to all observations in the actual class. 

F1-Score is the harmonic means of Precision and 

Recall and thus conjoins the properties of both 

metrics. ROC curve illustrates the relationship 

between the TPR and the FPR across various 

classification thresholds. AUC quantifies the total 

performance of the model by measuring the area 

beneath the ROC curve [45].  

The cross-validation technique constitutes an 

esteemed metric to gauge the proficiency of a model's 

generalization capabilities concerning unseen data 

[46]. It plays a pivotal role in circumventing the 

predicament of overfitting, where the model 

demonstrates superior efficacy on the dataset utilized 

for training [47]. It is a mechanism for adjudicating 

amongst diverse model candidates, thereby 

evaluating their capacity for generalization. Various 

methodologies of cross-validation prevail, including 

but not limited to k-fold, leave-one-out, and stratified 

cross-validation, each presenting its unique set of 

benefits and limitations contingent upon the dataset 

and the task at hand [25]. Within the ambit of our 

model, k-fold cross-validation has been 

predominantly employed. This technique augments 

the duration of training in comparison to a singular 

train-test partition, attributing to multiple iterations of 

training. While it diminishes the propensity for 

overfitting, it may concurrently engender a modicum 

of bias contingent upon the selection of folds [48]. It 

is ubiquitously recognized as a robust method for the 

selection of models and the fine-tuning of 

hyperparameters.  

The practice of executing k-fold cross-

validation repetitively, for instance, tenfold, and 

calculating the mean of the outcomes, furnishes a 

more steadfast and dependable gauge of model 

efficacy [49]. In the case of our model, a criterion of 

twenty iterations has been adopted. A superior cross-

validation indicates a model's enhanced 

generalization ability [50]. It is imperative, however, 

to eschew exclusive reliance on cross-validation as 

the sole criterion for decision-making [51]. Other 

aspects, such as the model's complexity, 

interpretability, and other evaluation metrics, should 

be considered in the final adjudication process. 

 

3.1 Hyperparameters for Training 

 

Hyperparameters constitute configurational 

parameters employed to architect the learning 

schema, significantly impacting the efficacy of the 

models [52]. The different approaches have been 

tested and considered industry best practices. For 

example, the Adam optimizer has been chosen based 

on findings in [53], dropout rates have been selected 

based on findings in [40] and the number of epochs 

has been selected with the hands-on experiments 

considering training duration. The scenario of 

overfitting was considered, and early stopping was 

employed.  

A detailed overview of the hyperparameters 

used is presented in Table 3, which yielded 

outstanding outcomes across various ML 

methodologies. 

 

4. Results 

 

This section meticulously analyses the research 

results and initiates a dialogue on prospective future 

investigations. It is organized to initially present 

several graphs that illuminate insights into model 

performance and evaluation, followed by a discussion 

on the findings.  

Figure 2 compares accuracy, precision, recall, 

F1-score, and cross-validation score across various 

models, including CNN, CRNN, LSTM, RF, SVM, 

GNB, KNN, GRU and DT.  

 

 

Figure 2. Comparative results for CoST task in Turkish. 

 

Figure 3 illustrates the ROC curve for the 

CRNN model. Furthermore, additional graphs 

showcase the training and validation loss and 

accuracy rates over epochs for the models, 

highlighting their learning trajectory and capability to 

generalize over time. Subsequently, the discussion 

focuses on the notable outcomes and their 

contributions to the existing knowledge, alongside 

exploring potential avenues for further research. 

Figure 4 shows the loss during training (in 

blue) and validation (in red) across epochs. If the 

validation loss increases, it could be a sign of 

overfitting. In the proposed model, the validation loss 

decreased over time. 
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Table 3. Hyperparameters for training process 

Model Name  Hyperparameters Model Name Hyperparameters 

RF 

 Number of Estimators: 100 

Criterion: Gini 

Max Depth: None 

Min Samples Split: 2 

Min Samples Leaf: 1 

Max Features: Auto 

Random State: None 

LSTM 

Number of LSTM Units: 64 

Number of Dense Units: 64 

Dropout Rate: 0.3 

Batch Size: 32 

Optimizer: Adam 

Loss: Categorical Cross-Entropy 

Early_Stopping=True 

CRNN 

 Conv2D Filters: 32, 64 

Conv2D Kernel Size: (3, 3) 

Conv2D Activation: ReLU 

Conv2D Padding: Same 

MaxPooling Pool Size: (2, 2) 

MaxPooling Strides: None 

MaxPooling Padding: Valid 

LSTM Units: 64 

First Dense Activation Function: ReLU 

Last Dense Activation Function: Softmax 

Number of Dense Units: 128 

Optimizer: Adam 

Loss: Categorical Crossentropy 

Batch Size: 32 

Early_Stopping=True 

CNN 

Conv2D Filters: 32, 64 

Conv2D Kernel Size: (3, 3) 

Conv2D Activation: ReLU 

MaxPooling Pool Size: (2, 2) 

Dense Units: 128 

Dense Activation: ReLU 

Dropout Rate: 0.25 

Output Activation: Softmax 

Loss: Categorical Crossentropy 

Optimizer: Adam 

Batch Size: 32 

Early_Stopping=True 

 

DT 

 Criterion: Gini 

Splitter: Best 

Max Depth: None 

Min Samples Split: 2 

Min Samples Leaf: 1 

GRU 

Number of GRU and Dense Units: 128 

Early_Stopping=True 

Dropout Rate: 0.5 

Activation of Dense Layer 1: ReLU 

Activation of Dense Layer 2: Softmax 

KNN  

 Number of Neighbors: 3 

Weight: Uniform 

Algorithm: Auto 
SVM 

C: 1 

Kernel: RBF 

Gamma: Scale 

 

 

Figure 3. The ROC curve plots the performance of the implemented CRNN model.
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Figure 4. Visualizations depicting the training and validation loss progress of the model over time.

Figure 5 displays the accuracy during training 

(in blue) and validation (in red) across epochs. 

Increasing accuracy over time is a good sign, showing 

that the model is effectively learning to classify the 

data. Consistently higher validation accuracy than 

training accuracy indicates that the proposed model is 

generalizing well.

 

 

Figure 5. Visualizations illustrating the training and validation accuracy progress of the model over time.
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Table 4 compares eight different ML models, 

evaluating their strengths and limitations across five 

key performance indicators: accuracy, precision, 

recall, F1 score, and cross-validation score. The 

CRNN model is pre-eminent, boasting the apex of 

accuracy (0.96468), while the CNN model eclipses its 

counterparts in both precision (0.97677) and F1 score 

(0.97552). 

 Moreover, the table furnishes statistical 

insights by summarizing each metric's maximum, 

minimum, mean, and standard deviation (Std) values. 

This multifaceted metric evaluation not only 

identifies the models that excel with the dataset in 

question but also accentuates the imperative of 

meticulously aligning ML methodologies with the 

stipulated performance objectives and the inherent 

characteristics of the dataset.

 
Table 4. Comparison of results obtained from various ML techniques in a table. 

Proposed Approaches Learning Model Accuracy Precision Recall F1-Score 

1st Approach CNN 0.95922 0.97677 0.97135 0.97552 

2nd Approach CRNN 0.96468 0.96188 0.96168 0.96164 

3rd Approach LSTM 0.72965 0.74829 0.72921 0.71210 

4th Approach RF 0.92694 0.9268 0.92691 0.92672 

5th Approach SVM 0.90976 0.90966 0.90985 0.90963 

6th Approach KNN 0.90070 0.9036 0.90075 0.90143 

7th Approach GNB 0.79687 0.80101 0.79657 0.79662 

8th Approach DT 0.73532 0.73513 0.73516 0.73486 

9th Approach GRU 0.87710 0.88287 0.87710 0.876824 

                                         Max.: 0.96468 0.97677 0.97135 0.97552 

 Min.: 0.72965 0.73513 0.72921 0.71210 

 Mean: 0.86539 0.87039 0.86643 0.86481 

 Std.: 0.09688 0.09526 0.09837 0.10259 

5. Conclusion and Discussion 

 

This section thoroughly reviews the outcomes of our 

research and initiates a discussion on possible future 

directions. It begins by exploring the significant 

findings and their impact on the current state of 

knowledge. Further areas for research exploration are 

identified. Different ML models were evaluated, 

utilizing metrics including accuracy, precision, recall, 

F1 score, and cross-validation score. Notably, the 

CNN model exhibited exceptional effectiveness, 

especially CoST in Turkish, achieving an accuracy 

rate of 95.34% after 10 epochs, which improved to 

95.92% upon reaching 20 epochs. 

Moreover, it exhibited high precision, recall, 

and F1 scores. Surpassing the CNN, the CRNN model 

showed even higher accuracy, with 96.35% at 10 

epochs and 96.46% at 20 epochs, alongside 

exceptional precision, recall, and F1 scores, 

indicating superior performance for this specific task. 

As a side note, the epoch count has been increased to 

30 in our methodology. However, due to the 

activation of the early stopping parameter set to true, 

the system could identify the optimum number of 

epochs without succumbing to overfitting or 

underfitting, thereby ensuring the robustness and 

efficiency of the training process. On the contrary, the 

LSTM model could have been more effective, 

achieving only 73% accuracy, 75% precision, 73% 

recall, and a 71% F1 score, suggesting it is a less 

optimal choice for CoST in Turkish. Other models, 

including Random Forest, SVM, KNN, Gaussian 

Naive Bayes, GRU and Decision Tree, demonstrated 

mixed results, with Random Forest achieving the 

highest accuracy of 93%. There remains potential for 

improvement in their performance compared to CNN 

and CRNN. While direct comparison with existing 

research is challenged by differences in 

methodologies, datasets, and lack of enough literature 

about CoST in Turkish, our work distinguishes itself 

by offering a different solution, achieving outstanding 

accuracy. Our CRNN model outperforms previous 

research, achieving outstanding results with accuracy, 

F1 score, and cross-validation score of 0.96. It 

exceeds the capabilities of the DNN HM model 

presented in the article 'Turkish Speech Recognition 



K. M. Karaoglan, İ. Z. Gencyilmaz / BEU Fen Bilimleri Dergisi 13 (2), 492-504, 2024 

502 

 

Based on Deep Neural Networks' [54], which reports 

a WER of 14.82 and an accuracy of 0.85. 'A Novel 

End-to-End Turkish Text-to-Speech (TTS) System 

via Deep Learning' [55] while prioritizing perceptual 

quality with 4.49 MOS, our research achieves the 

highest possible transcription accuracy. 

This study marks a significant advancement 

in speech recognition and NLP within the Turkish 

language context as we look ahead to future 

developments. Yet, several areas warrant further 

investigation. Firstly, expanding the dataset size 

would be crucial for future studies. A more extensive 

and diverse dataset would enable a more 

comprehensive evaluation of the models' 

generalization capabilities and performance in real-

world scenarios. Secondly, the development of model 

optimization techniques would be beneficial. 

Investigating strategies such as hyperparameter 

tuning, diversifying model architectures, and 

optimizing data pre-processing steps could 

significantly enhance the effectiveness of CNN, 

CRNN, and other models. Thirdly, expanding the 

scope of research to encompass complex tasks like 

emotion recognition and speech variation analysis is 

essential. Such advancements allow a more holistic 

understanding of speech by considering tone, 

emphasis, and emotional content. Finally, exploring 

targeted applications and industrial implementations 

of these models is imperative. 

Evaluating the performance of CoST techniques in 

domains like automatic captioning, virtual assistants, 

and call center speech analysis would provide 

valuable insights into the usability and effectiveness 

of these technologies in practical settings. These 

directions pave the way for future research in Turkish 

speech recognition and contribute significantly to the 

broader field of NLP, fostering the development of 

more sophisticated speech recognition systems. 
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