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ABSTRACT. In this paper, we employ the concept of operator means as well as some operator techniques to establish
new operator Bellman and operator Holder type inequalities. Among other results, itis shown thatif A = (A¢);cq and
B = (Bt)¢cq are continuous fields of positive invertible operators in a unital C*-algebra ./ such that [, A du(t) <
I, and |, q Bt du(t) < I, and if wy is an arbitrary operator mean with the representing function f, then

(1 [ ArorBoau)) > (1 = [ Aran)) o (10 = [ Bduto)

for all 0 < p < 1, which is an extension of the operator Bellman inequality.
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1. INTRODUCTION AND PRELIMINARIES

Let £ () denote the C*-algebra of all bounded linear operators on a complex Hilbert space
€ with the identity I . An operator A € () is called positive if (Az,z) > 0 forall z € #
and in this case we write A > 0. We write A > 0 if A is a positive invertible operator. The
set of all positive invertible operators is denoted by .Z(7¢) ... For self-adjoint operators A, B €
L), wesay A < Bif B— A > 0. Also, an operator A € .Z () is said to be contraction,
if A*A < Ir. The Gelfand map f(t) — f(A) is an isometrical *-isomorphism between the
C*-algebra C(sp(A)) of continuous functions on the spectrum sp(A) of a self-adjoint operator
A and the C*-algebra generated by A and I. If f, g € C(sp(A)), then f(t) > g(t) (t € sp(A4))
implies that f(A) > g(A).

Let f be a continuous real valued function defined on an interval J. It is called operator
monotone on J if A < B implies f(A) < f(B) for all self-adjoint operators A, B € .Z () with
spectra in J. It is said to be operator concave on J if Af(A) + (1 — A f(B) < f(AA+ (1 —A)B)
for all self-adjoint operators A, B € £ (/) with spectra in J and all A € [0, 1], see, e.g., [10].
Every nonnegative continuous function f is operator monotone on [0, +o0) if and only if f is
operator concave on [0, 4+00), see [11, Theorem 8.1]. A map ¥ on .Z () is called positive if
U(A) > 0 whenever A > 0 and is said to be unital if U(I,r) = I,. If U is a unital positive
linear map and f is an operator concave function on an interval J, then

(1.1) f(U(A) > T(f(A)) (Davis-Choi-Jensen’s inequality)
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Extensions of the operator Bellman and operator Holder type inequalities 13

for every self-adjoint operator A on .7#, whose spectrum is contained in J, see also [11, 17]. Let
A and B be bounded linear operators on a Hilbert space #. The operator A ® B on ¢ ® J¢ is
defined by (A ® B)(z ® y) = Az ® By for every z,y € . From this definition, it is clear that
the tensor product of positive operators is positive. Furthermore, for operators A, B,C, D €
L (), by the definition of the tensor product, we have (A ® B)(C ® D) = AC ® BD and if A
and B are positive, then (A® B)" = A"® B" for all r > 0. For a given orthonormal basis {e; } of
a Hilbert space ¢, the Hadamard product A o B of two operators A, B € .Z () is defined by
(Ao Bej,ej) = (Ae;, e;)(Be;, e;). It is known that the Hadamard product can be presented by
filtering the tensor product A ® B through a positive linear map. In fact, Ao B = U*(A® B)U,
where U : /' — € @ J is the isometry defined by Ue; = e; ® e;, see [3, 4, 9, 23].

The axiomatic theory for operator means of positive invertible operators has been developed
by Kubo and Ando [16]. A binary operation p on .Z () is called an operator mean, if the
following conditions are satisfied:

(i) A<Cand B<Dimply ApB<CpD;
(ii)) A, | Aand B, | B imply A,pB, | ApB, where A,, | A means that A; > Ay > ---
and A,, — A as n — oo in the strong operator topology;

(ili) T*(ApB)T < (T*AT)p(T*BT) (T € L (H));

(iV) I;g)pfjf :ij.

Itis easy to see that T*(A p B)T = (T* AT) p (T* BT) for all invertible operators T'. In particular,
(aApaB) =a(ApB), (o> 0). There exists an affine order isomorphism between the class of
operator means and the class of positive operator monotone functions f defined on (0, c0) via
F@®) e = Ip p (L) (t > 0) with f(1) = 1. In addition,

ApB=Af(A7 BA?)A?

for all A, B € £ (). The operator monotone function f is called the representing function
of p. If f and g are the representing functions of the operator means p; and p,, respectively,
then f < g on (0,+00) if and only if (A py B) < (A py B) for all positive invertible operators

1y -1
Aand B. The functions f;,(t) = t*, fv,(t) = (1 — p) + pt, and f (t) = (M#) on

- _1\ M

(0, 00) give the operator weighted geometric mean Af, B = A> (AT1 BATI) A3, the operator

weighted arithmetic mean AV, B = (1 —u)A+ 1B, and the operator weighted harmonic mean
- “1y -1

Al B = (M) , respectively, for all © € (0,1). An operator mean p is symmetric

if ApB = BpA forall A,B € Z(s¢);. For a symmetric operator mean p, a parametrized
operator mean p;, 0 < ¢t < 1, is called an interpolational path for p if it satisfies

(1) ApoB=A,Ap)2B=ApB,and Ap; B =B;
(2) (Ap,B)p(ApyB) = Appa B forall p,q € [0,1];
(3) Themap t € [0,1] — A p; B is norm continuous for each A and B.

T . . .
Az are some typical interpolational means

1
—1 -1
. ATy
The power means Am, B = Az W)

for r € [—1, 1]. Their interpolational paths are
Am, B = A% ((1 — ) + t(A_TlBA_Tl)’”) TAR (telo,1).

In particular, Am, B = AV,B = (1 — t)A + tB, Amo,B = Af;B, and Am_,,B = A,B =
(1-t)A~ '+ tB’l)_l. If ¥ is a unital positive linear map on .#(#°) and w is an operator
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mean, then we have
(1.2) U(AwB) < U(A)w¥(B)

for all positive invertible operators A and B, see [11, Theorem 5.8]. For more information about
operator means, see [11, 16].
The classical Holder inequality asserts that

n P n e n 1 l
(1.3) dowi| |\ w | = ey
j=1 j=1 j=1

where z;,y; (1 < j < n) are positive real numbers and p, ¢ > 0 with zlv + % =1.Forp=qg=2
the above inequality states that the celebrated Cauchy-Schwarz inequality.

Let A;,B; € Z(4)+ (1 < j < n)and w be an operator mean. Then the operator mean w is
concave on pairs of positive invertible operators i.e.,

(14) iA7 w iBJ i A wB
j=1 j=1 j=1

where for the weighted operator mean is an extension of the operator Holder inequality as
follows

(1.5) A6 | Y B | =D (A44,B;)  forallo<wv <1
j=1 j=1 j=1

As a special case of the inequality (1.4), we have
(1.6) (A+B)w(C+D)>(AwC)+ (BwD)

for all positive invertible operators A, B, C, D and an operator mean w, see [11, Theorem 5.7].
Bellman [6] proved that if p is a positive integer and a, b, a;,b; (1 < j < n) are positive real
numbers such that >, a < a” and }77_, b <P, then

1/p 1/p 1/p
n n n

(CL"’b)p—Z(aj“’bj)p > ap—Zaﬁ»’ + bP—Zbé’
Jj=1 Jj=1 Jj=1

A multiplicative analogue of this inequality for p = 2 is due to Aczél, see [1] and its oper-
ator version in [20]. Popoviciu [22] extended Aczél’s inequality for p > 1. During the last
decades, several generalizations, refinements, and applications of the Bellman inequality in
various settings have been given and some results related to integral inequalities are presented,
see[1,3,5,6,7,8,12,15,18, 19, 20, 25].

In [19], the authors showed the following generalization of the operator Bellman inequality

p
1.7) Le — | Y _Ajw; B > |\ Le =Y Ay |wp | Le =Y B |,
j=1 j=1 j=1

where A;, B; (1 < j < n) are positive invertible operators such that >>7_, A; < Iy, >3, B; <
Iy, wy is a mean with the representing function fand 0 < p < 1.

Let o7 be a C*-algebra of operators acting on a Hilbert space, let € be a locally compact
Hausdorff space, and let x(t) be a Radon measure on 2. A field (A;).cq of operators in &7 is
called a continuous field of operators if the function ¢t — A; is norm continuous on {2 and the
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function ¢ — ||A¢| is integrable. One can form the Bochner integral [, A; du(t), which is the
unique element in & such that

18) w( [ a du(t)) — [ et dutt)

for every linear functional ¢ in the norm dual «7* of <7, see [13]. Let C(2, <) denote the set
of bounded continuous functions on 2 with values in ./, which is a C*-algebra under the
pointwise operations and the norm ||(A;)|| = sup,cq || A¢||, see [13].

In this paper, by the concept of operator means, we obtain a refinement of the inequalities
(1.2). By using this refinement, we present some refinements of the operator Holder inequality
(1.5) and the operator Bellman inequality (1.7) for positive invertible operators. Furthermore,
we generalize and refine some derived results for continuous fields of operators in a C*-algebra
o

2. REFINEMENTS OF SOME GENERALIZED OPERATOR INEQUALITIES

In this section, by the concept of operator means, we present some refinements of the oper-
ator Holder inequality and the operator Bellman inequality. We need the following lemmas to
illustrate our result.

Lemma 2.1 ([18]). Let A, B € £()+ be such that A is contraction, let h be a nonnegative operator
monotone function on [0, +00), and let wy be an operator mean with the representing function f. Then

AwporB < h(AwyB).
In the following lemma, we present an operator inequality for three arbitrary operator means.
Lemma 2.2. Let o, 7, p be three arbitrary operator means such that o < 7 or 7 < 0. Then
(2.9 A<(AoB)p(ATB)<B
for all positive invertible operators A and B such that A < B.

Proof. Assume that A and B are positive invertible operators such that A < B. Applying the
properties of operator means, we have

A=AcA<AocB<BoB=B and A=A7A<ATB<B7tB=B.
Moreover, if 0 < 7,i.e., Ac B < A1 B, then

(2.10) (A<) AocB<(AoB)p(ATB) < ATB (< B)
andif 7 < o,ie, AT B < Ao B, then
(2.11) (AS) ATB<(AoB)p(ATB)< AcB (gB).

Combining inequalities (2.10) and (2.11), we get
A< (Ao B)p(ATB) < B,
as required. O

Remark 2.1. Assume that o, T, p1, p2 are arbitrary operator means such that o < tort < cand A, B
are positive invertible operators such that A < B. Then, applying Lemma 2.1, we get

A< (AoB)p1 (ATB)< (Ao B)ps(ATB) < B,
where p1 < po. To see this, note that, if py < ps, then for the positive invertible operators Ao B and

AT B, we have
(Ao B)p1 (ATB) < (Ao B) p2 (AT B).
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Moreover, by Lemma 2.1, we have
A< (Ao B)p1 (AT B) and (Ao B)p2(ATB)<B

for arbitrary operator means o, T with o < 7 or T < . Combining the above inequalities, we get desired
result.

Remark 2.2. Assume that oy and o4 are arbitrary operator means with the representing functions f
and g, respectively, with f < gor g < f. As a special case of Lemma 2.1 for p = Vy, (0 < X < 1), we
have

(2.12) A< Ao1_xfiagB < B
for all positive invertible operators A and B such that A < B. To see this, note that
(Ao; B)Va(AoyB) = (1— N)AZf(A? BA7)A% + AA2g(A> BA7 )A?
T ((1 AN f(ATBAT) + Ag(A%lBA%l))A%
= Aoa-xnsrg B-
Hence, by Lemma 2.1, we get
A< (AoyB)Va(AoyB) = Acn_xyp+rg B< B,
as required.

As an application of the above result, we have the next lemma, which is a refinement of the
inequality (1.2).

Lemma 2.3. Let o, T, p, w be arbitrary operator means such that o < 7 or 7 < o, and let W be a unital
positive linear map on £ (€). Then

(¥(A)w ¥(B))" > (\Il”(Aw B)o (U(A)w \I/(B))p) p (\I/p(Aw B) 7 (U(A)w \I:(B))”)
(2.13) > UP(Aw B)
for all positive invertible operators A, Band 0 < p < 1.

Proof. Applying the inequality (1.2) and the operator monotonicity of g(¢t) = t*, (0 < p < 1),
we have

UP(Aw B) < (U(A)w¥(B))P.

Replacing A by ¥?(Aw B) and B by (¥(A)w¥(B))P, respectively, in the inequality (2.9), we
have

UP(AwB) < (\pr(Aw B)o (¥(A)w \P(B))p) p (\I/p(Aw B)r (¥(A)w \Il(B))p>
< (¥(A)w¥(B))”
for all operator means o, 7, p, w such that ¢ < 7 or 7 < ¢, as required. O

In the first result of this section, we present a refinement of the operator Holder inequality
(1.4) as follows.
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Theorem 2.1. Let A;, B; € £()+ (1 < j < n)ando,, p,w be arbitrary operator means such that

o<Ttort <o.Then
Jj=1 Jj=1 j=1

[£2)-(5)
(B | () ()

> Z(AWBJ'))

=1

p

Y

<
3

<.

foro<p <L

Proof. Assume that A;, B; € £ ()1 (1 < j < n) and 0,7, p,w are arbitrary operator means
with o < 7or7 < o. Note thatif A; & ---® A, and B; & - -- ® B,, are two diagonal operator
matrices, then by the definition of operator means, for the operator mean w, we have

(Aig- @A )w(B1&-- @ By,) = (AwB)) ® -+ & (AywBy,).

Replacing Aby A; @ --- @ A, and B by B; @ --- @ B,, in the inequality (2.13) and taking ¥
in the inequality (2.13) to be the unital positive linear map defined on the diagonal blocks of
operators by W(A; @ --- ® A,) = & >j—1 Aj, we have the desired result. O

As a consequence of Theorem 2.1, we have a refinement of the operator Holder inequality
involving the weighted geometric mean.

Corollary 2.1. Let Aj, B; € Z ()4 (1 < j < n)and o, T, p be arbitrary operator means such that

oc<rtort<o. Then
. P
(Z(Ajﬁqu))

j=1

< {(i(Ajﬁqu))pU {(Zﬁ:fb) o (i:: Bj)r]
[l -5
o {(50)(50)

forallv € [0,1] and 0 < p < 1. In particular, for T = o, we have

(or) “fpean] £ )]
SR

p

3

M:
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forallv € [0,1]and 0 < p < 1.

Remark 2.3. Note that if 0 < s < t < 1, then Af,B < Af;B for positive invertible operators
A and B such that A < B. Therefore, for positive invertible operators A;, B; (1 < j < n) with
A;B;j=BjA; (1<j<n)and o =1t p=V,and T =4, in Corollary 2.1, we have

S atpy
=1

A\
N =
N
=
AN
=
~_
-
|
W
o
ﬂ 3
b
.
~_
0
A
=
<
INgb
&
~
N
V)

IN
<
IR
=
N————
-
|
S
<
10
&
N————
AN

forall 0 < s <t <1, which is an extension and a refinement of the classical Holder inequality.

In the following result, we obtain a refinement of the generalized operator Bellman inequal-
ity (1.7).

Theorem 2.2. Let A;, B; € ()4 (1 < j < n) be such that 2?21 A < I, Z;—L:l B; < Iy,
and let wy be an operator mean with the representing function f and 0 < p < 1. Then

<(J._1

Mz

E

Ud

~

X

|
1M

o
~_—

£

~

X

|
1M

S
~
~—

n n n v n p
p (D (AjwrBy) + [ L = > Aj |wp | 1w =D B; - Z(Ajwaj)>
j=1 j=1 j=1 j=1
n p
< (Iﬁf - Z(AijBj))
j=1

for all arbitrary means pand 0 < p <v < 1.
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Proof. Applying Theorem 2.1to X;,Y; € £ ()4 (1 < j < n+1) and to two arbitrary operator
means p,wy, and to the weighted geometric means ,, and i, such that 0 < p < v <1, we get

n+1 n+1
(2.15) < X; | wy ;| .
j=1 7j=1

By putting Xj = Aj, }/J = Bj (1 S] < n) Xn+1 = I%ﬂ — 2?21 Aj, and Yn+1 = L;f — 2?21 Bj,
and taking o = §, and o = 4, in the inequalities (2.15), we get

Z ]wa (I%—ZAJ) U.Jf (I%—ZBJ'>
j=1 j=1 j=1

[(zﬂ: AjwsBj) +(Iﬁa ZA)wf (If ZB)) Iﬂwfff)]
[( AjwrBj) +<I%o ZA)W (1% ZB))ﬁl, waf)f)]

< Uspwilw)

M:

or equivalently,

Z(Ajwa )+ (nyZA ) Wy (nyZBj)

Jj=1 j=1

g () -]
p [(g AjwsB;) + (1% ;A ) wy (1%—;23]-)) Mjf]

<Iu, for0<pu<v<l1.
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Using the definition of the operator means §, and #,, we have

zn:(A wrB;) + (I%o ZA ) w (1% —iBj)

j=1 j=1

< (i(Ajwaj) + (ij — zn:AJ) wg (ij — zn:B])>
p (Zn:(Ajwaj) + (Iﬁf - Zn:Aj) wy (Iﬁf - i:Bj>)

<l

for all arbitrary means p and 0 < p < v < 1. Hence,

(2:: jwrBj) +(ij ;A)wf(fﬁ—jz:Bj))

( Ajw;Bj) + (I ZA ) wy (I—ZH:BJ-»V —i(Ajwaj)

Jj=1 Jj=1
SI%—Z(Ajwaj), for0<pu<v<l.
j=1

HM:

It follows from the operator monotonicity of g(t) = t? (0 < p < 1), the above inequalities, and
Lemma 2.1 that

as required. O
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3. SOME EXTENSIONS FOR CONTINUOUS FIELDS OF OPERATORS

Let ./ be a C*-algebra of operators acting on a Hilbert space, let {2 be a compact Hausdorff
space, and let (A;).cq be a continuous field of operators in 7. In this section, by using the con-
cept of the continuous fields of operators, we present some results involving the operator Holder
type inequalities and the operator Bellman type inequalities.

We need following lemma to illustrate our results.

Lemma 3.4. Let o7 be a C*-algebra, Q) be a compact Hausdorff space equipped with a Radon measure pu,
and let A = (A¢)ieq and B = (By)ieq in C(Q, o) be continuous fields of positive invertible operators.
Then

616 [ [(AoB)duvants) = [ Aduttyo [ Beduts) (4B ).

Proof. Assume that o7 is a C*-algebra of operators acting on a Hilbert space, (2 is a compact
Hausdorff space, and (A;).cq is a continuous field of operators in <. Using [21, Page 78], since
A :t— A;is a continuous function from ) to <7, for every operator A; € & and for every
€ > 0, we can consider an element of the form

IN(A¢) = T Ate)p(Br) = o A p(Er),
where the E},’s form a partition of (2 into disjoint Borel subsets, and
tkEEkg{teQHAt_AtkHSE} (1§k‘§n),

with A = {Ey,--- ,E,,e}. Then (I (A¢))xea is a uniformly convergent net to [, Aydu(t). It
follows from the norm continuity of the tensor product of two operators that for any operator
B € o/, we have

(3.17) /Q (A, @ B) dp(t) = ( /Q A, du(t)> © B.

Also, by using the definition of the Bochner integral for any operator X € &7, we have [, (X* A, X)du(t)
X* ([, Avdu(t)) X. Therefore, for an arbitrary operator B € </, we get

[ o Brano = [ V(s Bvaun =v- [ (4o B)duty
Q Q Q

(3.18) = </QAtd/,L(t)®B>V:/QAtdu(t)oB (A, B € o),
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where V' : 5 — S ®  is the isometry defined by Ve; = e¢; ® ¢;, for a given orthonormal
basis {e;} of the Hilbert space 7. Hence, we have

//AtoB dp(t) du(s //V (A¢ ® By)Vdu(t) du(s)

= [v ([ Baw) vas oy Gs)

= [ v ([ Actn) @ 2.) vauts) @y G17)
_/Q</Q,4t du(t)) o By dp(s)

— /Q U* ((/Q Ay du(t)> ®Bs) Udpu(s)

o ([ ([ an0) o Boau) ) U oy )
o ([ ) o ([ Boaw)) o Gy e17)

:/Atd,u(t)o/Bsd,u(s) for Ay, B, € <.
Q Q
O

The first result of this section is the Holder inequality for continuous fields of operators in-
volving an arbitrary operator mean. The main ideas of the following result are stimulated by

[4].

Theorem 3.3. Let o7 be a C*-algebra, ) be a compact Hausdorff space equipped with a Radon measure
w, let A = (Ay)ieq and B = (By)ieq in C(Q, &) be continuous fields of positive invertible operators,
and let wy be an operator mean with the representing function f. Then

(3.19) ( | 4. du(S)) wf ( /| Bsdms)) > [ (Avss B dits),

Proof. For the continuous fields of positive invertible operators A = (A;)ieq € &/ and B = (By)ieq €
</, we put the positive unital linear map

T(S) = /Q Z*SZdu(t) (S € o),

where Z = Bt% (Jo Bs du(s)) > Thus, we have

</Q i (t)) wr ( / B; du(s))

_< B dp(s ) (( B dp(s ))é/ﬂAtdu(t) </QBsd,u(8)> 5) </QBsdu(s)>%

:</QBsdu > f( < Bsdu(8)>5 BZ(B; P A,B[ %) f(/QBSdu(s)> du(t))
< B, du(t) )

S~

,_.
Nl

X

—
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QBS du(s) éf(/Q Z*BﬁAtBtézclu(t)) (/Q B du(t)>2

7~ N N
2 o}

o v}

w »

Qu SN
= =
— —

©w ®
S~— S~—

S~
[Nl [SI

(by (1.1))

as required. O

Remark 3.4. In the discrete case Q = {1,--- ,n}, for positive invertible operators Ay,--- , A, and
By, -+, By, Theorem 3.4 enforces the inequality (1.4).

Remark 3.5. Assume that Q = [0,1] is with the Lebesgue measure and o/ = R is the real numbers.
Then C([0,1],R) is the C*-algebra involving all continuous real-valued functions over [0,1]. As a
special case of Theorem 3.3, we have the integral version of the Holder inequality as follows

(/abf(w) d:c) w </abg(x) da:) > /ab(f(x)wg(x))d%

where f,g € C([0, 1], R) are positive functions and w is an operator mean.

Using the inequality (2.9), we obtain a refinement of the Holder inequality for continuous
fields of operators (3.19) as follows.

Theorem 3.4. Let o7 be a C*-algebra, ) be a compact Hausdorff space equipped with a Radon measure
w,let A = (Ay)ieq and B = (By)ieq in C(Q, &) be continuous fields of positive invertible operators,
and let o, T, p,w be arbitrary operator means such that o < 7 or 7 < 0. Then

([ ettt} ([ Boants)) = |( [ ctrwomiane) o |( [ acaue)o ([ poaus) )] |
() [ )] )]
> [ (4r B dute)
Proof. Using the inequality (3.19) and replacing

A by /Q(Atht)dp(t) and B by (/QAtd,u(t)>w</QBsd,u(s)>

in the inequality (2.9), respectively, we get the desired result. O

In the next result, we obtain an inequality for continuous fields of operators.
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Theorem 3.5. Let &7 be a C*-algebra, let Q2 be a compact Hausdorff space equipped with a Radon
measure i, let A = (A¢)ieq and B = (By)iecq in C(Q, o) be continuous fields of positive invertible
operators such that [, Ay dpu(t) < Aand [, By du(t) < B for some positive invertible operators A, B €
of , and let wy be an arbitrary operator mean with the representing function f. Then

(3.20) ((Awa)—/Q(Atwat)du(t))p2 (A /Atdu )wf,,( /Btdu )

forall0 <p <1

Proof. Assume A = (A;)icq and B = (By)eq are continuous fields of positive invertible op-
erators such that [, Ay du(t) < A and [, By du(t) < B for some positive invertible operators
A, B € &/. Then we have

Awf3=< /Atdu /Atdu )w (B—/QBtdu(tH/QBtdu(t))
< /Atdp >wf( /Btdu >+</QAtd,u(t)wf/QBtdu(t)>

(by the inequality (1.6))

> (4= [ acau) s (8- [ Beantn)) + ([ Avwr B auto).

Hence, by the above inequality, the operator monotonicity of f(¢) = t? (0 < p < 1) and Lemma
2.1, we get

(ar8) - [ oy Byautv) = (4= [acaut) s (8- [ Biantr) )
> (4= [ Acautt)) s (B [ Beauty).

as required. O

In the next result, by using Theorem 3.5, we have the operator Bellman inequality for contin-
uous fields in a unital C*-algebra.

Corollary 3.2. Let o/ be a unital C*-algebra, let Q) be a compact Hausdorff space equipped with a Radon
measure i, let A = (A¢)ieq and B = (By)iecq in C(Q, o) be continuous fields of positive invertible
operators such that [ Ay du(t) < I, and [, By du(t) < I, and let wy be an operator mean with the
representing function f. Then

(3.21) (Id - <Atwat)du<t))p > (Id - [ du(t)> wpr <Iﬂz - [ 5 du(t))

forall0 < p <1

Remark 3.6. Assume that C([0,1],R) is the C*-algebra involving all continuous real-valued func-
tions over [0, 1]. As a special case of the inequality (3.21), we have the integral version of the Bellman
inequality as follows

b p b b
<1—/ (g(x)wfh(dex) > (1—/ g(x)dx) Wir (1—/ h(a:)dx) (0<p<1),
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where f, g € C([0, 1], R) are positive functions such that f; g(x)de < 1and ff h(z)dx <1,and wy is
an operator mean with the representing function f. In particular, for wy = §1, we have

1—/ab\/mda:2\/I—ng(x)da:\/l—/abh(m)dx.

These two above inequalities are the integral version of the Bellman inequality (1.7).

In the next theorem, we present a refinement of the operator Bellman inequality (3.21) for
continuous fields of operators.

Theorem 3.6. Let o/ be a unital C*-algebra, let Q be a compact Hausdorff space equipped with a Radon
measure i, let A = (A¢)ieq and B = (By)ieq in C(Q2, <) be continuous fields of positive invertible
operators such that fQ Apdu(t) < Iy, fQ By du(t) < I, and let wy be an arbitrary operator mean
with the representing function f. Then

(1= [ (Auoy By autt))
> (1= [ et} (1= [ Beauto)) = [ vy B autn))
> <Im —/QAt dﬂ(t)> wye (ch{ —/QBt dM(ﬂ)

forall 0 < p < 1and for two disjoint sets 2y, Qs C Q such that Q = Q; U Qs.

Proof. Assume that A = (A;)icq and B = (By)ieq are continuous fields of positive invertible
operators in a unital C*-algebra & with [, A; du(t) < I, and [, By du(t) < I;. We have

(I,af - /QAt du(t)) we (L«zf —/QBt dﬂ(t>>
= (1 - [t [ an(®)) wy (1~ [ B~ [ B (o)

g(f@f— / Atcw)) oy (1%— / Btdmt))— | e B antr)
(by the inequality (3.20))
<woslig) = [ (A Bo)d(t) - /Q (A wy By) du(t)

(by the inequality (3.20))

Hence, by the above inequalities, the operator monotonicity of f(¢) = t* (0 < p < 1) and
Lemma 2.1, we have

(Id— /Q A dm)wfp (Id— /Q B, du(t))
< ((L% - [ 4 du(ﬂ) wr (Id - [ B du(t)))p

< (1 [ (s By o)
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as required. O

In the next theorem, we present another refinement of the operator Bellman inequality (3.21)
involving continuous fields of operators.

Theorem 3.7. Let o7 be a unital C*-algebra, let ) be a compact Hausdorff space equipped with a Radon
measure i, let A = (A¢)ieq and B = (By)ieq in C(Q, &) be continuous fields of positive invertible
operators such that [, Ay du(t) < Iy and [, By du(t) < Iy, let wy be an arbitrary operator mean with
the representing function f,and let X : s € Q — Ag € [0, 1] be a measurable function. Then

(Id -/ <Aswas>du(s))p
> ((([sz 7/9)\5/13 du(s)> wy (I,pf - /QASBS du(5)>> - /Q(l - )\s)(Aswas)dN(S))p

> (Iﬂ - [ 4. du(s)) wps (IM - [ . du(s))

for0<p<1
Proof. Assume that A = (A¢)ieq and B = (By)icq are continuous fields of positive invertible

operators in a unital C*-algebra < such that [, Ay du(t) < I and [, Bydu(t) < I, and
As € 10,1] (s € Q). First note that

A, dp(s) = /ﬂ(AstsAs)dM: [ Addus) + [ a=20Aduts),

Q

/Q B, dp(s) = / (B,Vx, B.) / MB. du(s / (1= A) By dpu(s),

L, - / NoA, dp(s) > / (1= M)A, du(s) > 0,
Q Q

Q

and

I, —/Q)\SBS du(s) > /9(1 A B. dp(s) > 0.

Then,

(Id— / A, du(8)> wy (I,Qf— /Q B, du(S))

(Id /AAdu() /Q< — XA du(s ) (Id /QABdu /Q(l—As)Bsdu(s))
(1= [ At )or (1= [ aBedn()) ) = [ 100 = 204000501 = A B (s
<(

(by the 1nequa11ty (3.20))

( )\A du())wf(ld Ao B dp(s )

(by the propertles of means)

IN

- [ 0= (A B)auts)
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< <(I,Q¢wfld) —/Q(/\SAS(.uf)\SBS) du(s)) —/Q(l f)\s)(Aswas)d,u(s)
(by the inequality (3.20))
<1, —/Q)\S(Aswas)du(s) —/Qu ) (Awoy Bu)dps)

(by the properties of means)
=1y — / (AswyBs) du(s).
Q

Hence, the operator monotonicity of f(¢) = t” (0 < p < 1) Lemma 2.1, and the above inequali-
ties imply that

(Id —/QAS du(S)) wpr (sz —/QBS du(8)>
< (<I§j - /QAS du(s)) wy <Lz¢ - /QBS d#(3)>)p
< (((Iﬂ —/Q)\SAS du(s)) wp (Iﬂ — /QASBS du(s))) - /Q(l - As)(Aswas)du(@)p

< (I,Qf - /Q(Aswas)dﬂ(S))p

for 0 < p < 1. This completes the proof. O

In the following result, we obtain the operator Holder inequality involving the Hadamard
product of operators. The main ideas of the next result are stimulated by [2, 24].

Theorem 3.8. Let o7 be a unital C*-algebra, let Q be a compact Hausdorff space equipped with a Radon
measure i, and let A = (Ay)ieq and B = (By)eq in C(Q, &) be continuous fields of positive invertible
operators. Then

/Q A du(t) o /Q B, dp(s) > /Q (At By) du(t) o /Q (Aut1—oB.) dp(s)
for0<a <1

Proof. Assume that a,b > 0 and X;, X, € & are positive invertible operators. The Heinz
inequality [14] asserts that

(3.22) a7V 4 a"b T <a+b for0<v <1
If we replace b by o' and take p = 2v — 1 (3.22), then we get
a“+a*<a+al for0<pu<l.
Replacing a by the positive invertible operator X; ® X! in the above inequality, we get
(3.23) XPoX P+ X "X <X, 0 X '+ X' ® X,

1 1
Multiplying both sides of (3.23) by the positive invertible operator X;? ® X7, we have
X[ TMoXlr X TP o X < X291y + 1y @ X2
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1 1
Now, replacing p by 2« — 1, X; by X2, and X; by X2, respectively, in the above inequality, we
get

XtoXl 4 X oX <X, @Iy +1, 09X, for0<a<l.

Now, setting X; = A, %BtAt_ H and X, = A, %BSAS_%, and then, multiplying by At% ® AS% ,in
the above inequality, we get

(AtﬂaBt) ® (Asul—aBs) + (Atﬁl—oth) & (AsﬁaBs) S At & Bs + Bs & At~
Therefore, for the Hadamard product, we have
(AtﬁaBt) o (Asﬁl—aBs) + (Atﬁl—aBt) o (AsﬁaBs) S At o Bs + Bs o At~

Taking the double integral over the above inequality, we get

/Q /Q (AtkaBy) o (Asti—aBy) + (Ak1—aBr) o (Auta By)) du(t) dyu(s)

< /Q /Q (At 0 Bs + B o Ay) du(t) du(s).

Using Lemma 3.4, we have
/Q/Q ((AfaBy) o (Asti—aBs) + (Aifi—aBe) o (AstaBs)) du(t) du(s)
= [AsaBidutt)e [ (AdioaBo)dnte) + [ (AtiaB) du(®)o [ (AaB) duts)
=2 [ (AtaB dnt)o [ (Astr-oBu)duts)

and

/ / (At ©Bs+ Bs o At) du(t) du(s)
QJQ

- </Q Agu(t) o i B, du(s)) +( i BsN(S)O/QAt du(t)>

:2/ Apu(t) 0/ B du(s).
Q Q
Hence, we get
[ aBidutyo [ (Abi-aBdu(s) < [ Amv) [ Boduts),
Q Q Q Q
as required. O
Remark 3.7. In the discrete case Q = {1,--- ,n}, for positive invertible operators Aq,--- , A, and

By, -+, By, Theorem 3.8 enforces the inequality (1.4) for the Hadamard product.
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