
 

Celal Bayar University Journal of Science  
Volume 20, Issue 2, 2024, p 37-44 

Doi: 10.18466/cbayarfbe.1435139                                                                                  M. Genç 

 

37 

Celal Bayar University Journal of Science 

 

 An Extended UEHL Distribution: Properties and Applications 

 

Murat GENÇ1* , Ömer ÖZBİLEN2  

 
1 Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Tarsus 

University, Mersin, Türkiye  
2 Department of Mathematics Education, Faculty of Education, Mersin University, Mersin, Türkiye 

* muratgenc@tarsus.edu.tr 

* Orcid No: 0000-0002-6335-3044 

 

Received: 11 February 2024 

Accepted: 7 June 2024 

DOI: 10.18466/cbayarfbe.1435139 

 

 

Abstract 

 

This study introduces a new distribution, a Lehmann-type exponentiated distribution, which is built upon 

the unit exponentiated half-logistic distribution. The analytical characteristics of the proposed distribution, 

like moments, moment-generating function, quantiles, and stress-strength reliability, are explored in detail. 

The renowned maximum likelihood estimation method is employed for the statistical inference of the 

distribution’s parameters. A computer experiment is run to explore the performance of the maximum 

likelihood estimates of the distribution parameters under diverse scenarios. Additionally, the practicality 

and efficacy of the distribution are illustrated through a numerical example using a real-world dataset. 

 

Keywords: Exponentiated family, G-family, Maximum likelihood estimator, Reliability, UEHL 

distribution. 

 

1. Introduction 

  

Scientists have proposed many probability distributions 

in recent decades for data-modeling in such diverse fields 

as biological studies, engineering, economics and 

medical sciences. Recently, there has been strong interest 

in pursuing more flexible distributions. Researchers are 

constantly developing new families of probability 

distributions that not only expand upon existing ones but 

also offer greater flexibility in representing the 

characteristics of real-world data. In this context, 

constructing extended G-family distributions by applying 

a particular transformation to the baseline distribution is 

widely adopted in statistics [1, 2, 3].    

 

The Weibull method, which builds upon the existing 

"exponential" method, became popular because it is 

better at describing many types of data across various 

fields. With the contribution of the extra parameters, the 

Weibull method can handle a wider range of data types 

than the exponential method. Also, the Weibull 

distribution is successful in modeling monotone hazard 

rates in reliability theory. However, the distribution has 

limitations in capturing scenarios with non-monotonic 

hazard rates, where the likelihood of failure can fluctuate 

over time [4, 5]. 

 

Over the years, many continuous distributions with 

bounded domains have been proposed and applied in 

various fields of application to model uncertainty in a 

bounded phenomenon. In particular, modeling 

approaches on the unit interval, have grown in popularity 

recently since they address specific difficulties such as 

the recovery rate, mortality rate, and so on. Many useful 

unit distributions have been proposed, such as Johnson 

𝑆𝐵 distribution [6], unit logistic distribution [7], logit 

slash [8], unit Johnson 𝑆𝑈 [9] distribution, log-xgamma 

distribution [10], unit-Weibull distribution [11],  unit 

Birnbaum-Saunders distribution [12], unit inverse 

Gaussian distribution [13], log-weighted exponential 

distribution [14] and Generalized exponentiated unit 

Gompertz distribution [15]. 

 

Dombi et al. [16] proposed the omega distribution as a 

generalization of the Weibull distribution with bounded 

support, which has several applications in reliability 

theory. Dombi et al. [16] demonstrated that as the 

parameter in the omega distribution approaches infinity, 

it behaves identically to the Weibull distribution. This is 

because the hazard rate of the omega distribution, under 

these conditions, becomes indistinguishable from that of 

the Weibull distribution. In this context, [17] proposed 

the unit exponentiated-half logistic (UEHL) distribution 

by assigning a specific value to the parameter of the 

omega distribution. The UEHL distribution is obtained 
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by a simple transformation of the exponentiated half-

logistic distribution, which has been widely utilized in 

reliability theory [18, 19, 20, 21]. 

 

This study extends the UEHL distribution by 

constructing an exponentiated G-family UEHL 

distribution using a specific member of the G-Family 

distributions. Thus, we aim to improve the performance 

of the UEHL distribution by utilising G-Family 

distributions. The characteristics of this new distribution 

are thoroughly examined, and a performance analysis is 

conducted. 

 

The rest of the paper is structured as follows: Section 2 

introduces the new distribution and explores its 

properties (moments, MGF, quantiles, etc.). Section 3 

evaluates the distribution's performance through 

simulations and real-data analysis. Lastly, Section 4 

concludes the paper. 

 

2. Material and Method 

 

The proposal of novel statistical distributions based on 

the G-family method has gained popularity [22, 23]. The 

Weibull-G family of distributions was introduced by 

Bourguignon et al. [24], who also studied the 

distribution’s characteristics. Shukla et al. [25] further 

explored the reliability characteristics of the Weibull-G 

family using progressively Type-II censored data. Tahir 

et al. [26] proposed a new G-family type generator based 

on the Weibull random variable and studied the 

mathematical properties of the distribution. Korkmaz 

[27] introduced the extended Weibull-G distribution 

based on an extended form of the Weibull distribution 

and discussed the special members of the new family. 

Alizadeh et al. [28] proposed the Gompertz-G family of 

distribution with some special models based on the 

distribution. To address the deficiencies of the odd 

Fréchet-G family proposed by [29], Badr et al. [30] 

proposed the Transmuted Odd Fréchet-G family of 

distributions. Eghwerido et al. [31] proposed the 

transmuted alpha power-G class of models for modeling 

lifetime processes. Chakraborty [32] introduced the 

Kumaraswamy Poisson-G distribution by mixing the 

distribution of the minimum of a random number of 

identically and independent Kumaraswamy-G random 

variables and zero truncated Poisson random variable. 

Alnssyan et al. [33] introduced the weighted Lindley-G 

family of probabilistic models as a novel family based on 

Lindley distribution.  

 

Recently, depending on the structure of the dataset, the 

use of distributions with bounded support sets has 

become widespread. Mazucheli et al. [34] proposed the 

unit-Weibull distribution and compared the model 

performance with that of the Kumaraswamy distribution 

[35]. Guerra et al. [36] proposed the unit extended 

Weibull families of distributions and used the 

distribution to model the literacy rate data. Chakraborty 

et al. [37] obtained a generalized log-Lindley distribution 

defined in the unit interval by extending the Log–Lindley 

distribution and, use the distribution to model outpatient 

health expenditure. Masood et al. [38] brought up the unit 

interval exponentiated exponential distribution and 

illustrated the performance of the distribution using 

COVID-19 data. Korkmaz and Korkmaz [39] proposed 

the unit log-log distribution and an alternative quantile 

regression with application to educational measurement 

data. Akata et al. [40] proposed the Kumaraswamy unit-

Gompertz distribution and studied the applications of the 

distribution in lifetime datasets. Genç and Özbilen [41] 

proposed the DUS-UEHL distribution by implementing 

the transformation of DUS to the distribution of UEHL 

and investigated its characteristics in detail. Genç and 

Özbilen [42] proposed the EUEHL distribution, which is 

derived from the exponentiated transformation of the 

UEHL distribution and explored its characteristics using 

a computer experiment and an analysis of real data. 

 

2.1. EG-UEHL distribution 

 

The Lehmann-type exponentiated distributions are 

commonly used in statistics. In this context, Nadarajah 

[43] and, Tahir and Nadarajah [23] consider the 

cumulative distribution function (CDF) 

 

𝐹(𝑥) = [1 − 𝐺(𝑒−𝑥)𝜆] (1) 

 

based on the log transformation on the Lehmann type 2 

distribution, where 𝐺(𝑥) is the baseline CDF and 𝜆 is a 

shape parameter. In this section, we introduce the two-

parameter exponentiated UEHL distribution based on the 

G-family of distributions given by Equation (1). The 

CDF of the UEHL distribution is given by 

 

𝐹𝑈𝐸𝐻𝐿(𝑥; 𝜃, 𝜆) = 1 − (
1 − 𝑥𝜃

1 + 𝑥𝜃
)

𝜆

, 0 < 𝑥 < 1. (2) 

 

By applying the distribution function in Equation (2) to 

the G-family of distributions in Equation (1), the CDF of 

the exponentiated G-family UEHL distribution is 

obtained as  

 

𝐹𝐸𝐺−𝑈𝐸𝐻𝐿(𝑥; 𝜃, 𝜆) = (
1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆

, 0 < 𝑥 < ∞ (3) 

 

where 𝜃 > 0 and 𝜆 > 1. In this study, we will use the 

notation 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) to represent the 

exponentiated G-family UEHL distribution with the 

parameters 𝜃 and 𝜆. As described in Equation (3), the 

probability density function (PDF) of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) is given by 

  

𝑓𝐸𝐺−𝑈𝐸𝐻𝐿(𝑥; 𝜃, 𝜆) =
2𝜆𝜃

𝑒𝜃𝑥 − 𝑒−𝜃𝑥
(

1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆

,  

            0 < 𝑥 < ∞. 

(4) 
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Figure 1 illustrates the PDF of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution for the different values of the parameters 𝜃 

and 𝜆. The distribution is skewed to the right and the 

skewness of the distribution decreases as the parameter 𝜆 

increases. In addition, for large values of 𝜃, the 

probabilities are large for small values of the random 

variable 𝑋, while the reverse is the case for small values 

of 𝜃. 

 
Figure 1. Plots of the PDF of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution for the selected 𝜃 and 𝜆 parameters. 

 

The survival and the hazard rate functions of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution are provided, respectively, by 

 

𝑆𝐸𝐺−𝑈𝐸𝐻𝐿(𝑥; 𝜃, 𝜆) =
(1 + 𝑒−𝜃𝑥)

𝜆
− (1 − 𝑒−𝜃𝑥)

𝜆

(1 + 𝑒−𝜃𝑥)𝜆
  

 

and 

 

ℎ𝐸𝐺−𝑈𝐸𝐻𝐿(𝑥; 𝜃, 𝜆) =
2𝜆𝜃

(𝑒𝜃𝑥 − 𝑒−𝜃𝑥) ((
1 + 𝑒−𝜃𝑥

1 − 𝑒−𝜃𝑥)
𝜆

− 1)

. 
(5) 

 

Figure 2 shows the hazard rate function for the chosen 

values of the parameters of the distribution. According to 

Figure 2, the hazard function of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution given by Equation (5) is an increasing 

function. 

 

 

 

 

 

 

 

 

 
Figure 2. Plots of the hazard function of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution for the selected 𝜃 and 𝜆 

parameters. 

 

2.2. Statistical Characteristics of the 𝑬𝑮-𝑼𝑬𝑯𝑳(𝜽, 𝝀) 

Distribution 

 
This section explores several analytical properties of the 

𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution. These include the 

moments, quantile function, stress-strength reliability, 

and maximum likelihood estimation of the distribution 

parameters. 

 

2.2.1.  Moments 

 

Moments serve as valuable tools for understanding 

various facets of a statistical distribution. This section 

delves into the moments of the 𝑬𝑮 − 𝑼𝑬𝑯𝑳(𝜽, 𝝀)  

random variable. Let 𝑿 follow a 𝑬𝑮 − 𝑼𝑬𝑯𝑳(𝜽, 𝝀) 

distribution with the PDF given by Equation (4). Then 

the 𝒓-th raw moment of 𝑿 for 𝒓 = 𝟏, 𝟐, 𝟑, … is  
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𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥; 𝜃, 𝜆) 𝑑𝑥
∞

0

 

= 2𝜆𝜃 ∫
𝑥𝑟

𝑒𝜃𝑥 − 𝑒−𝜃𝑥
(

1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆

𝑑𝑥
∞

0

. 

 

By the transformation 𝑢 = 𝑒−𝜃𝑥, the expectation is 

written as 

 

𝐸(𝑋𝑟) =
2𝜆

𝜃𝑟
∫ (− log 𝑢)𝑟(1 − 𝑢)𝜆−1(1 + 𝑢)−𝜆−1 𝑑𝑢

1

0

. 

 

By using the Binomial series (1 − 𝑡)𝑧 =

∑ (−1)𝑗 (𝑧
𝑗
) 𝑡𝑗∞

𝑗=0 , we obtain 

 

𝐸(𝑋𝑟) =
2𝜆

𝜃𝑟
∑(−1)𝑗 (

𝜆 − 1

𝑗
)

∞

𝑗=0

 

× ∫ (− log 𝑢)𝑟𝑢𝑗(1 + 𝑢)−𝜆−1𝑑𝑢
1

0

. 

 

Applying the Equation 4.272.14 provided in [44], we 

obtain the 𝑟-th raw moment of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

random variable as 

 

𝐸(𝑋𝑟) =
2𝜆

𝜃𝑟
𝑟! ∑ ∑

(−1)𝑗+𝑘

(1 + 𝑗 + 𝑘)1+𝑟
(

𝜆 − 1

𝑗
)

∞

𝑘=0

(
𝜆 + 𝑘

𝑘
)

∞

𝑗=0

. 

 

2.2.2.  Moment Generating Function 

 

The moment generating function (MGF) offers an 

alternative approach for analytical characteristics instead 

of directly working with PDFs. Let 𝑋 be an 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) random variable with the PDF given by 

Equation (4). Then, the MGF of 𝑋 

 

𝑀𝑋(𝑡) = ∫ 𝑒𝑡𝑥𝑓(𝑥; 𝜃, 𝜆) 𝑑𝑥
∞

0

 

= ∫ 2𝜆𝜃
𝑒𝑡𝑥

𝑒𝜃𝑥 − 𝑒−𝜃𝑥
(

1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆

𝑑𝑥.
∞

0

 

 

Using the transformation 𝑢 = 𝑒−𝜃𝑥, we write 

 

𝑀𝑋(𝑡) = ∫
2𝜆𝜃𝑢−

𝑡
𝜃

1 − 𝑢2
(

1 − 𝑢

1 + 𝑢
)

𝜆

𝑑𝑢 
1

0

 

= 2𝜆𝜃 ∫ 𝑢−
𝑡
𝜃(1 − 𝑢)𝜆−1(1 + 𝑢)−𝜆−1𝑑𝑢

1

0

. 

 

By applying Equation 3.197.3 provided in [44], we 

obtain the MGF as 

 

𝑀𝑋(𝑡) = 𝐵 (1 −
𝑡

𝜃
, 𝜆) 

× 𝐹12
 (𝜆 + 1,1 −

𝑡

𝜃
; 1 + 𝜆 −

𝑡

𝜃
; −1) 

 

where 

 

𝐵(𝑎, 𝑏) = ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1 𝑑𝑡
1

0

  

 

is the beta function and 

 

𝐹12
 (𝑎, 𝑏; 𝑐; 𝑧) = ∑

(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

⋅
𝑧𝑛

𝑛!

∞

n=0

  

 

is the Gauss hypergeometric function and (𝑎)𝑛 =
 𝑎(𝑎 +  1) ⋯ (𝑎 +  𝑛 +  1). 

 

2.2.3.  Quantile Function 

 

The quantile function of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution is given by 

 

𝑄(𝑢; 𝜃, 𝜆) =
1

𝜃
log (

1 + 𝑢1 𝜆⁄

1 − 𝑢1 𝜆⁄
). (6) 

 

Equation (6) indicates that the median of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution is written as  

 

𝑄(0.5; 𝜃, 𝜆) =
1

𝜃
log (

1 + 0.51 𝜆⁄

1 − 0.51 𝜆⁄
). (7) 

 

Additionally, random numbers from the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) can be obtained by using the Equation (6) by 

the following algorithm: 

 

S1. Generate a uniform random number from the interval 
[0, 1]. 
S2. Run the quantile function in Equation (6) on the 

uniform random number in S1. 

 

2.2.3. Stress-Strength Reliability 

 

Stress-strength reliability is denoted as R and is defined 

by the relation 𝑅 = 𝑃(𝑌 < 𝑋), where Y and X represent 

the stress and strength random variables, respectively. 

The stress-strength reliability for the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

model is derived using Proposition 1. 

 
Proposition 1. Given 𝑌 and 𝑋 independent stress-

strength random variables having 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution with parameters (𝜃, 𝜆1)  and (𝜃, 𝜆2), 

respectively, the stress-strength reliability is obtained as  

 

𝑅 = 2𝜆2 ∑(−1)𝑗

∞

𝑗=0

((
𝜆1 + 𝜆2 + 𝑗

𝑗
) 𝐵(𝑗 + 1, 𝜆1 + 𝜆2)

− (
𝜆2 + 𝑗

𝑗
) 𝐵(𝑗 + 1, 𝜆2)) 
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Proof:  

 

By definition, 

𝑅 = ∫ (1 − (
1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆1

)
∞

0

 

× {
2𝜆2𝜃

𝑒𝜃𝑥 − 𝑒−𝜃𝑥
(

1 − 𝑒−𝜃𝑥

1 + 𝑒−𝜃𝑥
)

𝜆2

} 𝑑𝑥 

(8) 

 

By simplifications after substituting 𝑢 = 𝑒−𝜃𝑥 in 

Equation (8), we get 

 

𝑅 = 2𝜆2 ∫ (1 − 𝑢)𝜆1+𝜆2−1(1 + 𝑢)−𝜆1−𝜆2−1
1

0

𝑑𝑢 

−2𝜆2 ∫ (1 − 𝑢)𝜆2−1(1 + 𝑢)−𝜆2−1
1

0

𝑑𝑢 

(9) 

 

Utilizing the binomial expansion as outlined in Equation 

(9), the stress-strength reliability can be expressed as: 

 

𝑅 = 2𝜆2 ∑(−1)𝑗

∞

𝑗=0

((
𝜆1 + 𝜆2 + 𝑗

𝑗
) 𝐵(𝑗 + 1, 𝜆1 + 𝜆2)

− (
𝜆2 + 𝑗

𝑗
) 𝐵(𝑗 + 1, 𝜆2)) 

 

This concludes the proof. 

 

2.2.3. Maximum Likelihood Estimation 

 

Consider 𝑋1, 𝑋2, … , 𝑋𝑛 as a set of independent and 

identically distributed samples which are drawn from the 
𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution. The log-likelihood 

function of the parameters of the distribution is 

formulated as 

 

ℓ(𝜃, 𝜆) = 𝑛log2 + 𝑛log𝜆 + 𝑛log𝜃 

   +𝜆 ∑ log (
1 − 𝑒−𝜃𝑥𝑖

1 + 𝑒−𝜃𝑥𝑖
)

𝑛

𝑖=1

− ∑ log(𝑒𝜃𝑥𝑖 − 𝑒−𝜃𝑥𝑖)

𝑛

𝑖=1

 
(10) 

 

By taking the derivative of the log-likelihood function 

presented in Equation (10) concerning the parameters 𝜃 

and 𝜆, the log-likelihood equations are written, 

respectively, as 

 

𝜕ℓ

𝜕𝜃
=

𝑛

𝜃
+  𝜆 ∑ (

2𝑥𝑖𝑒𝜃𝑥𝑖

𝑒2𝜃𝑥𝑖 − 1
)

𝑛

𝑖=1

− ∑ (
𝑥𝑖(𝑒2𝜃𝑥𝑖 + 1)

𝑒2𝜃𝑥𝑖 − 1
)

𝑛

𝑖=1

= 0, 

(11) 

 

and 

 

𝜕ℓ

𝜕𝜆
=

𝑛

𝜆
+ ∑ log (

1 − 𝑒−𝜃𝑥𝑖

1 + 𝑒−𝜃𝑥𝑖
)

𝑛

𝑖=1

= 0. (12) 

 

Given that the likelihood equations (11) and (12) lack a 

closed-form solution, we must employ some iterative 

methods to obtain the maximum likelihood estimates 

(MLE) for the parameters of the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) 

distribution. In this study, the ‘optim’ function in R is 

utilized to compute these likelihood estimates. 

 

3. Results 

 

This section delves into the properties and efficacy of the 

proposed 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution, utilizing both a 

computer experiment and an analysis of real-world data. 

 

3.1. Simulation Experiment 

 

A simulation experiment was performed to examine the 

properties of the Maximum Likelihood Estimators 

(MLEs), which are discussed in detail in Section 2. Table 

1 presents the sample size, 𝑛, along with different values 

of the distribution parameters 𝜃 and 𝜆. It also includes the 

biases and Mean Squared Errors (MSE) of the parameter 

estimates, derived from 5000 repeated experiments. The 

data in Table 1 suggests that the MLEs display a positive 

bias. However, the MLEs of the parameters are 

asymptotically unbiased. Moreover, as anticipated, the 

MSEs of the MLEs of the parameters converge to zero as 

the sample size increases. 

 
3.2. Real – World Dataset Application 

 

In this section, we compare the performance of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution with the performance of some 

well-known distributions using a real-world dataset. The 

data for this study focuses on the maximum flood level 

of the Susquehanna River in Harrisburg, Pennsylvania. 

These levels are measured in millions of cubic feet per 

second (cfs) [45, 46], and it is called the flood data. The 

performance of the proposed distribution was compared 

with the Weibull, Beta, Kumaraswamy [35], 𝑈𝐸𝐻𝐿 and 

𝐷𝑈𝑆 − 𝑈𝐸𝐻𝐿 [41] distributions. The PDFs fot the 

examined distributions are presented below: 
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Table 1. Bias and MSEs of MLEs for selected parameter values for the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution.  

   Bias MSE 

𝜃 𝜆 𝑛 𝜃 𝜆 𝜃 𝜆 

2 2 50 0.05055 0.13872 0.07496 0.26700 

  100 0.02098 0.05780 0.03504 0.10325 

  200 0.01128 0.02667 0.01705 0.04482 

  300 0.00687 0.01722 0.01108 0.02959 

  500 0.00385 0.00889 0.00665 0.01745 

0.5 2 50 0.01262 0.13861 0.00468 0.26697 

  100 0.00525 0.05781 0.00219 0.10324 

  200 0.00283 0.02674 0.00107 0.04481 

  300 0.00169 0.01702 0.00069 0.02962 

  500 0.00096 0.00891 0.00042 0.01746 

2 1.5 50 0.05294 0.09102 0.08372 0.12490 

  100 0.02197 0.03793 0.03916 0.04963 

  200 0.01185 0.01738 0.01906 0.02184 

  300 0.00715 0.01119 0.01237 0.01446 

  500 0.00400 0.00567 0.00740 0.00854 

 

Table 2. Parameter estimates, comparison criteria values and AD test results for the flood data. 

 𝜃 𝜆 AIC BIC −2ℓ 

AD 

(stat) 

AD 

(p-value) 

Weibull 3.5259 0.4689 −22.5280 −20.5365 −26.5280 0.8213 0.4643 

Beta 6.7565 9.1110 −24.1245 −22.1330 −28.1245 0.7327 0.5302 

Kumaraswamy 3.3632 11.7888 −21.7324 −19.7409 −25.7324 0.9321 0.3936 

UEHL 3.5050 7.0242 −22.4045 −20.4131 −26.4045 0.8471 0.4467 

DUS-UEHL 3.0336 6.6478 −21.7484 −19.7569 −25.7484 0.8648 0.4351 

EG-UEHL 11.1194 30.2369 −28.2789 −26.2874 −32.2789 0.2941 0.9420 

 

 

  

• Weibull distribution 

 

𝑓𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑥; 𝜃, 𝜆) =
𝜃

𝜆
(

𝑥

𝜆
)

𝜃−1

𝑒−(𝑥 𝜆⁄ )𝜃
,   𝜃, 𝜆 > 0  

 

• Beta distribution 

 

𝑓𝐵𝑒𝑡𝑎(𝑥; 𝜃, 𝜆) =
1

𝐵(𝜃, 𝜆)
𝑥𝜃−1(1 − 𝑥)𝜆−1,   𝜃, 𝜆 > 0  

 

• Kumaraswamy distribution 

 

𝑓𝐾𝑤(𝑥; 𝜃, 𝜆) = 𝜃𝜆𝑥𝜃−1(1 − 𝑥𝜃)
𝜆−1

,   𝜃, 𝜆 > 0  

 

• 𝐷𝑈𝑆 − 𝑈𝐸𝐻𝐿 distribution 

 

𝑓𝐷𝑈𝑆−𝑈𝐸𝐻𝐿(𝑥)

=
1

𝑒 − 1
2𝜆𝜃𝑥𝜃−1

(1 − 𝑥𝜃)
𝜆−1

(1 + 𝑥𝜃)𝜆+1
𝑒

1−(
1−𝑥𝜃

1+𝑥𝜃)

𝜆

,   𝜃, 𝜆 > 0. 
 

 

 

We use the maximum likelihood method to estimate the 

parameters of all compared distributions. The goodness-

of-fit for each model is evaluated using the Anderson-

Darling test statistic (A-D (stat)) and its corresponding p-

value (A-D (p-value)). To assess the models' relative 

performance, we consider the log-likelihood, Akaike 

information criterion (AIC), and Bayesian information 

criterion (BIC). The formulas for calculating AIC and 

BIC are presented below: 

 

 

AIC = 2𝑚 − 2ℓ(𝜃, 𝜆)   and   BIC = 𝑚 log 𝑛 − 2ℓ(𝜃, 𝜆) 

 

Here, 𝑚 represents the number of parameters, 𝑛 is the 

sample size of the dataset, and ℓ is the maximum value 

of the likelihood function for the respective distribution.  

 

The maximum likelihood estimates, information criteria 

and goodness-of-fit results for all the models for flood 

data are given in Table 2. According to the A-D (stat) and 

A-D (𝑝-value) in Table 2, the compared distributions 
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offer a good fit for modeling the flood data. Table 2 

shows that the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆) model gives the 

smallest −2ℓ, AIC and BIC values. The 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) is followed by the beta and Weibull 

distributions in terms of these criteria. Hence, the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) model stands out among its competitors due 

to its exceptional performance in modeling the flood 

data. Also, Figure 2 visually presents the empirical and 

fitted curves derived from the flood data. 

 

 
 

Figure 3. The distribution functions for the flood dataset 

(smooth: empirical, dashed: fitted) 

 

4. Conclusion 

 

This paper is based on the principle of enhancing the 

performance of a unit distribution through a G-family 

transformation. Particularly, the paper introduces a novel 

statistical distribution, the the 𝐸𝐺 − 𝑈𝐸𝐻𝐿(𝜃, 𝜆), built 

upon the G-family transformation. This new distribution 

exhibits enhanced functional capabilities and a 

strengthened mathematical structure. We delve into the 

distribution's key characteristics, including moments, the 

moment-generating function, the quantile function, and 

its relevance to stress-strength reliability analysis. These 

explorations offer a thorough understanding of the 𝐸𝐺 −
𝑈𝐸𝐻𝐿(𝜃, 𝜆) distribution, opening doors for both 

theoretical advancements and applications in various 

practical settings. 

 

To investigate the behavior of the proposed distribution's 

parameter estimates, we conducted a computer 

simulation. Additionally, we compared the performance 

of the EG-UEHL model against established models using 

real-world data. The real-data analysis revealed that the 

EG-UEHL model outperforms the other models 

according to the AIC and BIC criteria. 
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