
572

Turkish Journal of Engineering – 2024, 8(3), 572-582

Turkish Journal of Engineering

https://dergipark.org.tr/en/pub/tuje

e-ISSN 2587-1366

Digital twin of multi-model drone detection system on Airsim for RF and vision modalities

Yusuf Özben 1 , Süleyman Emre Demir 1 , Hüseyin Birkan Yılmaz *1

1 Bogaziçi University, Department of Computer Engineering, Türkiye, yusufozben@gmail.com, SuleymanD41k9@gmail.com,
birkan.yilmaz@bogazici.edu.tr

Cite this study: Özben, Y., Demir, S. E., & Yılmaz, H. B. (2024). Digital twin of multi-model drone detection system
on Airsim for RF and vision modalities. Turkish Journal of Engineering, 8 (3), 572-582

https://doi.org/10.31127/tuje.1436757

Keywords Abstract
Drone detection
Signal processing
Image processing
Machine learning
Simulation

 Drones have become more prevalent in recent years and are used for both beneficial and
malicious purposes. As a result, protecting restricted areas from unauthorized drone activities
has become crucial. However, some researchers face challenges in developing drone detection
systems due to the high costs of necessary equipment. This paper presents an innovative
solution by creating an Airsim Graphical User Interface (GUI) tool compatible with the Unreal
Engine. This tool enables the simulation of drone flights and creation of image and radio
frequency (RF) datasets for drone detection in a simulation environment. Our approach
involves modeling the measurement devices such as cameras to capture image data and
software defined radio (SDR) receiver to capture RF signals as raw in-phase and quadrature
(IQ) data. Moreover, users can manage automated route planning for drones, recording
configurations, and different cameras and RF configurations. Researchers can now generate
datasets with various images and RF configurations without the need for physical drones,
cameras, or SDRs, enabling experimentation with different drone detection models.
Furthermore, we proposed models for drone detection systems by using generated datasets
from the proposed dataset generation system.

Research Article

Received: 13.02.2024
Revised: 11.03.2024
Accepted: 12.03.2024
Published: 15.07.2024

1. Introduction

Drone usage increased dramatically all over the

world. As of 15 January 2024, there are 863,728
registered drones in the US, according to the Federal
Aviation Administration (FAA). Moreover, in Turkey, the
number of registered drones reached 68,426 in June
2023. Drones have many useful applications like 3D
modelling of historical places [1-5] and communication
technologies [6], but they can also be used for illegal
activities such as transporting prohibited substances and
carrying out attacks. Automated drone detection
systems using technologies like image, radar, and AI
algorithms are needed to prevent these activities in
certain areas like airports and government buildings.

Automated drone detection systems can be built
using different techniques. However, in the literature,
there are four main methods: vision, RF, acoustic, and
radar. These methods have several advantages and
disadvantages, as shown in Table 1. Multi-model drone
detection systems that use two or more detection
methods are built to eliminate disadvantages.

There are several research for drone detection
systems in the literature. For these drone detection

systems, different types of equipment like cameras,
drones, and radars are used. However, there are some
researchers who are unable to access these pieces of
equipment. They generally use publicly available drone
detection datasets. However, these publicly available
datasets are created for specific tasks like classifying
drones and birds in images or classifying three drone
brands by using RF signals. Also, created labels could be
limited for researchers. For example, a researcher could
need Cartesian coordinates of drones in image datasets,
but in these datasets generally only bounding boxes are
published. In addition, a researcher could need a dataset
that uses multiple drone detection methods. For
example, we could not find any combined image and RF
dataset in the literature.

In this paper, we proposed a solution for creating
datasets for drone detection systems in a simulation
environment without any other drone detection
hardware requirement. The proposed system supports
only image and RF dataset generation for now, and we
plan to extend the simulation capabilities by adding other
types of measurement devices. We chose image and RF
dataset generation because they are the most popular
two drone detection methods in the literature. The

https://dergipark.org.tr/en/pub/tuje
https://dergipark.org.tr/tr/pub/@yusuf-ozben
https://dergipark.org.tr/tr/pub/@suleyman-emre-demir
https://dergipark.org.tr/tr/pub/@huseyin-birkan-yilmaz
mailto:yusufozben@gmail.com
mailto:SuleymanD41k9@gmail.com
https://orcid.org/0009-0004-1103-4094
https://orcid.org/0009-0006-6228-6448
https://orcid.org/0000-0002-4773-2028
https://dergipark.org.tr/en/pub/tuje/issue/86022/1436757

Turkish Journal of Engineering – 2024, 8(3), 572-582

 573

created solution uses Unreal Engine for the simulation
environment and Airsim for drone simulation. In
addition, the Airsim GUI is proposed for managing drone
detection data generation steps on a single screen. From
the Airsim GUI, drones, cameras, RF, recording, and
autonomous drone path settings can be configured, and
datasets can be generated based on settings.

The remainder of the paper is organized as follows,
Section 2 provides the literature review about related
topics, Section 3 details the created dataset generation
simulation architecture for drone detection, Section 4
gives example of possible use cases and drone detection
models for simulation datasets, and Section 5 concludes
the article, identifies the contributions, and discuss the
future directions.

Table 1. Drone detection methods and their advantages and disadvantages.

Method Advantages Disadvantages

Camera Cost-effective, provide visual evidence, etc. Different scale and shape of drones, similarities
with birds, different weather and lighting

conditions, requires line-of-sight, etc.
RF Resistance to different weather and lighting conditions, long

range detection, no need for line-of-sight, etc.
Hard to differentiate from other RF resources,

cannot detect completely autonomous drones, etc.
Acoustic Easy to deploy, cost-effective, no need for line-of-sight, etc. A lot of background noise, short range, etc.

Radar Long range, resistance to autonomous drones, localization, etc. Hard to detect small drones, high cost, etc.

2. Literature review

In the literature, several publicly published datasets
exist for drone detection systems and proposed drone
detection models. We summarize the literature for image
and RF based datasets and drone detection methods, and
drone detection in simulation environments.

2.1. Image-based drone detection datasets

In the literature, the most accessible datasets are
image-based drone detection datasets than the other
methods. The main reason is creating an image dataset is
easier than the other detection methods.

There are various workshops available that focus on
image-based drone detection. One of the most popular
workshops is the Anti-UAV Workshop & Challenge. This
challenge happened three times and there are a publicly
published datasets for these challenges. The first
challenge was organized in conjunction with Computer
Vision and Pattern Recognition Conference (CVPR) as the
first International Workshop on Anti-UAV Challenge [7],
and 160 RGB and infrared video sequences were
published. The 2nd anti-UAV Workshop & Challenge [8]
was organized in conjunction with International
Conference on Computer Vision (ICCV) 2021, and they
extended their dataset with 280 HQ videos which are
captured with a thermal infrared camera and contain
different scale multiple drones. Finally, the last challenge
[9] was organized in conjunction with CVPR 2023 with
an extended dataset.

The Drone vs. Bird Detection Challenge is another
well-known challenge for drone detection. This challenge
began during the International Workshop on Small-
Drone Surveillance, Detection, and Counteraction
Techniques (WOSDETC) [10] at Conference on Advanced
Video and Signal-Based Surveillance (AVSS) 2017 and
has occurred five times since [11-14]. During these
workshops, image datasets were published. The main
focus of these datasets was detecting small drones and
differentiating them from birds.

Li et al. [15] published a public dataset for
reconstructing 3D flight trajectories by using multiple
cameras. The dataset includes five sub-datasets, each

with variations in the number of cameras, locations, and
synchronization configurations.

2.2. RF-based drone detection datasets

For RF-based drone detection, there are no such
workshops as in image-based drone detection. However,
in the literature, there are several public datasets.

Allahham et al. [16] has one of the most popular RF
datasets for drone detection. It contains time series RF
data recorded using universal software radio peripheral
(USRP) in 2.4 GHz. Collected RF data contains Parrot
Bebop, Parrot AR, and DJI Phantom 3 drones and only
background RF activity. They also categorize the drone
data into the drone modes as on, hovering action, flying,
and video recording. The dataset serves 2 classes for
drone detection, 3 classes for drone type classification,
and 10 classes for drone mode classification.

Swinney et al. [17] and Glüge et al. [18] publicly
shared a dataset that contains raw IQ data. Swinney et al.
[17] made available the DroneDetect V2 dataset, which
includes drone signals with other signal interference in
the same frequency band as Bluetooth. They used a
BladeRF software-defined radio (SDR) and three drone
models. The created class types are similar to those in
Allahham et al. [16], with 2 classes for drone detection, 4
classes for drone type classification, and 10 classes for
drone mode classification. On the other hand, the dataset
published in Glüge et al. [18] not only contains drone
signals but also remote controller signals. After
recording the signals, they applied Labnoise and
Gaussian noise to the drone signals.

The dataset published in Medaiyese et al. [19] is
known as the Cardinal RF (CardRF) dataset and
frequently used in research. This dataset's primary
contribution is that it includes labeled drone RF data
from both line-of-sight (LoS) and non-line-of-sight
(NLOS) scenarios. Additionally, the dataset contains
various types of drones and 2.4 GHz transmitters.

2.3. Drone detection via RF dataset

Because creating RF dataset for drone detection from
scratch is exhausting, mainly publicly available datasets
are used in the literature for drone detection research.

Turkish Journal of Engineering – 2024, 8(3), 572-582

 574

The DroneRF dataset in Allahham et al. [16] has been
used in various research studies [20-25]. Al-Sa’d et al.
[20] outline the dataset and uses a deep neural network
for analysis. For the 2-class problem, they reported the
average accuracy as 99.7%, for the 4-class problem
84.5%, and for the 10-class problem 46.8%. Al-Emadi
and Al-Senaid [21] and Allahham et al. [22] propose a
solution using a 1D convolutional neural network,
achieving 59.2% and 87.4% accuracy in the 10-class
problem, respectively. In addition, Medaiyese et al. [23]
uses XGBoost, a more resource-friendly machine
learning system than a deep neural network, to achieve
70.1% accuracy for the 10-class classification. Nemer et
al. [24] proposed a hierarchical model that improves the
10-class problem using concatenated classifiers. The first
set of classifiers addresses a 2-class drone detection
problem. Following that, if a drone is detected, they
proceed to solve a 3-class drone-type detection problem.
Finally, the last set of classifiers is employed to tackle the
task of identifying drone modes. Furthermore, they used
two different classification methods for their classifiers:
XGBoost and K-Nearest Neighbors (KNN). Ensemble
learning is used for decision. Their model achieved
99.2% accuracy for the 10-class problem.

Glüge et al. [18] not only shares the dataset but also
compares the performance of drone detection using IQ
data and 2D spectrogram. They utilized a very deep
convolutional network (VGGNet) and showed that a 2D
spectrogram is more reliable in detecting drones in lower
SNR conditions.

Nguyen et al. [26] propose a drone detection system
using two different software-defined radios and two
different drones. Their objective was to locate the drone
and its controller in 3D space by combining angle of
arrivals (AoA) and distances. The proposed system
achieved a 12.2-degree error in identifying the drone's
direction, with a localization error of 12.71 meters.
Moreover, the system obtained a 9.9-degree error in
identifying the controller's direction, and an accuracy of
11.36 meters in locating the controller.

2.4. Drone detection via camera

In the literature, there are several drone detections
via image exist. They use both publicly available datasets
and custom created datasets.

The YOLO series is a popular choice for detecting
objects, including drones. Unlu et al. [27] use two
cameras for drone detection. One camera had a dynamic
platform and lens for a low-angle view, while the other
had a static platform and lens for a wide-angle view. They
detected objects with the wide-angle camera and
classified them using the low-angle camera with 35X
zoom. This approach allowed them to capture drones as
small as 6x6 pixels using YOLOv3. They achieved a 0%
false alarm rate and a 91% true positive rate. Singha and
Aydin [28] used YOLOv4 for drone detection and
obtained a 74.36% mAP50 score using a dataset that
contained both bird and drone images. Zhai et al. [29], the
latest version of YOLO, YOLOv8s (YOLOv8 small model),
was used. The researchers modified the YOLOv8 and
achieved even higher performance metrics. They

achieved an 85.2% mAP score using the original version
of YOLOv8s (YOLOv8 small model), which was improved
to 95.3% with their optimized version of YOLOv8.

Seidaliyeva et al. [30] proposed a solution for static
cameras using the drone-vs-bird dataset. The
researchers divided the drone detection problem into
two phases: moving object detection and classification.
They employed the background subtraction method to
detect moving objects and used MobileNetV2 to classify
drones, birds, and backgrounds. For their evaluation,
they reported an F1-score of 0.742 for IoU at 0.3.

2.5. Drone detection in simulation environments

Game engines are useful for drone detection tasks due
to their reality. However, game engines mainly used for
drone detection via images in the literature.

Drone detection by utilizing another drone's camera
is investigated as a problem in Carrio et al. [31]. To
address this issue, the authors propose a solution that
employs a depth map. They test this approach in real-
world settings after producing synthetic data in Unreal
Engine. The same team continues their research in Carrio
et al. [32] and improves their approach by using the same
synthetic data generation method.

During the Drone-vs-Bird challenge held at AVSS in
2021, the winning team utilized a simulation
environment to improve their score [33]. They employed
a 3D drone model and diverse 2D backgrounds, which
were incorporated into the Unity game engine.
Subsequently, they captured images from the game
engine and merged them with the competition dataset.
The team achieved better results for drone detection
using YOLOv5 by only adding synthetic data.

3. Dataset generation system

3.1. The simulation component architecture

Our dataset generation system works based on
Unreal Engine, Airsim, and pyphysim, as shown in Figure
1. As a simulation environment, Unreal Engine is used. It
is one of the most popular game engines. It has high-
quality vision, audio, and programmability features. Also,
it has built-in Airsim compatibility. Airsim is developed
by Microsoft and it is an open-source, cross-platform
simulator for cars and drones. The dataset generation
system mainly uses drone and camera functionalities of
Airsim.

In addition to Unreal Engine, Airsim GUI is the main
component of the proposed architecture. We developed
Airsim GUI to manage the simulation environment and
generate image and RF datasets for drone detection
models. It contains Airsim client library to communicate
with Airsim. This communication is required to send
commands to Airsim and collect data from Airsim.
Collected data is processed and written into a file system
to create a dataset. Another component in the Airsim GUI
is pyphysim library. It is a Python library that provides
simulation for digital communication physical layer. It is
used to generate RF datasets.

Turkish Journal of Engineering – 2024, 8(3), 572-582

 575

Figure 1. The simulation component architecture.

3.2. The simulation environment: Boğaziçi

University north campus

Some parts of the Boğaziçi University north campus

are selected as a simulation environment. The selected
simulation environment covers the library, computer
engineering building, basketball court, portal statue, the
pyramid, and the Atatürk bust. This area covers
approximately 10300 m2. Figure 2 shows the selected
area's map image.

The simulation environment was created through
two main steps: creating individual buildings and
creating the complete environment. In the first step,

chosen buildings were created for the simulation
environment. In the second step, these created buildings
are put in the simulation environment.

In the process of creating individual buildings, the DJI
Mavic Air 2 drone was used to capture aerial pictures of
the selected buildings. All areas of the buildings were
scanned by drone, combined in Blender, and created in a
1:1 scale for simulation. The buildings created in the first
step were exported as material to import Unreal Engine.
They were combined in Unreal Engine and the selected
simulation environment was created with a 1:1 scale.
Figure 3 shows images from the simulation environment.

Figure 2. Map image of the selected simulation environment.

Turkish Journal of Engineering – 2024, 8(3), 572-582

 576

Figure 3. Screenshot images from the simulation environment. Top left image: The basketball court. Bottom left image:

The Atatürk bust. Right image: The campus view from the Northeast.

3.3. Airsim GUI

For drone detection dataset generation, we created a

GUI that communicates with the Airsim plugin in the
Unreal Engine. We named this GUI as the Airsim GUI. This
GUI was created with PyQt, a cross-platform GUI
designer tool for Python. Communication between
Airsim GUI and Airsim is performed by using the Airsim
client library for Python. The Airsim client library has
several APIs for several tasks.

There are several functions for managing the
simulation environment and generating datasets in the
Airsim GUI. Similar functions are put in the same tab to
separate and group functionalities. Until now, six
different tabs have been created: guide, drones, RF
parameters, set drone path, recording, and offline data
generation tabs.

• Guide: Directives are given in the guide tab. Also, it

has an additional functionality to add a table
component in a simulation environment. This table
component provides locating multiple cameras with
the exact relative location between them using only
a single location and rotation information.

• Drones: The drones tab has spawning and retrieving
drone functionalities. When spawning a drone, the
drone’s name and Cartesian coordinates for spawn
location are taken as input. For retrieving a drone,
the drone’s name is selected from the list.

• RF parameters: RF parameters tab contains RF
dataset-related inputs. If an RF dataset needs to be
created, fields in this tab must be filled. These fields
are mainly related to transmitter, channel, and SDRs.
This tab will be described in Section 3.4 in detail.

• Set drone path: In the set drone path tab, drone
paths can be defined. When creating a dataset,
drones can follow these defined paths
autonomously. There is a functionality to save and
load created drone paths for generating another
dataset with the same drone paths.

• Recording: The recording tab encompasses features
for managing the recording process to generate
datasets. Initially, a user chooses the cameras and
their formats for recording. Then, the user can select
or deselect the checkboxes for the recording
functionalities. These checkboxes include "Save
segmented images", "Follow path while recording",
and "Generate RF after recording". By selecting the
"Save segmented images" option, the drone
segmentation can be recorded along with the camera
images. These segmented images can later be used as
a ground truth for drone detection models. Enabling
the "Follow path while recording" ensures that the
drones will follow the specified paths in the set
drone path tab once the "Start Recording" button is
clicked. If the user selects the "Generate RF after
recording" option, the RF data generation process
will start with the configured RF parameters after
the simulation scenario finishes in the Unreal Engine.
Once the image and RF datasets are generated, three
main folders are created: "vehicle_logs",
"camera_logs," and "rf_logs". The "vehicle_logs"
folder contains individual files for each drone,
named according to their drone names. These files
contain logs of the drone's location, speed, and
timestamps. The "camera_logs" folder includes
separate files for each camera, named after their
camera names. These files contain the image
locations in the file system and timestamps of the
captured images. The images themselves are stored
in folders named after the respective cameras. The
"rf_logs" folder stores the collected RF data from
SDRs and the used RF parameters.

• Offline data generation: The final tab is the offline
data generation. Since the RF generation step takes a
long time, this process could be run later. Moreover,
RF generation can be done multiple times with
different parameters for the same scenario. This tab
was created to generate RF datasets without running
the same scenarios in Unreal Engine. Example
images from the Airsim GUI are shown in Figure 4.

Turkish Journal of Engineering – 2024, 8(3), 572-582

 577

Figure 4. Example images from the Airsim GUI. (Left: RF parameters tab. Right:Set drone path tab.)

3.4. RF dataset generation

Figure 5 shows high-level RF dataset generation

steps. RF dataset is generated with created files in the

"vehicle_logs" folder. There is a file for every single drone
which contains location and speed logs with timestamps.
Until the AWGN step, RF data is generated separately for
drones.

Figure 5. High-level RF dataset generation steps.

The pyphysim library was mainly used to generate RF

dataset. The created RF datasets refer to collected IQ
signals by SDRs in the simulation environment. SDR is the
main component of RF signal-based drone detection
systems. The RF dataset generation architecture
supports multiple drones and SDRs. For this version of
our data generation system, drone controllers are
excluded since they are assumed to be out of coverage, as
seen in Figure 6. Because of that, only drone-transmitted
data is generated. SDR, drone transmitters, and other RF
simulation configurations are set in the RF parameters
tab of Airsim GUI. Then, the RF dataset can be created
directly after recording or using previously created
datasets with the offline data generation tab.

RF data generation steps start from reading drone log
files, and at the end RF log files are created for every SDR.
First of all, drone logs are read line by line. Between two
lines, the time difference and the number of IQ signals
that need to be generated between them is calculated.
However, drones do not generate RF signals every time.
To handle that Markov chain is used. Users can create a
Markov chain to define idle (not transmitting) and busy
(transmitting) states and probabilities of moving other
states. Also, if the state represents busy, it contains
transmitting power and one of the supported modulation
techniques (Binary phase shift keying (BPSK) or
quadrature phase shift keying (QPSK)). There is no limit
to the created number of states. Figure 7 shows a Markov

chain example containing data and probabilities of
moving other states. A user defines the number of IQ
signals in a single state from the Airsim GUI, and the
number of generated states between two consecutive
logs is calculated based on it. If the state is idle, there is
no other process until the AWGN step.

If the state is busy, data transmission from a drone to
SDR happens. The first block in this process is the drone
transmitter block. It contains the processes that happen
in the drone transmitter. First, the random number
generator is run based on the modulation technique. If
the modulation technique is BPSK, the generated
numbers are zero and one. If the modulation technique is
QPSK, the numbers range from zero to four. These
generated numbers represent symbols. These
represented symbols are transformed into complex
signals in the IQ plane. Then, OFDM is applied to the
signal with the FFT size, cyclic prefix size, and the
number of subcarrier parameters taken from Airsim GUI.
Finally, transmitting power and transmitter gain are
applied to the signal transmitted to the transmission
channel.

The transmission channel mainly contains two
models: Jakes' channel model and tapped delay line
model. In the transmission channel, only purely
stochastic channel modeling is used. Jakes' model is used
because it is famous for modeling mobile wireless
communication systems realistic, contains effects of

Turkish Journal of Engineering – 2024, 8(3), 572-582

 578

scatters, and has a Doppler effect. Combining Jakes'
model with the tapped delay line model provides a
defining multipath tap delays and powers as an input.

Figure 6. The SDR coverage in our simulation system
shows that drone controllers are always out of coverage.

Figure 7. There are two states named idle and busy. In a
busy state, transmission happens with 11 Watt and the
BPSK modulation technique. Numbers on the arrows
show the transition probabilities.

Because there is multiple SDR support, the same

distance-related channel effects cannot be applied for
every drone-SDR pair with a single calculation. So, for
every SDR, these effects are applied separately for a
drone transmission. These effects are path loss and phase
shift. The free space path loss model is used as a path loss
model. This model uses distance, carrier frequency, and
path loss coefficient. Distance between a drone and SDR
is calculated between two consecutive logs, and carrier
frequency and path loss coefficient are taken from a user.
Phase shift is applied based on the difference between
the distances of drones and SDRs. After that, all drone
signals generated simultaneously are summed together
for SDR receivers.

At the end, for every SDR receiver, AWGN is added,
and the receiver gain is applied. The generated signals
are written as a byte stream to the "rf_logs" folder. Every
SDR writes its data into a file with the name of the SDR.
In addition to generated signals, the RF parameters used
in dataset generation are also written in the
"rf_parameters.pickle" file.

4. Example use cases

A dataset was created using the implemented

simulation environment and the Airsim GUI to show
example use cases. Different drone path scenarios,
camera and SDR locations, and lighting conditions were
chosen, and a dataset with image and RF was created
with these configurations. In the simulation
environment, two cameras, two SDRs, a drone, and ten
birds were used. Between cameras and SDRs, there is 10
m. We proposed three different use cases: drone

detection via image, drone detection via RF, and drone
distance detection via RF.

The same hardware and software configurations
were used in use cases as an 8GB Nvidia GTX 1070
graphic card, PyTorch 1.13.1 as the deep learning
framework, Python version 3.8, CUDA version 11.0, and
the operating system Windows 10.

4.1. Drone detection via image

Drone detection via image problem is a subset of

object detection in computer vision. There are several
object detection algorithms in the literature. YOLO is one
of the most popular of them. It has different versions, and
the state-of-the-art version is the YOLOv8 model. This
model contains different sizes based on the number of
parameters: nano(n), small(s), middle(m), large(l), and
extra-large(x). Because the detection speed is crucial,
achieving higher detection capability in smaller models
is required. So, the nano version of YOLOv8 was chosen
for drone detection.

Before training the model, the created dataset was
prepared for the model. For ground truth, bounding
boxes are required. However, Airsim GUI saves images
with segmentation for ground truth. Because of that,
segmented ground truths were transformed into
bounding boxes. Then, the dataset was divided into
training, validation, and test datasets as 60%-20%-20%,
respectively.

The transfer learning was used for the training with a
pre-trained model on the COCO dataset [34]. The model
was trained to detect only drones. 1024 x 576 pixel image
format was used as an input of the model. After 14
epochs, the training process was finished. The training
metrics are given in Table 2.

Table 2. YOLOv8 nano model training process via image.

Epoch Precision Recall mAP50 mAP50-95
1 0.76755 0.53322 0.55266 0.2614
2 0.61498 0.51329 0.53621 0.27792
3 0.74676 0.48494 0.54547 0.27878
4 0.80832 0.5604 0.61579 0.35433
5 0.68501 0.52492 0.5474 0.29289
6 0.80637 0.62261 0.67955 0.40068
7 0.85189 0.64014 0.68377 0.40726
8 0.82561 0.65275 0.72545 0.44725
9 0.84713 0.65615 0.70576 0.41265
10 0.91571 0.59552 0.71363 0.4251
11 0.87754 0.6711 0.73256 0.4228
12 0.85971 0.62292 0.707 0.41085
13 0.8656 0.63953 0.71531 0.44009
14 0.90008 0.65947 0.73839 0.45815

Used metrics in Table 2 are precision, recall, and

mean average precision (mAP) scores. The mean average
precision score is the primary performance evaluation
metric for object detection tasks. The mAP50 is
calculated by computing the average precision (AP) at a
50% intersection over union (IoU) threshold. The
mAP50-95 scores are calculated by taking the average of
precision values across a range of IoU thresholds starting
from 0.5 and ending at 0.95, with a step size of 0.05. This
calculation is performed as in Equation 1. The average
precision is calculated based on the precision-recall

Turkish Journal of Engineering – 2024, 8(3), 572-582

 579

curve that corresponds to a specific IoU threshold.
Equation 2 and 3 provide the formulas for precision and
recall, in terms of False Negative (FN), True Positive (TP),
and False Positive (FP). The IoU score is calculated by
calculating the ratio of the intersection areas between the
two bounding boxes and the area of their union, as shown
in Equation 4.

𝑚𝐴𝑃50 − 95 =
1

11
 ∑ 𝑚𝐴𝑃𝑡

0.95

𝑡=0.5

 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4)

4.2. Drone detection via RF

As in Section 4.1, YOLOv8 was used for drone

detection via RF. The RF data was transformed into
images because YOLO was developed for vision tasks.
First of all, SDR data is split into 0.25-second sequences.
These sequences contain IQ signals. For every sequence,
a short-time Fourier transform (STFT) is calculated.
Because there were two different SDR in the simulation

environment, both STFT results are concatenated
vertically, as shown in Figure 8. In the created dataset,
there are only cases that have drones. Because of that,
cases that do not contain drones were generated using
Gaussian noise, and the same processes were applied to
these signals. All datasets are labeled with drone and
background noise signals. Then, the dataset is split into
training, validation, and test datasets as 60%-20%-20%,
respectively.

The nano version of YOLOv8 is used for the
classification task for this problem. Rather than an object
detection task, the classification task classifies the whole
image. Again, transfer learning was used for this model's
training, and the pre-trained model with the ImageNet
dataset [35] was used. After the first epoch, the accuracy
metric remained relatively consistent, as indicated in
Table 3. The third epoch provides the most accurate
calculation; the corresponding accuracy is 0.92531. The
accuracy indicates how often the network predicts the
correct label with the highest probability.

Table 3. YOLOv8 nano model training process for drone
detection via RF.

Epoch Accuracy

1 0.92304

2 0.92485

3 0.92531

4 0.92531

Figure 8. Data preprocess for RF data.

4.3. Drone distance detection via RF

In the final use case, drone distance detection via RF

dataset problem was chosen. For this task, a custom
convolutional neural network (CNN) was built to predict
the distance between drones and SDRs. Because there
are two SDRs in the simulation environment, the middle
of the SDRs is selected as a SDR location. Two different
sequence lengths, 0.25 seconds and 0.50 seconds, are
used to compare performances.

For data preprocessing, the SDR signals were divided
into 0.25-second and 0.50-second sequences and labeled
with the average distance in the sequences. The sampling

frequency was 106 in the dataset. This means that each
0.25-second sequence contains 250,000 time points, and
a 0.50-second sequence contains 500,000 time points. I
and Q components are split for both SDRs and merged
vertically to provide input for the CNN model. 4x250000-
shaped and 4x500000-shaped arrays were created as
input for the custom CNN models. The datasets for
different sequence lengths were divided into training,
validation, and test datasets as 60%-20%-20%,
respectively.

The proposed CNN models are shown in Figure 9. The
proposed models contain three 2D convolution layers
and two 2D average pooling layers. To prevent

Turkish Journal of Engineering – 2024, 8(3), 572-582

 580

overfitting, two dropout layers with a 20% probability
are added. After the convolution layers, fully connected
layers were added to the end. Because 0.50 second
sequences contain more data, one more dense layer is
added to its model.

Both models are trained with their datasets
separately with the same hyperparameters. For the
training, the batch size is chosen as 10. Rectified linear
units are used as an activation layer. To converge the
optimal solution, Adam optimizer is used, and the

learning rate is chosen as 0.001. The best results for 0.25
second sequence were achieved in the 8th epoch and
0.50 second sequence were achieved in the 10th. The test
result statistics are given in Table 4. In the given
statistics, the errors in min 10% and max 10% were
trimmed. The root mean square error for the test dataset
is 7.29 meters for 0.25 second sequence and 6.07 meters
for 0.50 second sequence. As a result, broader sequences
provide better performance for the drone distance
detection task.

Figure 9. Custom CNN models to predict the distance. (Left is for 0.25 second and right is for 0.50 second sequences).

Table 4. Drone distance detection statistics for the absolute difference and percentage error between ground truth and
estimations. For statistics, we trimmed rows that are in the min 10% and max 10% percentage error.

5. Conclusion

In this study, we have proposed a comprehensive
solution for generating datasets for drone detection
models in a simulation environment. We described the
proposed architecture and created the Airsim GUI tool.
Then, the implemented structure for creating RF dataset
is explained. Moreover, three different drone detection
models were tested on the generated dataset from the
proposed architecture.

As a future work, we aim to enhance the RF dataset
generation architecture in the Airsim GUI. We want to
incorporate LOS and NLOS channel models. Also, we
want to add dataset generation features for other
modalities like acoustics and radar.

Acknowledgement

This work has been supported by Boğaziçi University
BAP under the grant BAP-SUP-17862

0.25 second
sequences

(RMSE=7.29)
(Epoch 8)

Absolute difference (m)
mean std min 25% 50% 75% max
6.26 3.73 0.93 3.16 5.70 8.54 17.98

Percentage error (%)
mean std min 25% 50% 75% max
14.82 7.73 3.33 8.20 14.10 20.22 34.23

0.50 second
sequences

(RMSE=6.07)
(Epoch 10)

Absolute difference (m)
mean std min 25% 50% 75% max
5.32 2.93 0.64 2.94 4.65 7.16 14.96

Percentage error (%)
mean std min 25% 50% 75% max
12.50 5.53 3.17 7.92 11.76 16.72 25.71

Turkish Journal of Engineering – 2024, 8(3), 572-582

 581

Author contributions

Yusuf Özben: Methodology, Software, Tests, Writing-
Original draft preparation. Süleyman Emre Demir:
Methodology, Software, Tests. Hüseyin Birkan Yılmaz:
Methodology, Visualization, Investigation, Writing-
Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Şasi, A., & Yakar, M. (2017). Photogrammetric
modelling of Sakahane Masjid using an unmanned
aerial vehicle. Turkish Journal of Engineering, 1(2),
82-87. https://doi.org/10.31127/tuje.316675

2. Karataş, L., Alptekin, A., Kanun, E., & Yakar, M. (2022).
Tarihi kârgir yapılarda taş malzeme bozulmalarının
İHA fotogrametrisi kullanarak tespiti ve
belgelenmesi: Mersin Kanlıdivane ören yeri vaka
çalışması. İçel Dergisi, 2(2), 41-49.

3. Karataş, L., Alptekin, A., Karabacak, A., Yakar, M.
(2022). Detection and documentation of stone
material deterioration in historical masonry
buildings using UAV photogrammetry: A case study of
Mersin Sarisih Inn. Mersin Photogrammetry Journal,
4(2), 53-61.
https://doi.org/10.53093/mephoj.1198605

4. Şasi, A., & Yakar, M. (2018). Photogrammetric
modelling of Hasbey Dar'ülhuffaz (Masjid) using an
unmanned aerial vehicle. International Journal of
Engineering and Geosciences, 3(1), 6-11.
https://doi.org/10.26833/ijeg.328919

5. Çolak, A., Aktan, N., & Yılmaz, H. M. (2022). Modelling
of its surroundings and Selime Cadhetral by UAV
data. Advanced UAV, 2(1), 24-28.

6. Banafaa, M., Pepeoğlu, Ö., Shayea, I., Alhammadi, A.,
Shamsan, Z., Razaz, M. A., ... & Al-Sowayan, S. (2024).
A comprehensive survey on 5G-and-beyond networks
with UAVs: Applications, emerging technologies,
regulatory aspects, research trends and challenges.
IEEE Access, 12, 7786 – 7826.
https://doi.org/10.1109/ACCESS.2023.3349208

7. Jiang, N., Wang, K., Peng, X., Yu, X., Wang, Q., Xing, J., ...
& Han, Z. (2021). Anti-uav: a large-scale benchmark
for vision-based uav tracking. IEEE Transactions on
Multimedia, 25, 486-500.
https://doi.org/10.1109/TMM.2021.3128047

8. Zhao, J., Wang, G., Li, J., Jin, L., Fan, N., Wang, M., ... &
Guo, Y. (2021). The 2nd anti-uav workshop &
challenge: Methods and results. Computer Vision and
Pattern Recognition.
https://doi.org/10.48550/arXiv.2108.09909

9. Zhao, J., Li, J., Jin, L., Chu, J., Zhang, Z., Wang, J., ... &
Shengmei, J. S. (2023). The 3rd anti-uav workshop &
challenge: Methods and results. Computer Vision and
Pattern Recognition.
https://doi.org/10.48550/arXiv.2305.07290

10. Coluccia, A., Ghenescu, M., Piatrik, T., De Cubber, G.,
Schumann, A., Sommer, L., Klatte, J., Schuchert, T.,
Beyerer, J., Farhadi, M., Amandi, R., Aker, C., Kalkan, S.,
Saqib, M., Sharma, N., Daud, S., Makkah, K., &
Blumenstein, M. (2017). Drone-vs-bird detection
challenge at IEEE AVSS2017. IEEE International
Conference on Advanced Video and Signal Based
Surveillance (AVSS) Drone-vs-Bird detection
challenge, 1-6, Lecce, Italy.

11. Coluccia, A., Fascista, A., Schumann, A., Sommer, L.,
Dimou, A., Zarpalas, D., ... & Mantegh, I. (2017). Drone-
vs-bird detection challenge at IEEE AVSS2017. 17th
IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), 1-8.
https://doi.org/ 10.1109/AVSS.2017.8078464

12. Coluccia, A., Fascista, A., Schumann, A., Sommer, L.,
Dimou, A., Zarpalas, D., ... & Rajashekar, S. (2021).
Drone vs. bird detection: Deep learning algorithms
and results from a grand challenge. Sensors, 21(8),
2824. https://doi.org/10.3390/s21082824

13. Coluccia, A., Fascista, A., Schumann, A., Sommer, L.,
Dimou, A., Zarpalas, D., ... & Mantegh, I. (2021). Drone-
vs-bird detection challenge at IEEE AVSS2021. 17th
IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), 1-8.
https://doi.org/10.1109/AVSS52988.2021.9663844

14. Coluccia, A., Fascista, A., Schumann, A., Sommer, L.,
Dimou, A., Zarpalas, D., ... & Pavleski, D. (2022). Drone-
vs-bird detection challenge at ICIAP 2021.
In International Conference on Image Analysis and
Processing, 410-421. https://doi.org/10.1007/978-
3-031-13324-4_35

15. Li, J., Murray, J., Ismaili, D., Schindler, K., & Albl, C.
(2020). Reconstruction of 3D flight trajectories from
ad-hoc camera networks. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
1621-1628.
https://doi.org/10.1109/IROS45743.2020.9341479

16. Allahham, M. S., Al-Sa'd, M. F., Al-Ali, A., Mohamed, A.,
Khattab, T., & Erbad, A. (2019). DroneRF dataset: A
dataset of drones for RF-based detection,
classification and identification. Data in Brief, 26,
104313. https://doi.org/10.1016/j.dib.2019.104313

17. Swinney, C. J., & Woods, J. C. (2021). RF detection and
classification of unmanned aerial vehicles in
environments with wireless interference.
International Conference on Unmanned Aircraft
Systems (ICUAS), 1494-1498.
https://doi.org/10.1109/ICUAS51884.2021.947686
7

18. Glüge, S., Nyfeler, M., Ramagnano, N., Horn, C., &
Schüpbach, C. (2023). Robust drone detection and
classification from radio frequency signals using
convolutional neural networks. 15th International
Joint Conference on Computational Intelligence
(IJCCI), 496-504.
https://doi.org/10.5220/0012176800003595

19. Medaiyese, O., Ezuma, M., Lauf, A., & Adeniran, A.
(2022). Cardinal RF (CardRF): An outdoor
UAV/UAS/drone RF signals with Bluetooth and WiFi
signals dataset.

20. Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., &
Erbad, A. (2019). RF-based drone detection and

https://dergipark.org.tr/tr/pub/@yusuf-ozben
https://dergipark.org.tr/tr/pub/@suleyman-emre-demir
https://dergipark.org.tr/tr/pub/@huseyin-birkan-yilmaz
https://doi.org/10.31127/tuje.316675
https://doi.org/10.53093/mephoj.1198605
https://doi.org/10.26833/ijeg.328919
https://doi.org/10.1109/ACCESS.2023.3349208
https://doi.org/10.1109/TMM.2021.3128047
https://doi.org/10.48550/arXiv.2305.07290
http://dx.doi.org/10.1109/AVSS.2017.8078464
https://doi.org/10.3390/s21082824
https://doi.org/10.1109/AVSS52988.2021.9663844
https://doi.org/10.1007/978-3-031-13324-4_35
https://doi.org/10.1007/978-3-031-13324-4_35
https://doi.org/10.1109/IROS45743.2020.9341479
https://doi.org/10.1016/j.dib.2019.104313
https://doi.org/10.1109/ICUAS51884.2021.9476867
https://doi.org/10.1109/ICUAS51884.2021.9476867
https://doi.org/10.5220/0012176800003595

Turkish Journal of Engineering – 2024, 8(3), 572-582

 582

identification using deep learning approaches: An
initiative towards a large open source drone
database. Future Generation Computer Systems, 100,
86-97. https://doi.org/10.1016/j.future.2019.05.007

21. Al-Emadi, S., & Al-Senaid, F. (2020). Drone detection
approach based on radio-frequency using
convolutional neural network. 2020 IEEE
International Conference on Informatics, IoT, and
Enabling Technologies (ICIoT), 29-34.
10.1109/ICIoT48696.2020.9089489

22. Allahham, M. S., Khattab, T., & Mohamed, A. (2020).
Deep learning for RF-based drone detection and
identification: A multi-channel 1-D convolutional
neural networks approach. IEEE International
Conference on Informatics, IoT, and Enabling
Technologies (ICIoT), 112-117.
https://doi.org/10.1109/ICIoT48696.2020.9089657

23. Medaiyese, O. O., Syed, A., & Lauf, A. P. (2021).
Machine learning framework for RF-based drone
detection and identification system. 2nd
International Conference on Smart Cities, Automation
& Intelligent Computing Systems (ICON-SONICS), 58-
64. https://doi.org/10.1109/ICON-
SONICS53103.2021.9617168

24. Nemer, I., Sheltami, T., Ahmad, I., Yasar, A. U. H., &
Abdeen, M. A. (2021). RF-based UAV detection and
identification using hierarchical learning
approach. Sensors, 21(6), 1947.
https://doi.org/10.3390/s21061947

25. Zhao, Z., Du, Q., Yao, X., Lu, L., & Zhang, S. (2023). A
Two-Dimensional Deep Network for RF-based Drone
Detection and Identification Towards Secure
Coverage Extension. In 2023 IEEE 98th Vehicular
Technology Conference (VTC2023-Fall), 1-5.
https://doi.org/10.1109/VTC2023-
Fall60731.2023.10333485

26. Nguyen, P., Kim, T., Miao, J., Hesselius, D., Kenneally,
E., Massey, D., ... & Vu, T. (2019). Towards RF-based
localization of a drone and its controller. Proceedings
of the 5th Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications, 21-26.
https://doi.org/10.1145/3325421.3329766

27. Unlu, E., Zenou, E., Riviere, N., & Dupouy, P. E. (2019).
Deep learning-based strategies for the detection and

tracking of drones using several cameras. IPSJ
Transactions on Computer Vision and
Applications, 11, 1-13.
https://doi.org/10.1186/s41074-019-0059-x

28. Singha, S., & Aydin, B. (2021). Automated drone
detection using YOLOv4. Drones, 5(3), 95.
https://doi.org/10.3390/drones5030095

29. Zhai, X., Huang, Z., Li, T., Liu, H., & Wang, S. (2023).
YOLO-Drone: an optimized YOLOv8 network for tiny
UAV object detection. Electronics, 12(17), 3664.
https://doi.org/10.3390/electronics12173664

30. Seidaliyeva, U., Akhmetov, D., Ilipbayeva, L., & Matson,
E. T. (2020). Real-time and accurate drone detection
in a video with a static background. Sensors, 20(14),
3856. https://doi.org/10.3390/s20143856

31. Carrio, A., Vemprala, S., Ripoll, A., Saripalli, S., &
Campoy, P. (2018). Drone detection using depth
maps. In 2018 IEEE/RSJ international conference on
intelligent robots and systems (IROS), 1034-1037.
https://doi.org/10.1109/IROS.2018.8593405

32. Carrio, A., Tordesillas, J., Vemprala, S., Saripalli, S.,
Campoy, P., & How, J. P. (2020). Onboard detection
and localization of drones using depth maps. IEEE
Access, 8, 30480-30490.
https://doi.org/10.1109/ACCESS.2020.2971938

33. Akyon, F. C., Eryuksel, O., Ozfuttu, K. A., & Altinuc, S. O.
(2021). Track boosting and synthetic data aided
drone detection. 17th IEEE International Conference
on Advanced Video and Signal Based Surveillance
(AVSS), 1-5.
https://doi.org/10.1109/AVSS52988.2021.9663759

34. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., ... & Zitnick, C. L. (2014). Microsoft coco:
Common objects in context. Computer Vision–ECCV
2014: 13th European Conference, Zurich, 13, 740-
755. https://doi.org/10.1007/978-3-319-10602-
1_48

35. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, 248-255.
https://doi.org/10.1109/CVPR.2009.5206848

© Author(s) 2024. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/

https://doi.org/10.1016/j.future.2019.05.007
https://doi.org/10.1109/ICIoT48696.2020.9089489
https://doi.org/10.1109/ICIoT48696.2020.9089657
https://doi.org/10.1109/ICON-SONICS53103.2021.9617168
https://doi.org/10.1109/ICON-SONICS53103.2021.9617168
https://doi.org/10.3390/s21061947
https://doi.org/10.1109/VTC2023-Fall60731.2023.10333485
https://doi.org/10.1109/VTC2023-Fall60731.2023.10333485
https://doi.org/10.1145/3325421.3329766
https://doi.org/10.1186/s41074-019-0059-x
https://doi.org/10.3390/drones5030095
https://doi.org/10.3390/electronics12173664
https://doi.org/10.3390/s20143856
https://doi.org/10.1109/IROS.2018.8593405
https://doi.org/10.1109/ACCESS.2020.2971938
https://doi.org/10.1109/AVSS52988.2021.9663759
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPR.2009.5206848
https://creativecommons.org/licenses/by-sa/4.0/

