Extensions of the operator Bellman and operator Hölder type inequalities

Mojtaba Bakherad* and Fuad Kittaneh

Abstract

In this paper, we employ the concept of operator means as well as some operator techniques to establish new operator Bellman and operator Hölder type inequalities. Among other results, it is shown that if $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ are continuous fields of positive invertible operators in a unital C^{*}-algebra \mathscr{A} such that $\int_{\Omega} A_{t} d \mu(t) \leq$ $I_{\mathscr{A}}$ and $\int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$, and if ω_{f} is an arbitrary operator mean with the representing function f, then $$
\left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} \geq\left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right)
$$ for all $0<p \leq 1$, which is an extension of the operator Bellman inequality. Keywords: Bellman inequality, Cauchy-Schwarz inequality, Hölder inequality, operator mean, Hadamard product, continuous field of operators, C^{*}-algebra

2020 Mathematics Subject Classification: 47A63, 15A60, 47A60.

1. Introduction and preliminaries

Let $\mathscr{L}(\mathscr{H})$ denote the C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathscr{H} with the identity $I_{\mathscr{H}}$. An operator $A \in \mathscr{L}(\mathscr{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathscr{H}$ and in this case we write $A \geq 0$. We write $A>0$ if A is a positive invertible operator. The set of all positive invertible operators is denoted by $\mathscr{L}(\mathscr{H})_{+}$. For self-adjoint operators $A, B \in$ $\mathscr{L}(\mathscr{H})$, we say $A \leq B$ if $B-A \geq 0$. Also, an operator $A \in \mathscr{L}(\mathscr{H})$ is said to be contraction, if $A^{*} A \leq I_{\mathscr{H}}$. The Gelfand map $f(t) \mapsto f(A)$ is an isometrical $*$-isomorphism between the C^{*}-algebra $C(\operatorname{sp}(A))$ of continuous functions on the spectrum $\operatorname{sp}(A)$ of a self-adjoint operator A and the C^{*}-algebra generated by A and $I_{\mathscr{H}}$. If $f, g \in C(\operatorname{sp}(A))$, then $f(t) \geq g(t)(t \in \operatorname{sp}(A))$ implies that $f(A) \geq g(A)$.

Let f be a continuous real valued function defined on an interval J. It is called operator monotone on J if $A \leq B$ implies $f(A) \leq f(B)$ for all self-adjoint operators $A, B \in \mathscr{L}(\mathscr{H})$ with spectra in J. It is said to be operator concave on J if $\lambda f(A)+(1-\lambda) f(B) \leq f(\lambda A+(1-\lambda) B)$ for all self-adjoint operators $A, B \in \mathscr{L}(\mathscr{H})$ with spectra in J and all $\lambda \in[0,1]$, see, e.g., [10]. Every nonnegative continuous function f is operator monotone on $[0,+\infty)$ if and only if f is operator concave on $[0,+\infty)$, see [11, Theorem 8.1]. A map Ψ on $\mathscr{L}(\mathscr{H})$ is called positive if $\Psi(A) \geq 0$ whenever $A \geq 0$ and is said to be unital if $\Psi\left(I_{\mathscr{H}}\right)=I_{\mathscr{H}}$. If Ψ is a unital positive linear map and f is an operator concave function on an interval J, then

$$
\begin{equation*}
f(\Psi(A)) \geq \Psi(f(A)) \quad \text { (Davis-Choi-Jensen's inequality) } \tag{1.1}
\end{equation*}
$$

[^0]for every self-adjoint operator A on \mathscr{H}, whose spectrum is contained in J, see also [11, 17]. Let A and B be bounded linear operators on a Hilbert space \mathscr{H}. The operator $A \otimes B$ on $\mathscr{H} \otimes \mathscr{H}$ is defined by $(A \otimes B)(x \otimes y)=A x \otimes B y$ for every $x, y \in \mathscr{H}$. From this definition, it is clear that the tensor product of positive operators is positive. Furthermore, for operators $A, B, C, D \in$ $\mathscr{L}(\mathscr{H})$, by the definition of the tensor product, we have $(A \otimes B)(C \otimes D)=A C \otimes B D$ and if A and B are positive, then $(A \otimes B)^{r}=A^{r} \otimes B^{r}$ for all $r \geq 0$. For a given orthonormal basis $\left\{e_{j}\right\}$ of a Hilbert space \mathscr{H}, the Hadamard product $A \circ B$ of two operators $A, B \in \mathscr{L}(\mathscr{H})$ is defined by $\left\langle A \circ B e_{i}, e_{j}\right\rangle=\left\langle A e_{i}, e_{j}\right\rangle\left\langle B e_{i}, e_{j}\right\rangle$. It is known that the Hadamard product can be presented by filtering the tensor product $A \otimes B$ through a positive linear map. In fact, $A \circ B=U^{*}(A \otimes B) U$, where $U: \mathscr{H} \rightarrow \mathscr{H} \otimes \mathscr{H}$ is the isometry defined by $U e_{j}=e_{j} \otimes e_{j}$, see [3, 4, 9, 23].

The axiomatic theory for operator means of positive invertible operators has been developed by Kubo and Ando [16]. A binary operation ρ on $\mathscr{L}(\mathscr{H})_{+}$is called an operator mean, if the following conditions are satisfied:
(i) $A \leq C$ and $B \leq D$ imply $A \rho B \leq C \rho D$;
(ii) $A_{n} \downarrow A$ and $B_{n} \downarrow B$ imply $A_{n} \rho B_{n} \downarrow A \rho B$, where $A_{n} \downarrow A$ means that $A_{1} \geq A_{2} \geq \cdots$ and $A_{n} \rightarrow A$ as $n \rightarrow \infty$ in the strong operator topology;
(iii) $T^{*}(A \rho B) T \leq\left(T^{*} A T\right) \rho\left(T^{*} B T\right)(T \in \mathscr{L}(\mathscr{H}))$;
(iv) $I_{\mathscr{H}} \rho I_{\mathscr{H}}=I_{\mathscr{H}}$.

It is easy to see that $T^{*}(A \rho B) T=\left(T^{*} A T\right) \rho\left(T^{*} B T\right)$ for all invertible operators T. In particular, $(\alpha A \rho \alpha B)=\alpha(A \rho B),(\alpha \geq 0)$. There exists an affine order isomorphism between the class of operator means and the class of positive operator monotone functions f defined on $(0, \infty)$ via $f(t) I_{\mathscr{H}}=I_{\mathscr{H}} \rho\left(t I_{\mathscr{H}}\right)(t>0)$ with $f(1)=1$. In addition,

$$
A \rho B=A^{\frac{1}{2}} f\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}}
$$

for all $A, B \in \mathscr{L}(\mathscr{H})_{+}$. The operator monotone function f is called the representing function of ρ. If f and g are the representing functions of the operator means ρ_{f} and ρ_{g}, respectively, then $f \leq g$ on $(0,+\infty)$ if and only if $\left(A \rho_{f} B\right) \leq\left(A \rho_{g} B\right)$ for all positive invertible operators A and B. The functions $f_{\not \sharp_{\mu}}(t)=t^{\mu}, f_{\nabla_{\mu}}(t)=(1-\mu)+\mu t$, and $f_{!_{\mu}}(t)=\left(\frac{(1-\mu)+t^{-1} \mu}{2}\right)^{-1}$ on $(0, \infty)$ give the operator weighted geometric mean $A \not \sharp_{\mu} B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\mu} A^{\frac{1}{2}}$, the operator weighted arithmetic mean $A \nabla_{\mu} B=(1-\mu) A+\mu B$, and the operator weighted harmonic mean $A!{ }_{\mu} B=\left(\frac{(1-\mu) A^{-1}+\mu B^{-1}}{2}\right)^{-1}$, respectively, for all $\mu \in(0,1)$. An operator mean ρ is symmetric if $A \rho B=B \rho A$ for all $A, B \in \mathscr{L}(\mathscr{H})_{+}$. For a symmetric operator mean ρ, a parametrized operator mean $\rho_{t}, 0 \leq t \leq 1$, is called an interpolational path for ρ if it satisfies
(1) $A \rho_{0} B=A, A \rho_{1 / 2} B=A \rho B$, and $A \rho_{1} B=B$;
(2) $\left(A \rho_{p} B\right) \rho\left(A \rho_{q} B\right)=A \rho_{\frac{p+q}{2}} B$ for all $p, q \in[0,1]$;
(3) The map $t \in[0,1] \mapsto A \rho_{t} B$ is norm continuous for each A and B.

The power means $A m_{r} B=A^{\frac{1}{2}}\left(\frac{I_{\mathscr{H}}+\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{r}}{2}\right)^{\frac{1}{r}} A^{\frac{1}{2}}$ are some typical interpolational means for $r \in[-1,1]$. Their interpolational paths are

$$
A m_{r, t} B=A^{\frac{1}{2}}\left((1-t) I_{\mathscr{H}}+t\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{r}\right)^{\frac{1}{r}} A^{\frac{1}{2}} \quad(t \in[0,1])
$$

In particular, $A m_{1, t} B=A \nabla_{t} B=(1-t) A+t B, A m_{0, t} B=A \not{ }_{t} B$, and $A m_{-1, t} B=A!_{t} B=$ $\left((1-t) A^{-1}+t B^{-1}\right)^{-1}$. If Ψ is a unital positive linear map on $\mathscr{L}(\mathscr{H})$ and ω is an operator
mean, then we have

$$
\begin{equation*}
\Psi(A \omega B) \leq \Psi(A) \omega \Psi(B) \tag{1.2}
\end{equation*}
$$

for all positive invertible operators A and B, see [11, Theorem 5.8]. For more information about operator means, see [11, 16].

The classical Hölder inequality asserts that

$$
\begin{equation*}
\left(\sum_{j=1}^{n} x_{j}\right)^{\frac{1}{p}}\left(\sum_{j=1}^{n} y_{j}\right)^{\frac{1}{q}} \geq \sum_{j=1}^{n} x_{j}^{\frac{1}{p}} y_{j}^{\frac{1}{q}}, \tag{1.3}
\end{equation*}
$$

where $x_{j}, y_{j}(1 \leq j \leq n)$ are positive real numbers and $p, q>0$ with $\frac{1}{p}+\frac{1}{q}=1$. For $p=q=2$ the above inequality states that the celebrated Cauchy-Schwarz inequality.

Let $A_{j}, B_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n)$ and ω be an operator mean. Then the operator mean ω is concave on pairs of positive invertible operators i.e.,

$$
\begin{equation*}
\left(\sum_{j=1}^{n} A_{j}\right) \omega\left(\sum_{j=1}^{n} B_{j}\right) \geq \sum_{j=1}^{n}\left(A_{j} \omega B_{j}\right) \tag{1.4}
\end{equation*}
$$

where for the weighted operator mean is an extension of the operator Hölder inequality as follows

$$
\begin{equation*}
\left(\sum_{j=1}^{n} A_{j}\right) \not \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right) \geq \sum_{j=1}^{n}\left(A_{j} \not \sharp_{\nu} B_{j}\right) \quad \text { for all } 0 \leq \nu \leq 1 . \tag{1.5}
\end{equation*}
$$

As a special case of the inequality (1.4), we have

$$
\begin{equation*}
(A+B) \omega(C+D) \geq(A \omega C)+(B \omega D) \tag{1.6}
\end{equation*}
$$

for all positive invertible operators A, B, C, D and an operator mean ω, see [11, Theorem 5.7].
Bellman [6] proved that if p is a positive integer and $a, b, a_{j}, b_{j}(1 \leq j \leq n)$ are positive real numbers such that $\sum_{j=1}^{n} a_{j}^{p} \leq a^{p}$ and $\sum_{j=1}^{n} b_{j}^{p} \leq b^{p}$, then

$$
\left((a+b)^{p}-\sum_{j=1}^{n}\left(a_{j}+b_{j}\right)^{p}\right)^{1 / p} \geq\left(a^{p}-\sum_{j=1}^{n} a_{j}^{p}\right)^{1 / p}+\left(b^{p}-\sum_{j=1}^{n} b_{j}^{p}\right)^{1 / p}
$$

A multiplicative analogue of this inequality for $p=2$ is due to Aczél, see [1] and its operator version in [20]. Popoviciu [22] extended Aczél's inequality for $p \geq 1$. During the last decades, several generalizations, refinements, and applications of the Bellman inequality in various settings have been given and some results related to integral inequalities are presented, see $[1,3,5,6,7,8,12,15,18,19,20,25]$.

In [19], the authors showed the following generalization of the operator Bellman inequality

$$
\begin{equation*}
\left(I_{\mathscr{H}}-\left(\sum_{j=1}^{n} A_{j} \omega_{f} B_{j}\right)\right)^{p} \geq\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f^{p}}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \tag{1.7}
\end{equation*}
$$

where $A_{j}, B_{j}(1 \leq j \leq n)$ are positive invertible operators such that $\sum_{j=1}^{n} A_{j} \leq I_{\mathscr{H}}, \sum_{j=1}^{n} B_{j} \leq$ $I_{\mathscr{H}}, \omega_{f}$ is a mean with the representing function f and $0<p \leq 1$.

Let \mathscr{A} be a C^{*}-algebra of operators acting on a Hilbert space, let Ω be a locally compact Hausdorff space, and let $\mu(t)$ be a Radon measure on Ω. A field $\left(A_{t}\right)_{t \in \Omega}$ of operators in \mathscr{A} is called a continuous field of operators if the function $t \mapsto A_{t}$ is norm continuous on Ω and the
function $t \mapsto\left\|A_{t}\right\|$ is integrable. One can form the Bochner integral $\int_{\Omega} A_{t} d \mu(t)$, which is the unique element in \mathscr{A} such that

$$
\begin{equation*}
\varphi\left(\int_{\Omega} A_{t} d \mu(t)\right)=\int_{\Omega} \varphi\left(A_{t}\right) d \mu(t) \tag{1.8}
\end{equation*}
$$

for every linear functional φ in the norm dual \mathscr{A}^{*} of \mathscr{A}, see [13]. Let $\mathcal{C}(\Omega, \mathscr{A})$ denote the set of bounded continuous functions on Ω with values in \mathscr{A}, which is a C^{*}-algebra under the pointwise operations and the norm $\left\|\left(A_{t}\right)\right\|=\sup _{t \in \Omega}\left\|A_{t}\right\|$, see [13].

In this paper, by the concept of operator means, we obtain a refinement of the inequalities (1.2). By using this refinement, we present some refinements of the operator Hölder inequality (1.5) and the operator Bellman inequality (1.7) for positive invertible operators. Furthermore, we generalize and refine some derived results for continuous fields of operators in a C^{*}-algebra \mathscr{A}.

2. Refinements of some Generalized operator inequalities

In this section, by the concept of operator means, we present some refinements of the operator Hölder inequality and the operator Bellman inequality. We need the following lemmas to illustrate our result.

Lemma 2.1 ([18]). Let $A, B \in \mathscr{L}(\mathscr{H})_{+}$be such that A is contraction, let h be a nonnegative operator monotone function on $[0,+\infty)$, and let ω_{f} be an operator mean with the representing function f. Then

$$
A \omega_{h o f} B \leq h\left(A \omega_{f} B\right)
$$

In the following lemma, we present an operator inequality for three arbitrary operator means.

Lemma 2.2. Let σ, τ, ρ be three arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$. Then

$$
\begin{equation*}
A \leq(A \sigma B) \rho(A \tau B) \leq B \tag{2.9}
\end{equation*}
$$

for all positive invertible operators A and B such that $A \leq B$.
Proof. Assume that A and B are positive invertible operators such that $A \leq B$. Applying the properties of operator means, we have

$$
A=A \sigma A \leq A \sigma B \leq B \sigma B=B \quad \text { and } \quad A=A \tau A \leq A \tau B \leq B \tau B=B
$$

Moreover, if $\sigma \leq \tau$, i.e., $A \sigma B \leq A \tau B$, then

$$
\begin{equation*}
(A \leq) \quad A \sigma B \leq(A \sigma B) \rho(A \tau B) \leq A \tau B \quad(\leq B) \tag{2.10}
\end{equation*}
$$

and if $\tau \leq \sigma$, i.e., $A \tau B \leq A \sigma B$, then

$$
\begin{equation*}
(A \leq) \quad A \tau B \leq(A \sigma B) \rho(A \tau B) \leq A \sigma B \quad(\leq B) \tag{2.11}
\end{equation*}
$$

Combining inequalities (2.10) and (2.11), we get

$$
A \leq(A \sigma B) \rho(A \tau B) \leq B
$$

as required.
Remark 2.1. Assume that $\sigma, \tau, \rho_{1}, \rho_{2}$ are arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$ and A, B are positive invertible operators such that $A \leq B$. Then, applying Lemma 2.1, we get

$$
A \leq(A \sigma B) \rho_{1}(A \tau B) \leq(A \sigma B) \rho_{2}(A \tau B) \leq B
$$

where $\rho_{1} \leq \rho_{2}$. To see this, note that, if $\rho_{1} \leq \rho_{2}$, then for the positive invertible operators $A \sigma B$ and $A \tau B$, we have

$$
(A \sigma B) \rho_{1}(A \tau B) \leq(A \sigma B) \rho_{2}(A \tau B)
$$

Moreover, by Lemma 2.1, we have

$$
A \leq(A \sigma B) \rho_{1}(A \tau B) \quad \text { and } \quad(A \sigma B) \rho_{2}(A \tau B) \leq B
$$

for arbitrary operator means σ, τ with $\sigma \leq \tau$ or $\tau \leq \sigma$. Combining the above inequalities, we get desired result.

Remark 2.2. Assume that σ_{f} and σ_{g} are arbitrary operator means with the representing functions f and g, respectively, with $f \leq g$ or $g \leq f$. As a special case of Lemma 2.1 for $\rho=\nabla_{\lambda},(0 \leq \lambda \leq 1)$, we have

$$
\begin{equation*}
A \leq A \sigma_{(1-\lambda) f+\lambda g} B \leq B \tag{2.12}
\end{equation*}
$$

for all positive invertible operators A and B such that $A \leq B$. To see this, note that

$$
\begin{aligned}
\left(A \sigma_{f} B\right) \nabla_{\lambda}\left(A \sigma_{g} B\right) & =(1-\lambda) A^{\frac{1}{2}} f\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}}+\lambda A^{\frac{1}{2}} g\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right) A^{\frac{1}{2}} \\
& =A^{\frac{1}{2}}\left((1-\lambda) f\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)+\lambda g\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)\right) A^{\frac{1}{2}} \\
& =A \sigma_{(1-\lambda) f+\lambda g} B .
\end{aligned}
$$

Hence, by Lemma 2.1, we get

$$
A \leq\left(A \sigma_{f} B\right) \nabla_{\lambda}\left(A \sigma_{g} B\right)=A \sigma_{(1-\lambda) f+\lambda g} B \leq B
$$

as required.
As an application of the above result, we have the next lemma, which is a refinement of the inequality (1.2).

Lemma 2.3. Let $\sigma, \tau, \rho, \omega$ be arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$, and let Ψ be a unital positive linear map on $\mathscr{L}(\mathscr{H})$. Then

$$
\begin{align*}
(\Psi(A) \omega \Psi(B))^{p} & \geq\left(\Psi^{p}(A \omega B) \sigma(\Psi(A) \omega \Psi(B))^{p}\right) \rho\left(\Psi^{p}(A \omega B) \tau(\Psi(A) \omega \Psi(B))^{p}\right) \\
& \geq \Psi^{p}(A \omega B) \tag{2.13}
\end{align*}
$$

for all positive invertible operators A, B and $0<p \leq 1$.
Proof. Applying the inequality (1.2) and the operator monotonicity of $g(t)=t^{p},(0<p \leq 1)$, we have

$$
\Psi^{p}(A \omega B) \leq(\Psi(A) \omega \Psi(B))^{p} .
$$

Replacing A by $\Psi^{p}(A \omega B)$ and B by $(\Psi(A) \omega \Psi(B))^{p}$, respectively, in the inequality (2.9), we have

$$
\begin{aligned}
\Psi^{p}(A \omega B) & \leq\left(\Psi^{p}(A \omega B) \sigma(\Psi(A) \omega \Psi(B))^{p}\right) \rho\left(\Psi^{p}(A \omega B) \tau(\Psi(A) \omega \Psi(B))^{p}\right) \\
& \leq(\Psi(A) \omega \Psi(B))^{p}
\end{aligned}
$$

for all operator means $\sigma, \tau, \rho, \omega$ such that $\sigma \leq \tau$ or $\tau \leq \sigma$, as required.
In the first result of this section, we present a refinement of the operator Hölder inequality (1.4) as follows.

Theorem 2.1. Let $A_{j}, B_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n)$ and $\sigma, \tau, \rho, \omega$ be arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$. Then

$$
\begin{aligned}
&\left(\left(\sum_{j=1}^{n} A_{j}\right) \omega\left(\sum_{j=1}^{n} B_{j}\right)\right)^{p} \\
& \geq {\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega B_{j}\right)\right)^{p} \sigma\left[\left(\sum_{j=1}^{n} A_{j}\right) \omega\left(\sum_{j=1}^{n} B_{j}\right)\right]^{p}\right] \rho\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega B_{j}\right)\right)^{p} \tau\left[\left(\sum_{j=1}^{n} A_{j}\right) \omega\left(\sum_{j=1}^{n} B_{j}\right)\right]^{p}\right] } \\
& \geq\left(\sum_{j=1}^{n}\left(A_{j} \omega B_{j}\right)\right)^{p} \\
& \text { for } 0<p \leq 1 .
\end{aligned}
$$

Proof. Assume that $A_{j}, B_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n)$ and $\sigma, \tau, \rho, \omega$ are arbitrary operator means with $\sigma \leq \tau$ or $\tau \leq \sigma$. Note that if $A_{1} \oplus \cdots \oplus A_{n}$ and $B_{1} \oplus \cdots \oplus B_{n}$ are two diagonal operator matrices, then by the definition of operator means, for the operator mean ω, we have

$$
\left(A_{1} \oplus \cdots \oplus A_{n}\right) \omega\left(B_{1} \oplus \cdots \oplus B_{n}\right)=\left(A_{1} \omega B_{1}\right) \oplus \cdots \oplus\left(A_{n} \omega B_{n}\right)
$$

Replacing A by $A_{1} \oplus \cdots \oplus A_{n}$ and B by $B_{1} \oplus \cdots \oplus B_{n}$ in the inequality (2.13) and taking Ψ in the inequality (2.13) to be the unital positive linear map defined on the diagonal blocks of operators by $\Psi\left(A_{1} \oplus \cdots \oplus A_{n}\right)=\frac{1}{n} \sum_{j=1}^{n} A_{j}$, we have the desired result.

As a consequence of Theorem 2.1, we have a refinement of the operator Hölder inequality involving the weighted geometric mean.
Corollary 2.1. Let $A_{j}, B_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n)$ and σ, τ, ρ be arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$. Then

$$
\begin{align*}
& \left(\sum_{j=1}^{n}\left(A_{j} \sharp_{\nu} B_{j}\right)\right)^{p} \\
\leq & {\left[\left(\sum_{j=1}^{n}\left(A_{j} \sharp_{\nu} B_{j}\right)\right)^{p} \sigma\left[\left(\sum_{j=1}^{n} A_{j}\right) \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right)\right]^{p}\right] } \\
& \rho\left[\left(\sum_{j=1}^{n}\left(A_{j} \not \sharp_{\nu} B_{j}\right)\right)^{p} \tau\left[\left(\sum_{j=1}^{n} A_{j}\right)^{p} \not \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right)\right]^{p}\right] \\
\leq & \left(\left(\sum_{j=1}^{n} A_{j}\right) \not \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right)\right)^{p} \tag{2.14}
\end{align*}
$$

for all $\nu \in[0,1]$ and $0<p \leq 1$. In particular, for $\tau=\sigma$, we have

$$
\begin{aligned}
\left(\sum_{j=1}^{n}\left(A_{j} \sharp_{\nu} B_{j}\right)\right)^{p} & \leq\left(\sum_{j=1}^{n}\left(A_{j} \sharp_{\nu} B_{j}\right)\right)^{p} \sigma\left[\left(\sum_{j=1}^{n} A_{j}\right) \not \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right)\right]^{p} \\
& \leq\left(\left(\sum_{j=1}^{n} A_{j}\right) \not \sharp_{\nu}\left(\sum_{j=1}^{n} B_{j}\right)\right)^{p}
\end{aligned}
$$

for all $\nu \in[0,1]$ and $0<p \leq 1$.

Remark 2.3. Note that if $0 \leq s \leq t \leq 1$, then $A \sharp_{s} B \leq A \not \sharp_{t} B$ for positive invertible operators A and B such that $A \leq B$. Therefore, for positive invertible operators $A_{j}, B_{j}(1 \leq j \leq n)$ with $A_{j} B_{j}=B_{j} A_{j}(1 \leq j \leq n)$ and $\sigma=\sharp_{s}, \rho=\nabla$, and $\tau=\sharp_{t}$ in Corollary 2.1, we have

$$
\begin{aligned}
& \sum_{j=1}^{n} A_{j}^{1-\nu} B_{j}^{\nu} \\
\leq & \frac{1}{2}\left[\left(\sum_{j=1}^{n} A_{j}^{1-\nu} B_{j}^{\nu}\right)^{1-s}\left(\sum_{j=1}^{n} A_{j}\right)^{(1-\nu) s}\left(\sum_{j=1}^{n} B_{j}\right)^{\nu s}\right] \\
+ & {\left[\left(\sum_{j=1}^{n} A_{j}^{1-\nu} B_{j}^{\nu}\right)^{1-t}\left(\sum_{j=1}^{n} A_{j}\right)^{(1-\nu) t}\left(\sum_{j=1}^{n} B_{j}\right)^{\nu t}\right] } \\
\leq & \left(\sum_{j=1}^{n} A_{j}\right)^{(1-\nu)}\left(\sum_{j=1}^{n} B_{j}\right)^{\nu}
\end{aligned}
$$

for all $0 \leq s \leq t \leq 1$, which is an extension and a refinement of the classical Hölder inequality.

In the following result, we obtain a refinement of the generalized operator Bellman inequality (1.7).

Theorem 2.2. Let $A_{j}, B_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n)$ be such that $\sum_{j=1}^{n} A_{j} \leq I_{\mathscr{H}}, \sum_{j=1}^{n} B_{j} \leq I_{\mathscr{H}}$, and let ω_{f} be an operator mean with the representing function f and $0<p \leq 1$. Then

$$
\begin{aligned}
& \left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}^{p}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & \left(\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\mu}\right. \\
& \left.\rho\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\nu}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)\right)^{p} \\
\leq & \left(I_{\mathscr{H}}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)\right)^{p}
\end{aligned}
$$

for all arbitrary means ρ and $0 \leq \mu \leq \nu \leq 1$.

Proof. Applying Theorem 2.1 to $X_{j}, Y_{j} \in \mathscr{L}(\mathscr{H})_{+}(1 \leq j \leq n+1)$ and to two arbitrary operator means ρ, ω_{f}, and to the weighted geometric means $\not \sharp_{\mu}$, and $\not{ }_{\nu}$ such that $0 \leq \mu \leq \nu \leq 1$, we get

$$
\begin{aligned}
& \sum_{j=1}^{n+1}\left(X_{j} \omega Y_{j}\right) \\
\leq & {\left[\left(\sum_{j=1}^{n+1}\left(X_{j} \omega_{f} Y_{j}\right)\right) \not \sharp_{\mu}\left[\left(\sum_{j=1}^{n+1} X_{j}\right) \omega_{f}\left(\sum_{j=1}^{n+1} Y_{j}\right)\right]\right] } \\
& \rho\left[\left(\sum_{j=1}^{n+1}\left(X_{j} \omega_{f} Y_{j}\right)\right) \sharp_{\nu}\left[\left(\sum_{j=1}^{n+1} X_{j}\right) \omega_{f}\left(\sum_{j=1}^{n+1} Y_{j}\right)\right]\right] \\
\leq & \left(\sum_{j=1}^{n+1} X_{j}\right) \omega_{f}\left(\sum_{j=1}^{n+1} Y_{j}\right) .
\end{aligned}
$$

By putting $X_{j}=A_{j}, Y_{j}=B_{j}(1 \leq j \leq n) X_{n+1}=I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}$, and $Y_{n+1}=I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}$, and taking $\sigma=\sharp_{\mu}$ and $\sigma=\sharp_{\nu}$ in the inequalities (2.15), we get

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & {\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right) \sharp_{\mu}\left(I_{\mathscr{H}} \omega_{f} I_{\mathscr{H}}\right)\right] } \\
& \rho\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right) \sharp_{\nu}\left(I_{\mathscr{H}} \omega_{f} I_{\mathscr{H}}\right)\right] \\
\leq & \left(I_{\mathscr{H}} \omega_{f} I_{\mathscr{H}}\right)
\end{aligned}
$$

or equivalently,

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & {\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right) \sharp_{\mu} I_{\mathscr{H}}\right] } \\
& \rho\left[\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right) \sharp_{\nu} I_{\mathscr{H}}\right] \\
\leq & I_{\mathscr{H}}, \quad \text { for } 0 \leq \mu \leq \nu \leq 1 .
\end{aligned}
$$

Using the definition of the operator means \sharp_{μ} and \sharp_{ν}, we have

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & \left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\mu} \\
& \rho\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\nu} \\
\leq & I_{\mathscr{H}}
\end{aligned}
$$

for all arbitrary means ρ and $0 \leq \mu \leq \nu \leq 1$. Hence,

$$
\begin{aligned}
& \left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & \left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\mu} \\
& \rho\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I-\sum_{j=1}^{n} B_{j}\right)\right)^{\nu}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right) \\
\leq & I_{\mathscr{H}}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right), \quad \text { for } 0 \leq \mu \leq \nu \leq 1
\end{aligned}
$$

It follows from the operator monotonicity of $g(t)=t^{p}(0<p \leq 1)$, the above inequalities, and Lemma 2.1 that

$$
\begin{aligned}
& \left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f^{p}}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right) \\
\leq & \left(\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I_{\mathscr{H}}-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I_{\mathscr{H}}-\sum_{j=1}^{n} B_{j}\right)\right)^{\mu}\right. \\
& \left.\rho\left(\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)+\left(I-\sum_{j=1}^{n} A_{j}\right) \omega_{f}\left(I-\sum_{j=1}^{n} B_{j}\right)\right)^{\nu}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)\right)^{p} \\
\leq & \left(I \mathscr{H}-\sum_{j=1}^{n}\left(A_{j} \omega_{f} B_{j}\right)\right)^{p} \quad \text { for } 0 \leq \mu \leq \nu \leq 1
\end{aligned}
$$

as required.

3. SOME EXTENSIONS FOR CONTINUOUS FIELDS OF OPERATORS

Let \mathscr{A} be a C^{*}-algebra of operators acting on a Hilbert space, let Ω be a compact Hausdorff space, and let $\left(A_{t}\right)_{t \in \Omega}$ be a continuous field of operators in \mathscr{A}. In this section, by using the concept of the continuous fields of operators, we present some results involving the operator Hölder type inequalities and the operator Bellman type inequalities.

We need following lemma to illustrate our results.

Lemma 3.4. Let \mathscr{A} be a C^{*}-algebra, Ω be a compact Hausdorff space equipped with a Radon measure μ, and let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators. Then

$$
\begin{equation*}
\int_{\Omega} \int_{\Omega}\left(A_{t} \circ B_{s}\right) d \mu(t) d \mu(s)=\int_{\Omega} A_{t} d \mu(t) \circ \int_{\Omega} B_{s} d \mu(s) \quad\left(A_{t}, B_{s} \in \mathscr{A}\right) \tag{3.16}
\end{equation*}
$$

Proof. Assume that \mathscr{A} is a C^{*}-algebra of operators acting on a Hilbert space, Ω is a compact Hausdorff space, and $\left(A_{t}\right)_{t \in \Omega}$ is a continuous field of operators in \mathscr{A}. Using [21, Page 78], since A : $t \mapsto A_{t}$ is a continuous function from Ω to \mathscr{A}, for every operator $A_{t} \in \mathscr{A}$ and for every $\varepsilon>0$, we can consider an element of the form

$$
I_{\lambda}\left(A_{t}\right)=\Sigma_{k=1}^{n} \mathbf{A}\left(t_{k}\right) \mu\left(E_{k}\right)=\Sigma_{k=1}^{n} A_{t_{k}} \mu\left(E_{k}\right)
$$

where the E_{k} 's form a partition of Ω into disjoint Borel subsets, and

$$
t_{k} \in E_{k} \subseteq\left\{t \in \Omega:\left\|A_{t}-A_{t_{k}}\right\| \leq \varepsilon\right\} \quad(1 \leq k \leq n)
$$

with $\lambda=\left\{E_{1}, \cdots, E_{n}, \varepsilon\right\}$. Then $\left(I_{\lambda}\left(A_{t}\right)\right)_{\lambda \in \Lambda}$ is a uniformly convergent net to $\int_{\Omega} A_{t} d \mu(t)$. It follows from the norm continuity of the tensor product of two operators that for any operator $B \in \mathscr{A}$, we have

$$
\begin{equation*}
\int_{\Omega}\left(A_{t} \otimes B\right) d \mu(t)=\left(\int_{\Omega} A_{t} d \mu(t)\right) \otimes B \tag{3.17}
\end{equation*}
$$

Also, by using the definition of the Bochner integral for any operator $X \in \mathscr{A}$, we have $\int_{\Omega}\left(X^{*} A_{t} X\right) d \mu(t)$ $X^{*}\left(\int_{\Omega} A_{t} d \mu(t)\right) X$. Therefore, for an arbitrary operator $B \in \mathscr{A}$, we get

$$
\begin{align*}
\int_{\Omega}\left(A_{t} \circ B\right) d \mu(t) & =\int_{\Omega} V^{*}\left(A_{t} \otimes B\right) V d \mu(t)=V^{*} \int_{\Omega}\left(A_{t} \otimes B\right) d \mu(t) V \\
& =V^{*}\left(\int_{\Omega} A_{t} d \mu(t) \otimes B\right) V=\int_{\Omega} A_{t} d \mu(t) \circ B \quad\left(A_{t}, B \in \mathscr{A}\right) \tag{3.18}
\end{align*}
$$

where $V: \mathscr{H} \rightarrow \mathscr{H} \otimes \mathscr{H}$ is the isometry defined by $V e_{j}=e_{j} \otimes e_{j}$, for a given orthonormal basis $\left\{e_{j}\right\}$ of the Hilbert space \mathscr{H}. Hence, we have

$$
\begin{align*}
\int_{\Omega} \int_{\Omega}\left(A_{t} \circ B_{s}\right) d \mu(t) d \mu(s) & =\int_{\Omega} \int_{\Omega} V^{*}\left(A_{t} \otimes B_{s}\right) V d \mu(t) d \mu(s) \\
& =\int_{\Omega} V^{*}\left(\int_{\Omega}\left(A_{t} \otimes B_{s}\right) d \mu(t)\right) V d \mu(s) \quad(\text { by (3.18)) } \\
& =\int_{\Omega} V^{*}\left(\left(_{\Omega} A_{t} d \mu(t)\right) \otimes B_{s}\right) V d \mu(s) \quad(\text { by (3.17)) } \\
& =\int_{\Omega}\left(\int_{\Omega} A_{t} d \mu(t)\right) \circ B_{s} d \mu(s) \\
& =\int_{\Omega} U^{*}\left(\left(\int_{\Omega} A_{t} d \mu(t)\right) \otimes B_{s}\right) U d \mu(s) \\
& =U^{*}\left(\int_{\Omega}\left(\int_{\Omega} A_{t} d \mu(t)\right) \otimes B_{s} d \mu(s)\right) U \quad(\text { by }(3.18)) \\
& =U^{*}\left(\left(\int_{\Omega} A_{t} d \mu(t)\right) \otimes\left(\int_{\Omega} B_{s} d \mu(s)\right)\right) U \quad \text { (by (3.17)) } \tag{3.17}\\
& =\int_{\Omega} A_{t} d \mu(t) \circ \int_{\Omega} B_{s} d \mu(s) \quad \text { for } A_{t}, B_{s} \in \mathscr{A}
\end{align*}
$$

The first result of this section is the Hölder inequality for continuous fields of operators involving an arbitrary operator mean. The main ideas of the following result are stimulated by [4].
Theorem 3.3. Let \mathscr{A} be a C^{*}-algebra, Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators, and let ω_{f} be an operator mean with the representing function f. Then

$$
\begin{equation*}
\left(\int_{\Omega} A_{s} d \mu(s)\right) \omega_{f}\left(\int_{\Omega} B_{s} d \mu(s)\right) \geq \int_{\Omega}\left(A_{s} \omega_{f} B_{s}\right) d \mu(s) . \tag{3.19}
\end{equation*}
$$

Proof. For the continuous fields of positive invertible operators $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega} \in \mathscr{A}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega} \in$ \mathscr{A}, we put the positive unital linear map

$$
\Psi(S)=\int_{\Omega} Z^{*} S Z d \mu(t)(S \in \mathscr{A})
$$

where $Z=B_{t}^{\frac{1}{2}}\left(\int_{\Omega} B_{s} d \mu(s)\right)^{-\frac{1}{2}}$. Thus, we have

$$
\begin{aligned}
& \left(\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(\int_{\Omega} B_{s} d \mu(s)\right) \\
= & \left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} f\left(\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} \int_{\Omega} A_{t} d \mu(t)\left(\int_{\Omega} B_{s} d \mu(s)\right)^{-\frac{1}{2}}\right)\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} \\
= & \left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} f\left(\int_{\Omega}\left(\int_{\Omega} B_{s} d \mu(s)\right)^{-\frac{1}{2}} B_{t}^{\frac{1}{2}}\left(B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}}\right) B_{t}^{\frac{1}{2}}\left(\int_{\Omega} B_{s} d \mu(s)\right)^{-\frac{1}{2}} d \mu(t)\right) \\
\times & \left(\int_{\Omega} B_{s} d \mu(t)\right)^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{align*}
& =\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} f\left(\int_{\Omega} Z^{*} B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}} Z d \mu(t)\right)\left(\int_{\Omega} B_{s} d \mu(t)\right)^{\frac{1}{2}} \\
& =\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} f\left(\Phi\left(B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}}\right)\right)\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} \\
& \geq\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} \Phi\left(f\left(B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}}\right)\right)\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}} \tag{1.1}\\
& =\left(\int_{\Omega} B_{s} d \mu(s)\right)^{\frac{1}{2}}\left(\int_{\Omega} Z^{*} f\left(B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}}\right) Z d \mu(t)\right)\left(\int_{\Omega} B_{s} d \mu(t)\right)^{\frac{1}{2}} \\
& =\int_{\Omega} B_{t}^{\frac{1}{2}} f\left(B_{t}^{-\frac{1}{2}} A_{t} B_{t}^{-\frac{1}{2}}\right) B_{t}^{\frac{1}{2}} d \mu(t) \\
& =\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t),
\end{align*}
$$

as required.
Remark 3.4. In the discrete case $\Omega=\{1, \cdots, n\}$, for positive invertible operators A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n}, Theorem 3.4 enforces the inequality (1.4).

Remark 3.5. Assume that $\Omega=[0,1]$ is with the Lebesgue measure and $\mathscr{A}=\mathbb{R}$ is the real numbers. Then $\mathcal{C}([0,1], \mathbb{R})$ is the C^{*}-algebra involving all continuous real-valued functions over $[0,1]$. As a special case of Theorem 3.3, we have the integral version of the Hölder inequality as follows

$$
\left(\int_{a}^{b} f(x) d x\right) \omega\left(\int_{a}^{b} g(x) d x\right) \geq \int_{a}^{b}(f(x) \omega g(x)) d x
$$

where $f, g \in \mathcal{C}([0,1], \mathbb{R})$ are positive functions and ω is an operator mean.
Using the inequality (2.9), we obtain a refinement of the Hölder inequality for continuous fields of operators (3.19) as follows.

Theorem 3.4. Let \mathscr{A} be a C^{*}-algebra, Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators, and let $\sigma, \tau, \rho, \omega$ be arbitrary operator means such that $\sigma \leq \tau$ or $\tau \leq \sigma$. Then

$$
\begin{aligned}
\left(\int_{\Omega} A_{t} d \mu(t)\right) \omega\left(\int_{\Omega} B_{s} d \mu(s)\right) \geq & {\left[\left(\int_{\Omega}\left(A_{t} \omega B_{t}\right) d \mu(t)\right) \sigma\left[\left(\int_{\Omega} A_{t} d \mu(t)\right) \omega\left(\int_{\Omega} B_{s} d \mu(s)\right)\right]\right] } \\
& \rho\left[\left(\int_{\Omega}\left(A_{t} \omega B_{t}\right) d \mu(t)\right) \tau\left[\left(\int_{\Omega} A_{t} d \mu(t)\right) \omega\left(\int_{\Omega} B_{s} d \mu(s)\right)\right]\right] \\
\geq & \int_{\Omega}\left(A_{t} \omega B_{t}\right) d \mu(t)
\end{aligned}
$$

Proof. Using the inequality (3.19) and replacing

$$
A \text { by } \int_{\Omega}\left(A_{t} \omega B_{t}\right) d \mu(t) \quad \text { and } \quad B \text { by }\left(\int_{\Omega} A_{t} d \mu(t)\right) \omega\left(\int_{\Omega} B_{s} d \mu(s)\right)
$$

in the inequality (2.9), respectively, we get the desired result.
In the next result, we obtain an inequality for continuous fields of operators.

Theorem 3.5. Let \mathscr{A} be a C^{*}-algebra, let Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators such that $\int_{\Omega} A_{t} d \mu(t) \leq A$ and $\int_{\Omega} B_{t} d \mu(t) \leq B$ for some positive invertible operators $A, B \in$ \mathscr{A}, and let ω_{f} be an arbitrary operator mean with the representing function f. Then

$$
\begin{equation*}
\left(\left(A \omega_{f} B\right)-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} \geq\left(A-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f^{p}}\left(B-\int_{\Omega} B_{t} d \mu(t)\right) \tag{3.20}
\end{equation*}
$$

for all $0<p \leq 1$.
Proof. Assume $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ are continuous fields of positive invertible operators such that $\int_{\Omega} A_{t} d \mu(t) \leq A$ and $\int_{\Omega} B_{t} d \mu(t) \leq B$ for some positive invertible operators $A, B \in \mathscr{A}$. Then we have

$$
\begin{aligned}
& A \omega_{f} B=\left(A-\int_{\Omega} A_{t} d \mu(t)+\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(B-\int_{\Omega} B_{t} d \mu(t)+\int_{\Omega} B_{t} d \mu(t)\right) \\
& \geq\left(A-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(B-\int_{\Omega} B_{t} d \mu(t)\right)+\left(\int_{\Omega} A_{t} d \mu(t) \omega_{f} \int_{\Omega} B_{t} d \mu(t)\right) \\
& \quad \geq\left(A-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(B-\int_{\Omega} B_{t} d \mu(t)\right)+\left(\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right) .
\end{aligned}
$$

Hence, by the above inequality, the operator monotonicity of $f(t)=t^{p}(0<p \leq 1)$ and Lemma 2.1, we get

$$
\begin{aligned}
\left(\left(A \omega_{f} B\right)-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} & \geq\left(\left(A-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(B-\int_{\Omega} B_{t} d \mu(t)\right)\right)^{p} \\
& \geq\left(A-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f^{p}}\left(B-\int_{\Omega} B_{t} d \mu(t)\right)
\end{aligned}
$$

as required.
In the next result, by using Theorem 3.5, we have the operator Bellman inequality for continuous fields in a unital C^{*}-algebra.

Corollary 3.2. Let \mathscr{A} be a unital C^{*}-algebra, let Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators such that $\int_{\Omega} A_{t} d \mu(t) \leq I_{\mathscr{A}}$ and $\int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$, and let ω_{f} be an operator mean with the representing function f. Then

$$
\begin{equation*}
\left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} \geq\left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right) \tag{3.21}
\end{equation*}
$$

for all $0<p \leq 1$.
Remark 3.6. Assume that $\mathcal{C}([0,1], \mathbb{R})$ is the C^{*}-algebra involving all continuous real-valued functions over $[0,1]$. As a special case of the inequality (3.21), we have the integral version of the Bellman inequality as follows

$$
\left(1-\int_{a}^{b}\left(g(x) \omega_{f} h(x)\right) d x\right)^{p} \geq\left(1-\int_{a}^{b} g(x) d x\right) \omega_{f^{p}}\left(1-\int_{a}^{b} h(x) d x\right) \quad(0<p \leq 1)
$$

where $f, g \in \mathcal{C}([0,1], \mathbb{R})$ are positive functions such that $\int_{a}^{b} g(x) d x \leq 1$ and $\int_{a}^{b} h(x) d x \leq 1$, and ω_{f} is an operator mean with the representing function f. In particular, for $\omega_{f}=\sharp_{\frac{1}{2}}$, we have

$$
1-\int_{a}^{b} \sqrt{g(x) h(x)} d x \geq \sqrt{1-\int_{a}^{b} g(x) d x} \sqrt{1-\int_{a}^{b} h(x) d x}
$$

These two above inequalities are the integral version of the Bellman inequality (1.7).
In the next theorem, we present a refinement of the operator Bellman inequality (3.21) for continuous fields of operators.
Theorem 3.6. Let \mathscr{A} be a unital C^{*}-algebra, let Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators such that $\int_{\Omega} A_{t} d \mu(t) \leq I_{\mathscr{A}}, \int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$, and let ω_{f} be an arbitrary operator mean with the representing function f. Then

$$
\begin{aligned}
& \left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} \\
\geq & \left(\left(I_{\mathscr{A}}-\int_{\Omega_{1}} A_{t} d \mu(t)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega_{1}} B_{t} d \mu(t)\right)-\int_{\Omega_{2}}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p} \\
\geq & \left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right)
\end{aligned}
$$

for all $0<p \leq 1$ and for two disjoint sets $\Omega_{1}, \Omega_{2} \subseteq \Omega$ such that $\Omega=\Omega_{1} \cup \Omega_{2}$.
Proof. Assume that $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ are continuous fields of positive invertible operators in a unital C^{*}-algebra \mathscr{A} with $\int_{\Omega} A_{t} d \mu(t) \leq I_{\mathscr{A}}$ and $\int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$. We have

$$
\begin{aligned}
& \left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right) \\
= & \left(I_{\mathscr{A}}-\int_{\Omega_{1}} A_{t} d \mu(t)-\int_{\Omega_{2}} A_{t} d \mu(t)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega_{1}} B_{t} d \mu(t)-\int_{\Omega_{2}} B_{t} d \mu(t)\right) \\
\leq & \left(I_{\mathscr{A}}-\int_{\Omega_{1}} A_{t} d \mu(t)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega_{1}} B_{t} d \mu(t)\right)-\int_{\Omega_{2}}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)
\end{aligned}
$$

(by the inequality (3.20))

$$
\leq\left(I_{\mathscr{A}} \omega_{f} I_{\mathscr{A}}\right)-\int_{\Omega_{1}}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)-\int_{\Omega_{2}}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)
$$

(by the inequality (3.20))

$$
=I_{\mathscr{A}}-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)
$$

Hence, by the above inequalities, the operator monotonicity of $f(t)=t^{p}(0<p \leq 1)$ and Lemma 2.1, we have

$$
\begin{aligned}
\left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) & \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right) \\
& \leq\left(\left(I_{\mathscr{A}}-\int_{\Omega} A_{t} d \mu(t)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} B_{t} d \mu(t)\right)\right)^{p} \\
& \leq\left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{t} \omega_{f} B_{t}\right) d \mu(t)\right)^{p}
\end{aligned}
$$

as required.
In the next theorem, we present another refinement of the operator Bellman inequality (3.21) involving continuous fields of operators.

Theorem 3.7. Let \mathscr{A} be a unital C^{*}-algebra, let Ω be a compact Hausdorff space equipped with a Radon measure μ, let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators such that $\int_{\Omega} A_{t} d \mu(t) \leq I_{\mathscr{A}}$ and $\int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$, let ω_{f} be an arbitrary operator mean with the representing function f, and let $\lambda: s \in \Omega \longmapsto \lambda_{s} \in[0,1]$ be a measurable function. Then

$$
\begin{aligned}
& \left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)\right)^{p} \\
\geq & \left(\left(\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s)\right)\right)-\int_{\Omega}\left(1-\lambda_{s}\right)\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)\right)^{p} \\
\geq & \left(I_{\mathscr{A}}-\int_{\Omega} A_{s} d \mu(s)\right) \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{s} d \mu(s)\right)
\end{aligned}
$$

for $0<p \leq 1$.
Proof. Assume that $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ are continuous fields of positive invertible operators in a unital C^{*}-algebra \mathscr{A} such that $\int_{\Omega} A_{t} d \mu(t) \leq I_{\mathscr{A}}$ and $\int_{\Omega} B_{t} d \mu(t) \leq I_{\mathscr{A}}$ and $\lambda_{s} \in[0,1](s \in \Omega)$. First note that

$$
\begin{aligned}
\int_{\Omega} A_{s} d \mu(s)= & \int_{\Omega}\left(A_{s} \nabla_{\lambda_{s}} A_{s}\right) d \mu(s)=\int_{\Omega} \lambda_{s} A_{s} d \mu(s)+\int_{\Omega}\left(1-\lambda_{s}\right) A_{s} d \mu(s) \\
\int_{\Omega} B_{s} d \mu(s)= & \int_{\Omega}\left(B_{s} \nabla_{\lambda_{s}} B_{s}\right) d \mu(s)=\int_{\Omega} \lambda_{s} B_{s} d \mu(s)+\int_{\Omega}\left(1-\lambda_{s}\right) B_{s} d \mu(s), \\
& I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s) \geq \int_{\Omega}\left(1-\lambda_{s}\right) A_{s} d \mu(s) \geq 0
\end{aligned}
$$

and

$$
I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s) \geq \int_{\Omega}\left(1-\lambda_{s}\right) B_{s} d \mu(s) \geq 0
$$

Then,

$$
\begin{aligned}
& \left(I_{\mathscr{A}}-\int_{\Omega} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} B_{s} d \mu(s)\right) \\
= & \left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s)-\int_{\Omega}\left(1-\lambda_{s}\right) A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s)-\int_{\Omega}\left(1-\lambda_{s}\right) B_{s} d \mu(s)\right) \\
\leq & \left(\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s)\right)\right)-\int_{\Omega}\left[\left(\left(1-\lambda_{s}\right) A_{s}\right) \omega_{f}\left(\left(1-\lambda_{s}\right) B_{s}\right)\right] d \mu(s)
\end{aligned}
$$

(by the inequality (3.20))

$$
\leq\left(\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s)\right)\right)-\int_{\Omega}\left(1-\lambda_{s}\right)\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)
$$

(by the properties of means)

$$
\leq\left(\left(I_{\mathscr{A}} \omega_{f} I_{\mathscr{A}}\right)-\int_{\Omega}\left(\lambda_{s} A_{s} \omega_{f} \lambda_{s} B_{s}\right) d \mu(s)\right)-\int_{\Omega}\left(1-\lambda_{s}\right)\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)
$$

(by the inequality (3.20))

$$
\leq I_{\mathscr{A}}-\int_{\Omega} \lambda_{s}\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)-\int_{\Omega}\left(1-\lambda_{s}\right)\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)
$$

(by the properties of means)
$=I_{\mathscr{A}}-\int_{\Omega}\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)$.
Hence, the operator monotonicity of $f(t)=t^{p}(0<p \leq 1)$ Lemma 2.1, and the above inequalities imply that

$$
\begin{aligned}
& \left(I_{\mathscr{A}}-\int_{\Omega} A_{s} d \mu(s)\right) \omega_{f^{p}}\left(I_{\mathscr{A}}-\int_{\Omega} B_{s} d \mu(s)\right) \\
\leq & \left(\left(I_{\mathscr{A}}-\int_{\Omega} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} B_{s} d \mu(s)\right)\right)^{p} \\
\leq & \left(\left(\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} A_{s} d \mu(s)\right) \omega_{f}\left(I_{\mathscr{A}}-\int_{\Omega} \lambda_{s} B_{s} d \mu(s)\right)\right)-\int_{\Omega}\left(1-\lambda_{s}\right)\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)\right)^{p} \\
\leq & \left(I_{\mathscr{A}}-\int_{\Omega}\left(A_{s} \omega_{f} B_{s}\right) d \mu(s)\right)^{p}
\end{aligned}
$$

for $0<p \leq 1$. This completes the proof.
In the following result, we obtain the operator Hölder inequality involving the Hadamard product of operators. The main ideas of the next result are stimulated by [2, 24].
Theorem 3.8. Let \mathscr{A} be a unital C^{*}-algebra, let Ω be a compact Hausdorff space equipped with a Radon measure μ, and let $\mathbf{A}=\left(A_{t}\right)_{t \in \Omega}$ and $\mathbf{B}=\left(B_{t}\right)_{t \in \Omega}$ in $\mathcal{C}(\Omega, \mathscr{A})$ be continuous fields of positive invertible operators. Then

$$
\int_{\Omega} A_{t} d \mu(t) \circ \int_{\Omega} B_{s} d \mu(s) \geq \int_{\Omega}\left(A_{t} \sharp_{\alpha} B_{t}\right) d \mu(t) \circ \int_{\Omega}\left(A_{s} \sharp_{1-\alpha} B_{s}\right) d \mu(s)
$$

for $0 \leq \alpha \leq 1$.
Proof. Assume that $a, b>0$ and $X_{t}, X_{s} \in \mathscr{A}$ are positive invertible operators. The Heinz inequality [14] asserts that

$$
\begin{equation*}
a^{1-\nu} b^{\nu}+a^{\nu} b^{1-\nu} \leq a+b \quad \text { for } 0 \leq \nu \leq 1 \tag{3.22}
\end{equation*}
$$

If we replace b by a^{-1} and take $\mu=2 \nu-1$ (3.22), then we get

$$
a^{\mu}+a^{-\mu} \leq a+a^{-1} \quad \text { for } 0 \leq \mu \leq 1
$$

Replacing a by the positive invertible operator $X_{t} \otimes X_{s}^{-1}$ in the above inequality, we get

$$
\begin{equation*}
X_{t}^{\mu} \otimes X_{s}^{-\mu}+X_{t}^{-\mu} \otimes X_{s}^{\mu} \leq X_{t} \otimes X_{s}^{-1}+X_{t}^{-1} \otimes X_{s} \tag{3.23}
\end{equation*}
$$

Multiplying both sides of (3.23) by the positive invertible operator $X_{t}^{\frac{1}{2}} \otimes X_{s}^{\frac{1}{2}}$, we have

$$
X_{t}^{1+\mu} \otimes X_{s}^{1-\mu}+X_{t}^{1-\mu} \otimes X_{s}^{1+\mu} \leq X_{t}^{2} \otimes I_{\mathscr{A}}+I_{\mathscr{A}} \otimes X_{s}^{2}
$$

Now, replacing μ by $2 \alpha-1, X_{t}$ by $X_{t}^{\frac{1}{2}}$, and X_{s} by $X_{s}^{\frac{1}{2}}$, respectively, in the above inequality, we get

$$
X_{t}^{\alpha} \otimes X_{s}^{1-\alpha}+X_{t}^{1-\alpha} \otimes X_{s}^{\alpha} \leq X_{t} \otimes I_{\mathscr{A}}+I_{\mathscr{A}} \otimes X_{s} \quad \text { for } 0 \leq \alpha \leq 1
$$

Now, setting $X_{t}=A_{t}^{-\frac{1}{2}} B_{t} A_{t}^{-\frac{1}{2}}$ and $X_{s}=A_{s}^{-\frac{1}{2}} B_{s} A_{s}^{-\frac{1}{2}}$, and then, multiplying by $A_{t}^{\frac{1}{2}} \otimes A_{s}^{\frac{1}{2}}$, in the above inequality, we get

$$
\left(A_{t} \sharp_{\alpha} B_{t}\right) \otimes\left(A_{s} \sharp_{1-\alpha} B_{s}\right)+\left(A_{t} \sharp_{1-\alpha} B_{t}\right) \otimes\left(A_{s} \sharp_{\alpha} B_{s}\right) \leq A_{t} \otimes B_{s}+B_{s} \otimes A_{t} .
$$

Therefore, for the Hadamard product, we have

$$
\left(A_{t} \sharp_{\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{1-\alpha} B_{s}\right)+\left(A_{t} \sharp_{1-\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{\alpha} B_{s}\right) \leq A_{t} \circ B_{s}+B_{s} \circ A_{t} .
$$

Taking the double integral over the above inequality, we get

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega}\left(\left(A_{t} \sharp_{\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{1-\alpha} B_{s}\right)+\left(A_{t} \sharp_{1-\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{\alpha} B_{s}\right)\right) d \mu(t) d \mu(s) \\
\leq & \int_{\Omega} \int_{\Omega}\left(A_{t} \circ B_{s}+B_{s} \circ A_{t}\right) d \mu(t) d \mu(s) .
\end{aligned}
$$

Using Lemma 3.4, we have

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega}\left(\left(A_{t} \sharp_{\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{1-\alpha} B_{s}\right)+\left(A_{t} \sharp_{1-\alpha} B_{t}\right) \circ\left(A_{s} \sharp_{\alpha} B_{s}\right)\right) d \mu(t) d \mu(s) \\
= & \int_{\Omega}\left(A_{t} \sharp_{\alpha} B_{t}\right) d \mu(t) \circ \int_{\Omega}\left(A_{s} \sharp_{1-\alpha} B_{s}\right) d \mu(s)+\int_{\Omega}\left(A_{t} \sharp_{1-\alpha} B_{t}\right) d \mu(t) \circ \int_{\Omega}\left(A_{s} \sharp_{\alpha} B_{s}\right) d \mu(s) \\
= & 2 \int_{\Omega}\left(A_{t} \sharp_{\alpha} B_{t}\right) d \mu(t) \circ \int_{\Omega}\left(A_{s} \sharp_{1-\alpha} B_{s}\right) d \mu(s)
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega}\left(A_{t} \circ B_{s}+B_{s} \circ A_{t}\right) d \mu(t) d \mu(s) \\
= & \left(\int_{\Omega} A_{t} \mu(t) \circ \int_{\Omega} B_{s} d \mu(s)\right)+\left(\int_{\Omega} B_{s} \mu(s) \circ \int_{\Omega} A_{t} d \mu(t)\right) \\
= & 2 \int_{\Omega} A_{t} \mu(t) \circ \int_{\Omega} B_{s} d \mu(s) .
\end{aligned}
$$

Hence, we get

$$
\int_{\Omega}\left(A_{t} \not \sharp_{\alpha} B_{t}\right) d \mu(t) \circ \int_{\Omega}\left(A_{s} \sharp_{1-\alpha} B_{s}\right) d \mu(s) \leq \int_{\Omega} A_{t} \mu(t) \circ \int_{\Omega} B_{s} d \mu(s),
$$

as required.
Remark 3.7. In the discrete case $\Omega=\{1, \cdots, n\}$, for positive invertible operators A_{1}, \cdots, A_{n} and B_{1}, \cdots, B_{n}, Theorem 3.8 enforces the inequality (1.4) for the Hadamard product.

REFERENCES

[1] J. Aczél: Some general methods in the theory of functional equations in one variable, New applications of functional equations (Russian), Uspehi Mat. Nauk (N.S.) 11, 3 (69) (1956), 3-68.
[2] M. Bakherad: Some reversed and refined Callebaut inequalities via Kontorovich constant, Bull. Malays. Math. Sci. Soc., 41 (2) (2018), 765-777.
[3] M. Bakherad, A. Morassaei: Some operator Bellman type inequalities, Indag. Math. (N.S.), 26 (4) (2015), 646-659.
[4] M. Bakherad, A. Morassaei: Some extensions of the operator entropy type inequalities, Linear Multilinear Algebra, 67 (5) (2019), 871-885.
[5] E. F. Beckenbach, R. Bellman: Inequalities, Springer Verlag, Berlin (1971).
[6] R. Bellman: On an inequality concerning an indefinite form, Amer. Math. Monthly, 63 (1956), 101-109.
[7] J. L. Daz-Barrero, M. Grau-Sánchez, and P.G. Popescu: Refinements of Aczél, Popoviciu and Bellman's inequalities, Comput. Math. Appl., 56 (2008), 2356-2359.
[8] S. Dragomir: Some additive reverses of Callebaut and Hölder inequalities for isotonic functionals, Constr. Math. Anal., 6 (4) (2023), 249-259.
[9] J. I. Fujii: The Marcus-Khan theorem for Hilbert space operators, Math. Japon., 41 (3) (1995), 531-535.
[10] M. Fujii, Y.O. Kim, and R. Nakamoto: A characterization of convex functions and its application to operator monotone functions, Banach J. Math. Anal., 8 (2) (2014), 118-123.
[11] T. Furuta, J. Mićić Hot, J. Pečarić, and Y. Seo: Mond-Pečarić method in operator inequalities, Element, Zagreb (2005).
[12] M. Gürdal, M. Alomari: Improvements of some Berezin radius inequalities, Constr. Math. Anal., 5 (3) (2022), 141-153.
[13] F. Hansen, I. Perić, and J. Pečarić: Jensen's operator inequality and its converses, Math. Scand., 100 (1) (2007), 61-73.
[14] E. Heinz: Beiträge zur Störungstheorie der Spektralzerlegung (German), Math. Ann., 123 (1951), 415-438.
[15] Z. Hu, A. Xu: Refinements of Aczél and Bellman's inequalities, Comput. Math. Appl., 59 (9) (2010), 3078-3083.
[16] F. Kubo, T. Ando: Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
[17] J. Mićić, J. Pečarić, and J. Perić: Extension of the refined Jensen's operator inequality with condition on spectra, Ann. Funct. Anal., 3 (1) (2011), 67-85.
[18] F. Mirzapour, M.S. Moslehian, and A. Morassaei: More on operator Bellman inequality, Quaest. Math., 37 (1) (2014), 9-17.
[19] M. Morassaei, F. Mirzapour, and M.S. Moslehian: Bellman inequality for Hilbert space operators, Linear Algebra Appl., 438 (2013), 3776-3780.
[20] M.S. Moslehian: Operator Aczél inequality, Linear Algebra Appl., 434 (8) (2011), 1981-1987.
[21] G.K. Pedersen: Analysis Now, Springer-Verlag, New York (1989).
[22] T. Popoviciu: On an inequality, Gaz. Mat. Fiz. Ser. A., 11 (64) (1959), 451-461.
[23] G.P.H. Styan: Hadamard product and multivariate statistical analysis, Linear Algebra Appl., 6 (1973), 217-240.
[24] S. Wada: On some refinement of the Cauchy-Schwarz inequality, Linear Algebra Appl., 420 (2-3) (2007), 433-440.
[25] S. Wu, L. Debnath. A new generalization of Aczèls inequality and its applications to an improvement of Bellmans inequality, Appl. Math. Lett., 21 (6) (2008), 588-593.

Mojtaba Bakherad
University of Sistan and Baluchestan
Department of Mathematics
ZAHEDAN, I.R.IRAN
ORCID: 0000-0003-0323-6310
Email address: mojtaba.bakherad@gmail.com

Fuad Kittaneh
The University of Jordan
Department of Mathematics
Amman, Jordan
ORCID: 0000-0003-0308-365X
Email address: fkitt@ju.edu. jo

[^0]: Received: 12.01.2024; Accepted: 06.03.2024; Published Online: 06.03.2024
 *Corresponding author: Mojtaba Bakherad; mojtaba.bakherad@gmail.com
 DOI: 10.33205/cma. 1435944

