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 Drones have become more prevalent in recent years and are used for both beneficial and 
malicious purposes. As a result, protecting restricted areas from unauthorized drone activities 
has become crucial. However, some researchers face challenges in developing drone detection 
systems due to the high costs of necessary equipment. This paper presents an innovative 
solution by creating an Airsim Graphical User Interface (GUI) tool compatible with the Unreal 
Engine. This tool enables the simulation of drone flights and creation of image and radio 
frequency (RF) datasets for drone detection in a simulation environment. Our approach 
involves modeling the measurement devices such as cameras to capture image data and 
software defined radio (SDR) receiver to capture RF signals as raw in-phase and quadrature 
(IQ) data. Moreover, users can manage automated route planning for drones, recording 
configurations, and different cameras and RF configurations. Researchers can now generate 
datasets with various images and RF configurations without the need for physical drones, 
cameras, or SDRs, enabling experimentation with different drone detection models. 
Furthermore, we proposed models for drone detection systems by using generated datasets 
from the proposed dataset generation system. 
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1. Introduction  
 
Drone usage increased dramatically all over the 

world. As of 15 January 2024, there are 863,728 
registered drones in the US, according to the Federal 
Aviation Administration (FAA). Moreover, in Turkey, the 
number of registered drones reached 68,426 in June 
2023. Drones have many useful applications like 3D 
modelling of historical places [1-5] and communication 
technologies [6], but they can also be used for illegal 
activities such as transporting prohibited substances and 
carrying out attacks.  Automated drone detection 
systems using technologies like image, radar, and AI 
algorithms are needed to prevent these activities in 
certain areas like airports and government buildings. 

Automated drone detection systems can be built 
using different techniques. However, in the literature, 
there are four main methods: vision, RF, acoustic, and 
radar. These methods have several advantages and 
disadvantages, as shown in Table 1. Multi-model drone 
detection systems that use two or more detection 
methods are built to eliminate disadvantages. 

There are several research for drone detection 
systems in the literature. For these drone detection 

systems, different types of equipment like cameras, 
drones, and radars are used. However, there are some 
researchers who are unable to access these pieces of 
equipment. They generally use publicly available drone 
detection datasets. However, these publicly available 
datasets are created for specific tasks like classifying 
drones and birds in images or classifying three drone 
brands by using RF signals. Also, created labels could be 
limited for researchers. For example, a researcher could 
need Cartesian coordinates of drones in image datasets, 
but in these datasets generally only bounding boxes are 
published. In addition, a researcher could need a dataset 
that uses multiple drone detection methods. For 
example, we could not find any combined image and RF 
dataset in the literature. 

In this paper, we proposed a solution for creating 
datasets for drone detection systems in a simulation 
environment without any other drone detection 
hardware requirement. The proposed system supports 
only image and RF dataset generation for now, and we 
plan to extend the simulation capabilities by adding other 
types of measurement devices. We chose image and RF 
dataset generation because they are the most popular 
two drone detection methods in the literature. The 
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created solution uses Unreal Engine for the simulation 
environment and Airsim for drone simulation. In 
addition, the Airsim GUI is proposed for managing drone 
detection data generation steps on a single screen. From 
the Airsim GUI, drones, cameras, RF, recording, and 
autonomous drone path settings can be configured, and 
datasets can be generated based on settings. 

The remainder of the paper is organized as follows, 
Section 2 provides the literature review about related 
topics, Section 3 details the created dataset generation 
simulation architecture for drone detection, Section 4 
gives example of possible use cases and drone detection 
models for simulation datasets, and Section 5 concludes 
the article, identifies the contributions, and discuss the 
future directions. 

 
Table 1. Drone detection methods and their advantages and disadvantages. 

Method Advantages Disadvantages 

Camera Cost-effective, provide visual evidence, etc. Different scale and shape of drones, similarities 
with birds, different weather and lighting 

conditions, requires line-of-sight, etc. 
RF Resistance to different weather and lighting conditions, long 

range detection, no need for line-of-sight, etc. 
Hard to differentiate from other RF resources, 

cannot detect completely autonomous drones, etc. 
Acoustic Easy to deploy, cost-effective, no need for line-of-sight, etc. A lot of background noise, short range, etc. 

Radar Long range, resistance to autonomous drones, localization, etc. Hard to detect small drones, high cost, etc. 

 
2. Literature review 
 

In the literature, several publicly published datasets 
exist for drone detection systems and proposed drone 
detection models. We summarize the literature for image 
and RF based datasets and drone detection methods, and 
drone detection in simulation environments. 
 
2.1. Image-based drone detection datasets 
 

In the literature, the most accessible datasets are 
image-based drone detection datasets than the other 
methods. The main reason is creating an image dataset is 
easier than the other detection methods. 

There are various workshops available that focus on 
image-based drone detection. One of the most popular 
workshops is the Anti-UAV Workshop & Challenge. This 
challenge happened three times and there are a publicly 
published datasets for these challenges. The first 
challenge was organized in conjunction with Computer 
Vision and Pattern Recognition Conference (CVPR) as the 
first International Workshop on Anti-UAV Challenge [7], 
and 160 RGB and infrared video sequences were 
published. The 2nd anti-UAV Workshop & Challenge [8] 
was organized in conjunction with International 
Conference on Computer Vision (ICCV) 2021, and they 
extended their dataset with 280 HQ videos which are 
captured with a thermal infrared camera and contain 
different scale multiple drones. Finally, the last challenge 
[9] was organized in conjunction with CVPR 2023 with 
an extended dataset. 

The Drone vs. Bird Detection Challenge is another 
well-known challenge for drone detection. This challenge 
began during the International Workshop on Small-
Drone Surveillance, Detection, and Counteraction 
Techniques (WOSDETC) [10] at Conference on Advanced 
Video and Signal-Based Surveillance (AVSS) 2017 and 
has occurred five times since [11-14]. During these 
workshops, image datasets were published. The main 
focus of these datasets was detecting small drones and 
differentiating them from birds. 

Li et al. [15] published a public dataset for 
reconstructing 3D flight trajectories by using multiple 
cameras. The dataset includes five sub-datasets, each 

with variations in the number of cameras, locations, and 
synchronization configurations. 
 
2.2. RF-based drone detection datasets 
 

For RF-based drone detection, there are no such 
workshops as in image-based drone detection. However, 
in the literature, there are several public datasets. 

Allahham et al. [16] has one of the most popular RF 
datasets for drone detection. It contains time series RF 
data recorded using universal software radio peripheral 
(USRP) in 2.4 GHz. Collected RF data contains Parrot 
Bebop, Parrot AR, and DJI Phantom 3 drones and only 
background RF activity. They also categorize the drone 
data into the drone modes as on, hovering action, flying, 
and video recording. The dataset serves 2 classes for 
drone detection, 3 classes for drone type classification, 
and 10 classes for drone mode classification. 

Swinney et al. [17] and Glüge et al. [18] publicly 
shared a dataset that contains raw IQ data. Swinney et al. 
[17] made available the DroneDetect V2 dataset, which 
includes drone signals with other signal interference in 
the same frequency band as Bluetooth. They used a 
BladeRF software-defined radio (SDR) and three drone 
models. The created class types are similar to those in 
Allahham et al. [16], with 2 classes for drone detection, 4 
classes for drone type classification, and 10 classes for 
drone mode classification. On the other hand, the dataset 
published in Glüge et al.  [18] not only contains drone 
signals but also remote controller signals. After 
recording the signals, they applied Labnoise and 
Gaussian noise to the drone signals. 

The dataset published in Medaiyese et al. [19] is 
known as the Cardinal RF (CardRF) dataset and 
frequently used in research. This dataset's primary 
contribution is that it includes labeled drone RF data 
from both line-of-sight (LoS) and non-line-of-sight 
(NLOS) scenarios. Additionally, the dataset contains 
various types of drones and 2.4 GHz transmitters. 
 

2.3. Drone detection via RF dataset 
 

Because creating RF dataset for drone detection from 
scratch is exhausting, mainly publicly available datasets 
are used in the literature for drone detection research. 
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The DroneRF dataset in Allahham et al. [16] has been 
used in various research studies [20-25]. Al-Sa’d et al. 
[20] outline the dataset and uses a deep neural network 
for analysis. For the 2-class problem, they reported the 
average accuracy as 99.7%, for the 4-class problem 
84.5%, and for the 10-class problem 46.8%. Al-Emadi 
and Al-Senaid [21] and Allahham et al. [22] propose a 
solution using a 1D convolutional neural network, 
achieving 59.2% and 87.4% accuracy in the 10-class 
problem, respectively. In addition, Medaiyese et al. [23] 
uses XGBoost, a more resource-friendly machine 
learning system than a deep neural network, to achieve 
70.1% accuracy for the 10-class classification. Nemer et 
al. [24] proposed a hierarchical model that improves the 
10-class problem using concatenated classifiers. The first 
set of classifiers addresses a 2-class drone detection 
problem. Following that, if a drone is detected, they 
proceed to solve a 3-class drone-type detection problem. 
Finally, the last set of classifiers is employed to tackle the 
task of identifying drone modes. Furthermore, they used 
two different classification methods for their classifiers: 
XGBoost and K-Nearest Neighbors (KNN). Ensemble 
learning is used for decision. Their model achieved 
99.2% accuracy for the 10-class problem. 

Glüge et al. [18] not only shares the dataset but also 
compares the performance of drone detection using IQ 
data and 2D spectrogram. They utilized a very deep 
convolutional network (VGGNet) and showed that a 2D 
spectrogram is more reliable in detecting drones in lower 
SNR conditions. 

Nguyen et al. [26] propose a drone detection system 
using two different software-defined radios and two 
different drones. Their objective was to locate the drone 
and its controller in 3D space by combining angle of 
arrivals (AoA) and distances. The proposed system 
achieved a 12.2-degree error in identifying the drone's 
direction, with a localization error of 12.71 meters. 
Moreover, the system obtained a 9.9-degree error in 
identifying the controller's direction, and an accuracy of 
11.36 meters in locating the controller. 
 
2.4. Drone detection via camera 
 

In the literature, there are several drone detections 
via image exist. They use both publicly available datasets 
and custom created datasets. 

The YOLO series is a popular choice for detecting 
objects, including drones. Unlu et al. [27] use two 
cameras for drone detection. One camera had a dynamic 
platform and lens for a low-angle view, while the other 
had a static platform and lens for a wide-angle view. They 
detected objects with the wide-angle camera and 
classified them using the low-angle camera with 35X 
zoom. This approach allowed them to capture drones as 
small as 6x6 pixels using YOLOv3. They achieved a 0% 
false alarm rate and a 91% true positive rate. Singha and 
Aydin [28] used YOLOv4 for drone detection and 
obtained a 74.36% mAP50 score using a dataset that 
contained both bird and drone images. Zhai et al. [29], the 
latest version of YOLO, YOLOv8s (YOLOv8 small model), 
was used. The researchers modified the YOLOv8 and 
achieved even higher performance metrics. They 

achieved an 85.2% mAP score using the original version 
of YOLOv8s (YOLOv8 small model), which was improved 
to 95.3% with their optimized version of YOLOv8. 

Seidaliyeva et al. [30] proposed a solution for static 
cameras using the drone-vs-bird dataset. The 
researchers divided the drone detection problem into 
two phases: moving object detection and classification. 
They employed the background subtraction method to 
detect moving objects and used MobileNetV2 to classify 
drones, birds, and backgrounds. For their evaluation, 
they reported an F1-score of 0.742 for IoU at 0.3. 
 
2.5. Drone detection in simulation environments 
 

Game engines are useful for drone detection tasks due 
to their reality. However, game engines mainly used for 
drone detection via images in the literature. 

Drone detection by utilizing another drone's camera 
is investigated as a problem in Carrio et al. [31]. To 
address this issue, the authors propose a solution that 
employs a depth map. They test this approach in real-
world settings after producing synthetic data in Unreal 
Engine. The same team continues their research in Carrio 
et al. [32] and improves their approach by using the same 
synthetic data generation method. 

During the Drone-vs-Bird challenge held at AVSS in 
2021, the winning team utilized a simulation 
environment to improve their score [33]. They employed 
a 3D drone model and diverse 2D backgrounds, which 
were incorporated into the Unity game engine. 
Subsequently, they captured images from the game 
engine and merged them with the competition dataset. 
The team achieved better results for drone detection 
using YOLOv5 by only adding synthetic data. 
 
3. Dataset generation system 
 
3.1. The simulation component architecture 
 

Our dataset generation system works based on 
Unreal Engine, Airsim, and pyphysim, as shown in Figure 
1. As a simulation environment, Unreal Engine is used. It 
is one of the most popular game engines. It has high-
quality vision, audio, and programmability features. Also, 
it has built-in Airsim compatibility. Airsim is developed 
by Microsoft and it is an open-source, cross-platform 
simulator for cars and drones. The dataset generation 
system mainly uses drone and camera functionalities of 
Airsim. 

In addition to Unreal Engine, Airsim GUI is the main 
component of the proposed architecture. We developed 
Airsim GUI to manage the simulation environment and 
generate image and RF datasets for drone detection 
models. It contains Airsim client library to communicate 
with Airsim. This communication is required to send 
commands to Airsim and collect data from Airsim. 
Collected data is processed and written into a file system 
to create a dataset. Another component in the Airsim GUI 
is pyphysim library. It is a Python library that provides 
simulation for digital communication physical layer. It is 
used to generate RF datasets. 
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Figure 1. The simulation component architecture. 

 
3.2. The simulation environment: Boğaziçi 

University north campus 
 
Some parts of the Boğaziçi University north campus 

are selected as a simulation environment. The selected 
simulation environment covers the library, computer 
engineering building, basketball court, portal statue, the 
pyramid, and the Atatürk bust. This area covers 
approximately 10300 m2. Figure 2 shows the selected 
area's map image. 

The simulation environment was created through 
two main steps: creating individual buildings and 
creating the complete environment. In the first step, 

chosen buildings were created for the simulation 
environment. In the second step, these created buildings 
are put in the simulation environment. 

In the process of creating individual buildings, the DJI 
Mavic Air 2 drone was used to capture aerial pictures of 
the selected buildings. All areas of the buildings were 
scanned by drone, combined in Blender, and created in a 
1:1 scale for simulation. The buildings created in the first 
step were exported as material to import Unreal Engine. 
They were combined in Unreal Engine and the selected 
simulation environment was created with a 1:1 scale. 
Figure 3 shows images from the simulation environment. 

 
 

 
Figure 2. Map image of the selected simulation environment. 
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Figure 3. Screenshot images from the simulation environment. Top left image: The basketball court. Bottom left image: 

The Atatürk bust. Right image: The campus view from the Northeast. 
 
3.3. Airsim GUI 

 
For drone detection dataset generation, we created a 

GUI that communicates with the Airsim plugin in the 
Unreal Engine. We named this GUI as the Airsim GUI. This 
GUI was created with PyQt, a cross-platform GUI 
designer tool for Python. Communication between 
Airsim GUI and Airsim is performed by using the Airsim 
client library for Python. The Airsim client library has 
several APIs for several tasks. 

There are several functions for managing the 
simulation environment and generating datasets in the 
Airsim GUI. Similar functions are put in the same tab to 
separate and group functionalities. Until now, six 
different tabs have been created: guide, drones, RF 
parameters, set drone path, recording, and offline data 
generation tabs. 

 
• Guide: Directives are given in the guide tab. Also, it 

has an additional functionality to add a table 
component in a simulation environment. This table 
component provides locating multiple cameras with 
the exact relative location between them using only 
a single location and rotation information. 

• Drones: The drones tab has spawning and retrieving 
drone functionalities. When spawning a drone, the 
drone’s name and Cartesian coordinates for spawn 
location are taken as input. For retrieving a drone, 
the drone’s name is selected from the list. 

• RF parameters: RF parameters tab contains RF 
dataset-related inputs. If an RF dataset needs to be 
created, fields in this tab must be filled. These fields 
are mainly related to transmitter, channel, and SDRs. 
This tab will be described in Section 3.4 in detail. 

• Set drone path: In the set drone path tab, drone 
paths can be defined. When creating a dataset, 
drones can follow these defined paths 
autonomously. There is a functionality to save and 
load created drone paths for generating another 
dataset with the same drone paths. 

• Recording: The recording tab encompasses features 
for managing the recording process to generate 
datasets. Initially, a user chooses the cameras and 
their formats for recording. Then, the user can select 
or deselect the checkboxes for the recording 
functionalities. These checkboxes include "Save 
segmented images", "Follow path while recording", 
and "Generate RF after recording". By selecting the 
"Save     segmented     images"     option, the    drone 
segmentation can be recorded along with the camera 
images. These segmented images can later be used as 
a ground truth for drone detection models. Enabling 
the "Follow path while recording" ensures that the 
drones will follow the specified paths in the set 
drone path tab once the "Start Recording" button is 
clicked. If the user selects the "Generate RF after 
recording" option, the RF data generation process 
will start with the configured RF parameters after 
the simulation scenario finishes in the Unreal Engine. 
Once the image and RF datasets are generated, three 
main folders are created: "vehicle_logs", 
"camera_logs," and "rf_logs". The "vehicle_logs" 
folder contains individual files for each drone, 
named according to their drone names. These files 
contain logs of the drone's location, speed, and 
timestamps. The "camera_logs" folder includes 
separate files for each camera, named after their 
camera names. These files contain the image 
locations in the file system and timestamps of the 
captured images. The images themselves are stored 
in folders named after the respective cameras. The 
"rf_logs" folder stores the collected RF data from 
SDRs and the used RF parameters. 

•  Offline data generation: The final tab is the offline 
data generation. Since the RF generation step takes a 
long time, this process could be run later. Moreover, 
RF generation can be done multiple times with 
different parameters for the same scenario. This tab 
was created to generate RF datasets without running 
the same scenarios in Unreal Engine. Example 
images from the Airsim GUI are shown in Figure 4. 
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Figure 4. Example images from the Airsim GUI. (Left: RF parameters tab. Right:Set drone path tab.) 

 
3.4. RF dataset generation 

 
Figure 5 shows high-level RF dataset generation 

steps. RF dataset is generated with created files in the 

"vehicle_logs" folder. There is a file for every single drone 
which contains location and speed logs with timestamps. 
Until the AWGN step, RF data is generated separately for 
drones. 

 

 
Figure 5. High-level RF dataset generation steps. 

 
The pyphysim library was mainly used to generate RF 

dataset. The created RF datasets refer to collected IQ 
signals by SDRs in the simulation environment. SDR is the 
main component of RF signal-based drone detection 
systems. The RF dataset generation architecture 
supports multiple drones and SDRs. For this version of 
our data generation system, drone controllers are 
excluded since they are assumed to be out of coverage, as 
seen in Figure 6. Because of that, only drone-transmitted 
data is generated. SDR, drone transmitters, and other RF 
simulation configurations are set in the RF parameters 
tab of Airsim GUI. Then, the RF dataset can be created 
directly after recording or using previously created 
datasets with the offline data generation tab. 

RF data generation steps start from reading drone log 
files, and at the end RF log files are created for every SDR. 
First of all, drone logs are read line by line. Between two 
lines, the time difference and the number of IQ signals 
that need to be generated between them is calculated. 
However, drones do not generate RF signals every time. 
To handle that Markov chain is used. Users can create a 
Markov chain to define idle (not transmitting) and busy 
(transmitting) states and probabilities of moving other 
states. Also, if the state represents busy, it contains 
transmitting power and one of the supported modulation 
techniques (Binary phase shift keying (BPSK) or 
quadrature phase shift keying (QPSK)). There is no limit 
to the created number of states. Figure 7 shows a Markov 

chain example containing data and probabilities of 
moving other states. A user defines the number of IQ 
signals in a single state from the Airsim GUI, and the 
number of generated states between two consecutive 
logs is calculated based on it. If the state is idle, there is 
no other process until the AWGN step. 

If the state is busy, data transmission from a drone to 
SDR happens. The first block in this process is the drone 
transmitter block. It contains the processes that happen 
in the drone transmitter. First, the random number 
generator is run based on the modulation technique. If 
the modulation technique is BPSK, the generated 
numbers are zero and one. If the modulation technique is 
QPSK, the numbers range from zero to four. These 
generated numbers represent symbols. These 
represented symbols are transformed into complex 
signals in the IQ plane. Then, OFDM is applied to the 
signal with the FFT size, cyclic prefix size, and the 
number of subcarrier parameters taken from Airsim GUI. 
Finally, transmitting power and transmitter gain are 
applied to the signal transmitted to the transmission 
channel. 

The transmission channel mainly contains two 
models: Jakes' channel model and tapped delay line 
model. In the transmission channel, only purely 
stochastic channel modeling is used. Jakes' model is used 
because it is famous for modeling mobile wireless 
communication systems realistic, contains effects of 
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scatters, and has a Doppler effect. Combining Jakes' 
model with the tapped delay line model provides a 
defining multipath tap delays and powers as an input. 

 

 
Figure 6. The SDR coverage in our simulation system 
shows that drone controllers are always out of coverage. 

 

 
Figure 7. There are two states named idle and busy. In a 
busy state, transmission happens with 11 Watt and the 
BPSK modulation technique. Numbers on the arrows 
show the transition probabilities. 

 
Because there is multiple SDR support, the same 

distance-related channel effects cannot be applied for 
every drone-SDR pair with a single calculation. So, for 
every SDR, these effects are applied separately for a 
drone transmission. These effects are path loss and phase 
shift. The free space path loss model is used as a path loss 
model. This model uses distance, carrier frequency, and 
path loss coefficient. Distance between a drone and SDR 
is calculated between two consecutive logs, and carrier 
frequency and path loss coefficient are taken from a user. 
Phase shift is applied based on the difference between 
the distances of drones and SDRs. After that, all drone 
signals generated simultaneously are summed together 
for SDR receivers. 

At the end, for every SDR receiver, AWGN is added, 
and the receiver gain is applied. The generated signals 
are written as a byte stream to the "rf_logs" folder. Every 
SDR writes its data into a file with the name of the SDR. 
In addition to generated signals, the RF parameters used 
in dataset generation are also written in the 
"rf_parameters.pickle" file. 

 
4. Example use cases 

 
A dataset was created using the implemented 

simulation environment and the Airsim GUI to show 
example use cases. Different drone path scenarios, 
camera and SDR locations, and lighting conditions were 
chosen, and a dataset with image and RF was created 
with these configurations. In the simulation 
environment, two cameras, two SDRs, a drone, and ten 
birds were used. Between cameras and SDRs, there is 10 
m. We proposed three different use cases: drone 

detection via image, drone detection via RF, and drone 
distance detection via RF. 

The same hardware and software configurations 
were used in use cases as an 8GB Nvidia GTX 1070 
graphic card, PyTorch 1.13.1 as the deep learning 
framework, Python version 3.8, CUDA version 11.0, and 
the operating system Windows 10. 

 
4.1. Drone detection via image 

 
Drone detection via image problem is a subset of 

object detection in computer vision. There are several 
object detection algorithms in the literature. YOLO is one 
of the most popular of them. It has different versions, and 
the state-of-the-art version is the YOLOv8 model. This 
model contains different sizes based on the number of 
parameters: nano(n), small(s), middle(m), large(l), and 
extra-large(x). Because the detection speed is crucial, 
achieving higher detection capability in smaller models 
is required. So, the nano version of YOLOv8 was chosen 
for drone detection. 

Before training the model, the created dataset was 
prepared for the model. For ground truth, bounding 
boxes are required. However, Airsim GUI saves images 
with segmentation for ground truth. Because of that, 
segmented ground truths were transformed into 
bounding boxes. Then, the dataset was divided into 
training, validation, and test datasets as 60%-20%-20%, 
respectively.  

The transfer learning was used for the training with a 
pre-trained model on the COCO dataset [34]. The model 
was trained to detect only drones. 1024 x 576 pixel image 
format was used as an input of the model. After 14 
epochs, the training process was finished. The training 
metrics are given in Table 2. 

 
Table 2. YOLOv8 nano model training process via image. 

Epoch Precision Recall mAP50 mAP50-95 
1 0.76755 0.53322 0.55266 0.2614 
2 0.61498 0.51329 0.53621 0.27792 
3 0.74676 0.48494 0.54547 0.27878 
4 0.80832 0.5604 0.61579 0.35433 
5 0.68501 0.52492 0.5474 0.29289 
6 0.80637 0.62261 0.67955 0.40068 
7 0.85189 0.64014 0.68377 0.40726 
8 0.82561 0.65275 0.72545 0.44725 
9 0.84713 0.65615 0.70576 0.41265 
10 0.91571 0.59552 0.71363 0.4251 
11 0.87754 0.6711 0.73256 0.4228 
12 0.85971 0.62292 0.707 0.41085 
13 0.8656 0.63953 0.71531 0.44009 
14 0.90008 0.65947 0.73839 0.45815 

 
Used metrics in Table 2 are precision, recall, and 

mean average precision (mAP) scores. The mean average 
precision score is the primary performance evaluation 
metric for object detection tasks. The mAP50 is 
calculated by computing the average precision (AP) at a 
50% intersection over union (IoU) threshold. The 
mAP50-95 scores are calculated by taking the average of 
precision values across a range of IoU thresholds starting 
from 0.5 and ending at 0.95, with a step size of 0.05. This 
calculation is performed as in Equation 1. The average 
precision is calculated based on the precision-recall 
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curve that corresponds to a specific IoU threshold. 
Equation 2 and 3 provide the formulas for precision and 
recall, in terms of False Negative (FN), True Positive (TP), 
and False Positive (FP). The IoU score is calculated by 
calculating the ratio of the intersection areas between the 
two bounding boxes and the area of their union, as shown 
in Equation 4. 

 

𝑚𝐴𝑃50 − 95 =  
1

11
 ∑ 𝑚𝐴𝑃𝑡

0.95

𝑡=0.5

 (1) 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

  

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (4) 

 
4.2. Drone detection via RF 

 
As in Section 4.1, YOLOv8 was used for drone 

detection via RF. The RF data was transformed into 
images because YOLO was developed for vision tasks. 
First of all, SDR data is split into 0.25-second sequences. 
These sequences contain IQ signals. For every sequence, 
a short-time Fourier transform (STFT) is calculated. 
Because there were two different SDR in the simulation 

environment, both STFT results are concatenated 
vertically, as shown in Figure 8. In the created dataset, 
there are only cases that have drones. Because of that, 
cases that do not contain drones were generated using 
Gaussian noise, and the same processes were applied to 
these signals. All datasets are labeled with drone and 
background noise signals. Then, the dataset is split into 
training, validation, and test datasets as 60%-20%-20%, 
respectively. 

The nano version of YOLOv8 is used for the 
classification task for this problem. Rather than an object 
detection task, the classification task classifies the whole 
image. Again, transfer learning was used for this model's 
training, and the pre-trained model with the ImageNet 
dataset [35] was used. After the first epoch, the accuracy 
metric remained relatively consistent, as indicated in 
Table 3. The third epoch provides the most accurate 
calculation; the corresponding accuracy is 0.92531. The 
accuracy indicates how often the network predicts the 
correct label with the highest probability.   

 
Table 3. YOLOv8 nano model training process for drone 
detection via RF. 

Epoch Accuracy 

1 0.92304 

2 0.92485 

3 0.92531 

4 0.92531 

 

 
Figure 8. Data preprocess for RF data. 

 
4.3. Drone distance detection via RF 

 
In the final use case, drone distance detection via RF 

dataset problem was chosen. For this task, a custom 
convolutional neural network (CNN) was built to predict 
the distance between drones and SDRs. Because there 
are two SDRs in the simulation environment, the middle 
of the SDRs is selected as a SDR location. Two different 
sequence lengths, 0.25 seconds and 0.50 seconds, are 
used to compare performances. 

For data preprocessing, the SDR signals were divided 
into 0.25-second and 0.50-second sequences and labeled 
with the average distance in the sequences. The sampling 

frequency was 106 in the dataset. This means that each 
0.25-second sequence contains 250,000 time points, and 
a 0.50-second sequence contains 500,000 time points. I 
and Q components are split for both SDRs and merged 
vertically to provide input for the CNN model. 4x250000-
shaped and 4x500000-shaped arrays were created as 
input for the custom CNN models. The datasets for 
different sequence lengths were divided into training, 
validation, and test datasets as 60%-20%-20%, 
respectively. 

The proposed CNN models are shown in Figure 9. The 
proposed models contain three 2D convolution layers 
and two 2D average pooling layers. To prevent 
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overfitting, two dropout layers with a 20% probability 
are added. After the convolution layers, fully connected 
layers were added to the end. Because 0.50 second 
sequences contain more data, one more dense layer is 
added to its model. 

Both models are trained with their datasets 
separately with the same hyperparameters. For the 
training, the batch size is chosen as 10. Rectified linear 
units are used as an activation layer. To converge the 
optimal solution, Adam optimizer is used, and the 

learning rate is chosen as 0.001. The best results for 0.25 
second sequence were achieved in the 8th epoch and 
0.50 second sequence were achieved in the 10th. The test 
result statistics are given in Table 4. In the given 
statistics, the errors in min 10% and max 10% were 
trimmed. The root mean square error for the test dataset 
is 7.29 meters for 0.25 second sequence and 6.07 meters 
for 0.50 second sequence. As a result, broader sequences 
provide better performance for the drone distance 
detection task. 

 

 
Figure 9. Custom CNN models to predict the distance. (Left is for 0.25 second and right is for 0.50 second sequences). 

 
Table 4. Drone distance detection statistics for the absolute difference and percentage error between ground truth and 
estimations. For statistics, we trimmed rows that are in the min 10% and max 10% percentage error. 

 

5. Conclusion  
 

In this study, we have proposed a comprehensive 
solution for generating datasets for drone detection 
models in a simulation environment. We described the 
proposed architecture and created the Airsim GUI tool. 
Then, the implemented structure for creating RF dataset 
is explained. Moreover, three different drone detection 
models were tested on the generated dataset from the 
proposed architecture.  

As a future work, we aim to enhance the RF dataset 
generation architecture in the Airsim GUI. We want to 
incorporate LOS and NLOS channel models. Also, we 
want to add dataset generation features for other 
modalities like acoustics and radar. 
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0.25 second 
sequences 

(RMSE=7.29) 
(Epoch 8) 

Absolute difference (m) 
mean std min 25% 50% 75% max 
6.26 3.73 0.93 3.16 5.70 8.54 17.98 

Percentage error (%) 
mean std min 25% 50% 75% max 
14.82 7.73 3.33 8.20 14.10 20.22 34.23 

0.50 second 
sequences 

(RMSE=6.07) 
(Epoch 10) 

Absolute difference (m) 
mean std min 25% 50% 75% max 
5.32 2.93 0.64 2.94 4.65 7.16 14.96 

Percentage error (%) 
mean std min 25% 50% 75% max 
12.50 5.53 3.17 7.92 11.76 16.72 25.71 
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