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ABSTRACT 
Locusts are seen as a major threat to the ecosystem because they devastate 

crops and contribute to thousands of tons food lost every year. Numerous 

well-trained agents are needed for the efficient control of these insects.  

However, this is a challenging process. Grasshopper detection methods 

are being developed using traditional forecasting methods by expert 

entomologists. The maximum potential of these methods has not yet been 

completely realized. Hence the majority of work is still done manually. 

In this paper, a neutrosophic CLBP (completed local binary pattern) based 

grasshopper species classification framework is proposed. Our proposed 

system comprises a novel grasshopper species database of over 7.392 

images for grasshopper species classification. The grasshopper image is 

first converted to a neutrosophic field. These discriminatory features are 

merged with rotation invariant LBP. Our proposed system could achieve 

up to 99.7% classification accuracy even while working with challenging 

datasets of wide image quality and size range. The proposed methodology 

involved diagnosing 11 species and subspecies. It demonstrates the 

impracticability of conventional diagnostic techniques in the later stages. 

It could have a big impact on data analysis, enabling more effective 

handling of global pest. 
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1. Introduction 
 

Insects are important in the ecological and economic life of humans and other living things. For example, they may cause direct 

product losses by feeding on agricultural and forest products (Gullan & Cranston 2014). Locust infestations have deleterious 

consequences on the food accessibility and socio-economic fabric of rural communities. The financial outlay for the eradication 

of these insects may extend into the millions and requires a certain amount of expert training. Additionally, the extensive use of 

chemical insecticides might have detrimental environmental repercussions (Zhang et al. 2019). Therefore, precise automated 

locust detection systems hold the potential to attenuate the reliance on a multitude of pesticides in the context of locust 

management. Grasshoppers are a pest that is wreaking havoc all over the planet. They could starve millions of people to death 

and destroy crops worth billions of dollars every year. Depending on factors like temperature and vegetation, they could rapidly 

multiply twenty times (FAO 2020). However, the amount of data to be estimated by traditional approaches is limited and 

unreliable. To combat locusts effectively, experts are moving away from a reliance on heavy insecticide use and instead 

integrating quantitative metrics with on-site observations from specialists. This data fusion approach is crucial for the 

development of precise, automated locust control systems that can target specific types, developmental stages, and crop 

vulnerabilities. 

 

A paucity exists in the realm of non-invasive and cost-effective methodologies for the detection and classification of insect 

diversity, rendering the current state devoid of an efficacious approach. Conventional methodologies form the basis of 

comparative morphological and insect taxonomy studies. In taxonomy, molecular and molecular cytogenetic research techniques 

have recently become very prominent (Sreedevi et al. 2015). Classical taxonomy offers the most practical and accurate 

classification based on general commonalities and the most obvious characteristics of species. It is crucial for managing 

biological collections and identifying species (using identification keys). Initial endeavors in classification were constrained to 

taxonomic attributes of the organism, neglecting considerations of interspecies relatedness. The phylogenetic classification 

emerged later in the 1950s to handle the evolutionary background of the creature. Here are the various schools of conventional 

taxonomy that, although adhering to the same principle of morphological similarity between species, diverge in how they see 

phylogenetic classification (Sinev 2012). There are also many different sampling and monitoring methods. Direct observations, 
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direct sampling, and DNA-based methods are some of these methods. The pitfall traps are one of the most criticized but 

frequently used methods (Engel et al. 2017). They are invasive because they wipe study instances out of the environment. 

Moreover, the explication of variations across habitats poses challenges, given that each trapping technique is imbued with 

distinct biases and methodological idiosyncrasies (Skvarla et al. 2014). The direct observation method is non-invasive. 

Nonetheless, it necessitates the discernment of organisms by proficient entomologists within the study locale during the 

designated sampling period. This predicament significantly diminishes the potential pool of instances under consideration. 

(Hansen et al. 2020).  

 

The enormous species diversity of insects (more than 1.02 million species reported so far) makes identification difficult 

(Zhang 2011). Besides, the substantial variety within species is caused by factors like sex, color morph, life stage, etc. Higher 

taxonomic categories, such as orders, could be distinguished with practice. However, once we get down to the family level, even 

for specialists, the work becomes rather difficult unless we narrow the problem down to a certain life stage, location, or insect 

order. The challenge of identification grows harder the lower the taxonomic level. Reliable species identification may necessitate 

years of education and specialization in a single insect taxon. These highly qualified taxonomists generally have insufficient 

time, especially for less conspicuous and aesthetically pleasing groupings. They need to use their time better elsewhere rather 

than on routine identifications (Chudzik et al. 2020). It is critical to identify insects according to species or higher taxonomic 

categories quickly and accurately in many situations. A significant fraction of the biological diversity in our world is made up 

of insects, and advancement in our understanding of the make-up and operation of the earth's ecosystems depends partly on our 

capacity to locate and recognize the insects that live there successfully. Concerns about the safety of human food and health also 

call for the quick and precise identification of insects (Valan et al. 2019). 

 

In many sectors, machine learning and image processing have immense potential. Self-driving automobiles, improvements 

in medical technologies, and transportation are just a few examples of beneficial applications for this technology. There are still 

a lot of applications for it, though, and it has not yet reached its full potential. The image processing-based methods provide 

significant advantages over conventional entomology approaches. They also sample more individuals without destroying habitats 

or depleting the population of the species. Moreover, they need less maintenance (Collett & Fisher 2017). These systems were 

employed to detect and classify insects and other arthropods infrequently but progressively (Martineau et al. 2017; Hansen et al. 

2020). However, it is difficult to distinguish insects in nature due to diversity and their responses to the environment. These 

issues pose a significant challenge for computer vision systems. The computer vision-based grasshopper and locust detection 

systems are still in their infancy. It is a manual process carried out by specialist agents or farmers. Liu et al. proposed a computer 

vision-based pest detection and classification system (Liu et al. 2016). They used saliency map and deep CNN learning methods. 

They obtained a dataset from the internet. They have carried out their experiments on a high-performance computer. Liu et al. 

proposed a novel pest detection network in laboratory conditions (Liu et al. 2019). The proposed network gives 75% mean 

accuracy and precision. Xia et al. proposed a fast region-based convolutional neural network (Fast RCNN) based insect detection 

system (Xia et al. 2018). They have obtained 89% detection accuracy. They have also obtained datasets from the internet. Ding 

& Taylor proposed a moth detection approach (Ding & Taylor 2016).  A sliding window technique was employed, covering the 

entire image in their approach. In their strategy, anchor boxes were utilized to handle the entire image in a single iteration. 

 

Species identification is very popular for mammals and birds (Norouzzadeh et al. 2018). However, arthropod-focused 

computer vision experiments have concluded that it is almost impossible for humans to identify species solely on images (Hansen 

et al. 2020). There is a need for automatic species detection and classification systems to take full advantage of image processing-

based systems (Hansen et al. 2020). The species-level arthropod classification is carried out from museum collections (Hansen 

et al. 2020). They used a convolutional neural network (CNN) for classifying arthropods. Kasinathan et al. proposed an insect 

pest detection method (Kasinathan et al. 2021). The Wang, Xie, Deng, and IP102 datasets have been used. They have obtained 

91.5% classification accuracy for nine class with the CNN model. Cheng et al. proposed a pest identification algorithm (Cheng 

et al. 2017). They used deep residual learning. They have obtained 98.67% classification accuracy for 10 classes. Xia et al. used 

an improved CNN model for the classification of crop insects. They have used an improved CNN model. Xie et al. used multi-

level unsupervised feature learning methods (Xie et al. 2018) for pest identification. Nanni et al. proposed different Adam 

optimization methods for pest identification (Nanni et al. 2022). They have obtained 95.52% and 74.11% classification accuracy 

on Deng and IP102 datasets respectively. 

 

It is important to extract textural features for insect species identification. The performance of the insect species classification 

is directly affected by the feature extraction step. All the methods mentioned above use deep learning approaches in both feature 

extraction and classification stages. In recent times, deep learning approaches have become increasingly popular in many areas. 

However, their major drawbacks are thought to be the substantial computational expense, the demand for many-dimensional 

input, and the costly hardware prerequisites. Consequently, the demand for hand-crafted approaches remains. The LBP is used 

to extract the spatial characteristics of grasshopper images. There are many variants of the LBP method. It has a strong 

discriminative ability and low computational complexity. While LBP has achieved significant performance in image processing, 

there is still a need for further exploration and investigation into its working principles. Numerous versions of LBP have been 

introduced in recent years. Several queries persist regarding LBP. One such inquiry involves understanding the extent to which 

the seemingly straightforward LBP feature conveys highly discriminative information about local structures.  Additionally, there 

is a need to identify the information that may be lacking in the LBP feature and determine methods to articulate imperfect data 
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within the LBP framework. In this study, the neutrosophic theory is combined with LBP. The neutrosophic theory plays a crucial 

role in differentiating the boundary areas among distinct texture motifs. It involves examining details on a small and subtle scale.  

 

The aim of this paper is to propose an innovative hybrid approach based on neutrosophic set theory for the characterization 

of intra and interclass variations in grasshopper species classification. Additionally, the paper aims to introduce a novel open 

Grasshopper Classification Dataset (GHCD11) to facilitate research and development in the field of automated grasshopper 

species classification. For this reason, the neutrosophic completed local binary pattern (CLBP) is used to solve this problem and 

to increase classification accuracy.  

 

2. Material and Methods  
 

2.1. Material 

 

The proposed dataset consists of 11 different types of grasshopper species imaged in the Southeast region of Turkey. This study 

mainly focuses on classifying grasshopper species using unique features and machine learning techniques based solely on a 

photo of the grasshopper. We have collected 28 images for each grasshopper species class. Each grasshopper image has different 

scale, size, rotation, shapes, backgrounds, and views. It is difficult to identify because of these variances. 

  
2.1.1. Dataset  

 

Calliptamus italicus, a species that damages plant crops in many parts of Turkey and has a swarm forming feature, caused 

regional damage to many agricultural lands in the Adakli district of Bingöl province in 2021 and caused economic loss (Qin et 

al. 2013; İlçin & Satar 2020; İlçin et al. 2021). Dociostaurus maroccanus species, known as the Moroccan locust, causes damage 

in areas such as gardens and orchards and is effective in many regions of Turkey, but it has been determined that it causes 

economic damage in the rural areas and cereal fields of the Bingöl Province (İlçin et al. 2021). It has been recorded that 

Anacridium aegyptium species, known as the corn locust, causes economic losses in cereals. A. aegyptium, which is a common 

species in the areas where cereals are grown in our country, is an important plant pest. Tettigonia viridissima species have been 

detected in the meadow, pasture, and cereal areas and are a common species locally. Although Tettigonia caudata species is 

omnivorous, it has the same genus as T. viridissima species and has typical similarities. This species causes damage, especially 

to cotton and alfalfa plants. Truxalis robusta robusta has been detected in many localities in the Eastern and Southeastern 

Anatolia regions, especially in wooded areas and in areas where cotton plants are dense. Oedipoda miniata miniata is one of the 

most common grasshopper species and it has been determined that it causes low damage in fields and gardens. Notostaurus 

anatolica is a species that could be recognized by the specific wing and leg bands collected in the nymph (instar) stage and its 

body patterns are unique. Shistocerca gregaria is one of the rare species of grasshoppers that have the ability to form swarms 

and spread over large areas, and according to the data of FAO, it caused 20.2 million people to face hunger in countries located 

on the African continent in 2020 (FAO 2020). It causes serious economic loss. Pyrgodera armata is a species with specific 

features in terms of the shape and color of its head and other body organs and is a grasshopper species whose damage status 

could not be determined. The locality was collected from the rural areas of Batman province, Southeastern Anatolia region. The 

species Saga ephippigera ephippigera is a predatory grasshopper known as the carnivorous grasshopper. It is an effective and 

useful grasshopper species observed in many places, especially in the Eastern and Southeastern Anatolian regions (İlçin & Satar 

2018; İlçin 2019). Table 1 shows the sample images from 11 different grasshopper species. 

 
Table 1- Details of the GHCD11 dataset 

 

Grasshopper species Number of images 

Calliptamus italicus 672 

Dociostaurus maroccanus 672 

Anacridium aegyptium 672 

Tettigonia viridissima 672 

Saga ephippigera 672 

Truxalis robusta 672 

Oedipoda miniata miniate 672 

Tettigonia caudata 672 

Notostaurus anatolica 672 

Schistocerca gregaria 672 

Pyrgodera armata 672 

 

2.1.2. Image resizing 

 

Images in the dataset have different sizes. Every image has been resized to a 480 x 480 pixels size to standardize the image size 

and to trim down the computational expenses.  
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Figure 1- Sample images from 11 different grasshopper species 

 

2.1.3. Data augmentation 

 

In this paper, data augmentation is applied to artificially increase dataset size. It helps overcome the “not enough data” issue, 

prevents overfitting. The original dataset has 28 images for each grasshopper type. It is applied to the original dataset based on 

geometric transformations. Affine transformations are used in data augmentation to introduce variability to the training dataset. 

This helps prevent overfitting by exposing the model to a more diverse set of examples during training. Data augmentation 

through affine transformations, the model becomes more robust and generalizes better to variations present in real-world 

scenarios. The introduction of variations in the training data helps the model learn essential features and patterns without 

memorizing specific instances. The augmentations carried out via rotation, scaling, and reflection to enhance classification 

performance. The images in original dataset rotated by 45o angles in the range [0, 360] degrees and resized images by 2 random 

scale factors in the range [1.2, 2.1]. Thus, the dataset's size is expanded to be 24 times larger through augmentation of the number 

of images. Table 1 expresses the count of images for each grasshopper species in GHCD11 dataset.  

 

2.2. Methods 

 

This paper introduces a grasshopper species classification framework based on neutrosophic set without high-cost extra 

operations. This feature is widely embraced for handling diverse types of uncertainties. Additionally, it considers both spatial 

and boundary information, effectively addressing and managing uncertainties. A thorough texture analysis is conducted by 

amalgamating various features inherent in locust images. The LBP method exhibits insufficient robustness to outer variables like 

noise and low contrast, thereby adversely impacting the feature extraction procedure. Unwanted elements like noise and 

fluctuations in light within the input locust image can influence the quality of features. Consequently, there is a risk of information 

loss, leading to a decrease in performance during classification stage. Effectively suppressing noise components through a 

neutrosophic set is crucial for precise edge detection and the extraction of effective features. It is imperative to guarantee the 

preservation of discriminative features in diverse image regions. Otherwise, the classification performance may suffer due to the 
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inability to extract these key features from the image. Failure to extract discriminative features from the image may result in a 

decline in classification performance. 

 

2.2.1. Completed Local Binary Patterns (CLBP) 

 

LBP encodes local texture information. To improve the LBP's performance in different textural situations, various variants are 

proposed (Ojala et al. 2002). The rotation, translation, and noise sensitivity make grasshopper image classification a difficult 

task. It's crucial to extract distinctive descriptors to effectively classify textures. The CLBP represents a modification of the LBP. 

It uses CLBP_M, CLBP_C, and CLBP_S operands as well as the local difference sign-magnitude transform (LDSMT). These 

three operands indicate the magnitude, center, and sign components (Guo et al. 2010). A general overview of the CLBP approach 

is shown in Figure 2. To express local patterns, the LBP only uses the sign vector. This could produce some inaccurate 

classification results. Compared to the magnitude components, the sign components are more accurate. Additionally, combining 

the sign and magnitude components yields significantly better results. The sign component conserves a lot of information about 

local differences. The magnitude component might offer additional discriminant data.  

 

 
 

Figure 2- Illustration of completed local binary pattern 

 

2.2.2. Neutrosophic set 

 

The neutrosophic set (NS) theory looks into the nature and the extent of neutrality (Sengur et al. 2019). The degree of belonging 

is expressed using membership functions in standard fuzzy sets. In neutrosophy, every incident has an indeterminacy (I), falsity 

(F), and truth (T) level. The three memberships are utilized to determine an element's degree of T, I, and F. They are in [0, 1] 

interval. The degree of these functions could be used to quantify the uncertainty. The definitions of NS and uncertainty using NS 

were provided in (Alpaslan 2022).  

 

The neutrosophic transformations of sample grasshopper images (Calliptamus italicus, Dociostaurus maroccanus) are 

demonstrated in Figure 3.  

 

(a) (b) (c) 

   

 

  

 
Figure 3- Subset of grasshopper images in the neutrosophic field. (a) Input image, (b) T (c) F sets 
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2.2.3. neutroCLBP 

 

The local texture is encoded by most of the texture analysis methods in the literature. Unfortunately, these approaches do not 

successfully capture the boundaries. Additionally, the conventional methods are unable to eliminate the ambiguities in an image. 

Because they do not have any uncertainty management instruments. The neutroCLBP method could overcome these limitations 

without high-cost extra operations. The T and F sets in the neutrosophic field were used to characterize the grasshopper images. 

The F set was utilized with the T set in neutroCLBP. As a result, the complementary use of both false and truth components 

improves the LBP's distinctiveness.  

 

There are two key stages in neutroCLBP. The input images are converted to neutrosophic field in the first stage. The second 

stage eliminates the deficiency of I set using LBP's local texture analysis capabilities. The neutroCLBP method makes advantage 

of the neutrosophic set and the CLBP's statistical texture analysis capabilities to suppress the image's noise. As a result, inter-

class similarities and intra-class variations in grasshopper images are more defined. The neutroCLBP consists of three main 

stages: (1) neutrosophic components calculation, (2) extraction of neutroCLBP-M and neutroCLBP-S features, (3) cross-scale 

joint coding and histogram conjunction. The ( , )

h

P RneutroCLBP M  gives better results. For this reason, the ( , )

h

P RneutroCLBP M was 

used in this study. The frame diagram of neutroCLBP is shown in Figure 4 (Alpaslan 2022).  

 

 
 

Figure 4- Calculation of neutroCLBP features 

 

In order to encode neutrosophic membership components, the
2

,

riu

P RLBP  and the CLBP are combined (El Merabet et al. 2019). 

As a result, the CLBP_C features of T and F components were calculated.  

 

The neutrosophic components of the grasshopper image are computed using various parameters. Various (P,R) and h values 

are used in multi-resolution texture analysis. The diameter of filters is determined with three different h. The radius R is also 

used for reduction of feature dimension of the neutroCLBP. The cross-scale joint coding is carried out as follows: 

 

1) 2
,

riu
RPLBP and  

2 _

,
,  

riu h

c c P R
CLBP x y  of 𝑇ℎ1  with (P1,R1) and h1 are merged. The result is showed as   1

11,
 ,

hT

RPcc yxneutroCLBP
 . 

2) 
2

,
riu

RPLBP and  
2 _

,
,  

riu h

c c P R
CLBP x y  of 𝐹ℎ1  with (P1,R1) and h1 are merged. The result is showed as   1

11 ,
 ,

hF

RPcc yxneutroCLBP
 . 

3) In 
1

1 1,

h

P RCLBP of 1hT , 1h  is changed with 2h , and novel statement is denoted as 2

1 1,

T h

P RneutroCLBP


. 
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4) In 
1

1 1,

h

P RCLBP of 1hF , 1h  is changed with 2h , and novel statement is denoted as 
2

1 1,

F h

P RneutroCLBP


 

5)   1

11 ,
 ,

hF

RPcc yxneutroCLBP
 , 

2

1 1,

F h

P RneutroCLBP


 , 
2

1 2,

T h

P RneutroCLBP


 and 
3

1 2,

T h

P RneutroCLBP


 are concatenated to construct 

the multi-resolution structure. This structure is denoted as    
 1 2 3

1 1 1 2, ,

h h h

P R P R
neutroCLBP

 

 . 

 

3. Experimental Results 
 

Several experiments have been carried out to validate the effectiveness of the neutroCLBP on grasshopper species classification. 

The nearest neighbor (1-NN) and support vector machines (SVM) classifier were used to demonstrate the discriminative ability 

of the method (Gul et al. 2021). The one-versus-one approach and cubic kernel function were employed in our experimental 

studies. The SVM model performs noticeably better when nonlinear kernels are used in complicated problems. The 30% and 

70% of the dataset were used for testing and training, respectively. Additionally, 5-fold cross-validation was applied.  

 

The GHCD11 dataset was utilized in the first experiment to assess the effects of various parameters. The accuracy is used in 

experiments. The calculation for accuracy is shown in Eq (1).  

 

1

1 p

i i

i i i i i

TP TN
accuracy

p TP TN FP FN




  
  (1) 

 

Where; TP, TN, FP, FN and p denotes the number of true positives, true negatives, false positives, false negatives, and classes 

respectively.  

 

 

 

 

  

  

 

Figure 5- Experimental results (%) of ( , )

h

P R
neutroCLBP  for (a) kNN and (b) SVM classifier and 1 2

1 1( , )

h h

P R
neutroCLBP


 for (c)  

kNN and (d) SVM classifiers 

 

The experimental studies were carried out with Intel Xeon(R) E3-1241 v3 CPU, and 8 GB of RAM.  

 

 

 

 

(a) (b) 

(c) (d) 
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3.1. Analysis of neutroCLBP parameters  

 

There are three different parameters in the ( , )

h

P RneutroCLBP . These parameters are h, R and P. The h refers to neutrosophic 

filter; R refers to sampling radius; and P refers to sampling neighborhood. The P is fixed as 8 to lower the dimension and 

execution time. The h parameter determines the radius of filters. It is selected to detect statistical details in boundaries. The image 

is blurred and loses pixel brightness and textural variety when the h parameter is quite high. The filtered image is prone to noise 

if it is selected too small. In this paper, multi-scale texture analysis and investigation of optimal h parameter for grasshopper 

species classification have been carried out. Neutrosophic set noise suppression and enhancement of grasshopper images have 

positive impact on the classification performance. The method is analyzed with various h and R values ranging from 1 to 5.  

 

 

  

  

Figure 6- Experimental results (%) of 
1 2

1 1 1 2( , ) ( , )

h h

P R P R
neutroCLBP



  for (a) kNN and (b) SVM classifiers and 

1 2 3

1 1 1 2( , ) ( , )

h h h

P R P R
neutroCLBP

 

  for (a) kNN and (b) SVM 

 

The impact of h and R parameters were studied on classification performance using GHCD11 dataset. Firstly, the effects of 

these parameters on the
( , )

h

P RneutroCLBP were investigated. The most favorable outcomes were achieved with R=5 as shown 

in Figure 5. Additionally, it has been seen that the accuracy increases with R value. The best results were obtained with R=5 and 

h=1 parameters in 
( , )

h

P RneutroCLBP  for both 1-NN and SVM classifiers. The most favorable outcomes were achieved with R=5 

and 
1 21,  4h h   parameters in 1 2

1 1( , )

h h

P RneutroCLBP
  for 1-NN classifier. The best results were obtained with 

1 21,  4h h   

parameters in 1 2

1 1( , )

h h

P RneutroCLBP
  for SVM classifier. It is seen from Figure 5 that, the use of more than one h parameter increases 

the classification accuracy by 3.41% for 1-NN classifier and by 2.06% for 1-NN classifier on average. It is also clear from Figure 

5 that the SVM classifier gives 7.77% better results than the 1-NN classifier on average. 

 

(a) (b) 

(c) (d) 
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Figure 7- Confusion matrix for 
1 2 3

1 1 1 2( , ) ( , )

h h h

P R P R
neutroCLBP

 

   

A confusion matrix is provided to demonstrate the multi-resolution 
1 2 3

1 1 1 2( , ) ( , )

h h h

P R P RneutroCLBP
 

 ’s accuracy in a more 

thorough description in classifying grasshopper species as shown in in Figure 7. 

 
Table 2- The comparison of the neutroCLBP with state-of-the-art deep learning models 

 

Model Reference Feature Size Accuracy 

VGG16 Simonyan & Zisserman 2014 25.088 97.97 

VGG19 Simonyan & Zisserman 2014 25.088 97.83 

ResNet50 He et al. 2015 100.352 91.38 

ResNet152 He et al. 2015 100.352 98.44 

MobileNet Sandler et al. 2018 50.176 97.78 

DenseNet121 Huang et al. 2016 50.176 97.78 

DenseNet169 Huang et al. 2016 81.536 99.34 

DenseNet201 Huang et al. 2016 94.080 99.24 

neutroCLBP  This paper 600 99.77 

 

The proposed framework was evaluated with hand-crafted and deep learning-based approaches. Table 2 shows the 

comparison of the neutroCLBP method with current deep learning models. The neutroCLBP  gives 99.77% classification accuracy 

on GHCD11 dataset. It is seen from Table 2 and 3 that, deep learning-based approaches yield better outcomes than other hand-

crafted methods. However, the proposed framework was outperformed deep learning methods with reasonable computational 

cost. All models were trained utilizing stochastic gradient descent (SGD) method employing a batch size of 8, 50 epochs, 0.0001 

learning rate and Adam optimization. DenseNet169 model gave the closest results. It is clear from Figure 8 that, the neutroCLBP  

shows high performance with low time complexity. The training times of neutroCLBP  and different deep learning models were 

compared. VGG16 (Simonyan & Zisserman 2014), VGG19 (Simonyan & Zisserman 2014), ResNet50 (He et al. 2015), 

ResNet152 (He et al. 2015), MobileNet (Sandler et al. 2018), DenseNet121 (Huang et al. 2016), DenseNet169 (Huang et al. 

2016), DenseNet201 (Huang et al. 2016) models were used for time comparison. The proposed methodology is about 40 times 

faster than the MobileNet, the fastest model, and about 152 times faster than the ResNet152, the slowest model. Besides, deep 

learning models require graphics cards with a significant amount of computing power. The proposed methodology has both 

higher classification accuracy and lower time complexity than deep learning models. Experimental results show that the proposed 

methodology is suitable for real-time applications. The experiments in Table 2 and Figure 8 were carried out with Intel i9 Intel 

Core i9-11900K CPU, GeForce RTX™ 3080 Ti graphics cards, and 64 GB of RAM.   
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Figure 8- Comparison of models training time 

 

Table 3- The comparison of neutroCLBP  using current approaches on the GHCD11 dataset 

 

Method Reference Accuracy 

LBP Ojala et al. 1996 89.35 

CLBP_M Guo et al. 2010 89.94 

CLBP_S Guo et al. 2010 90.44 

LCvMSP El Merabet & Ruichek 2018 95.67 

LCxMSP El Merabet & Ruichek 2018 93.59 

RLBGC El Khadiri et al. 2018 95.26 

ALBGC El Khadiri et al. 2018 96.62 

ACS-LBP El Merabet et al. 2019 98.92 

LDTP El khadiri et al. 2018 79.97 

neutroCLBP  
This paper 99.77 

 

The classification performance of 1 2

1 1 1 2( , ) ( , )

h h

P R P RneutroCLBP


  and    1 2 2 3

1 1 1 2( , ) ( , )

h h h h

P R P RneutroCLBP
  


 were investigated from many 

aspects in the second experiment. The    1 2 2 3

1 1 1 2( , ) ( , )

h h h h

P R P RneutroCLBP
  


was evaluated with three h and two R values. The 

1 2

1 1 1 2( , ) ( , )

h h

P R P RneutroCLBP



was evaluated with two h and two R values. A multi-scale analysis was conducted since the neutrosophic 

components were obtained for multiple h values. The GHCD11 database contains different types of grasshoppers. Figure 6 shows 

the classification accuracy results of 1 2

1 1 1 2( , ) ( , )

h h

P R P RneutroCLBP


  and 1 2 3

1 1 1 2( , ) ( , )

h h h

P R P RneutroCLBP
 

  features for both kNN and SVM 

classifiers. The best results were obtained with 
1 24, 5R R   and 

1 21,  2h h   parameters in 1 2

1 1 1 2( , ) ( , )

h h

P R P RneutroCLBP


  for the 

SVM classifier. The best results were obtained with 
1 24, 5R R   and 

1 2 31,  2,  3h h h    parameters in 

   1 2 2 3

1 1 1 2( , ) ( , )

h h h h

P R P RneutroCLBP
  

  for the SVM classifier. It is seen from Figure 6 that, the use of more than one parameter increases 

the classification accuracy. Besides, the 
   1 2 2 3

1 1 1 2( , ) ( , )

h h h h

P R P RneutroCLBP
  

  gives slightly better classification results than

1 2

1 1 1 2( , ) ( , )

h h

P R P RneutroCLBP


 . However, its computational complexity is high. Experimental results show that multi-scale features 

yielded superior results. 

 

4. Discussion 
 

Diagnosis and identification processes for insects include many features; It could consist of very complex and controversial 

applications carried out within the framework of the examination and interpretation of morphological, physiological, genital, and 

other molecular markers. Although the margin of error increases in the diagnostics and definitions that are made sometimes, the 

misuse of the diagnostic keys could prolong the process and misdiagnoses could lead to an inevitable situation. Traditional 

predictive diagnostic methods are only limited by the data they have. Therefore, collecting and obtaining data is difficult. 

However, for new researchers or young researchers interested in insects, the use of more professional diagnostic tools could 

provide solutions to many important problems. With this study, it will be possible to carry out species-diagnostic applications of 
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high accuracy and clear information in the determination of many agricultural pests, especially insects. In addition, it will prevent 

the emergence of erroneous applications with time and wrong results in diagnosis. With the created digital application, one of 

the main results is to prevent the damage they will cause by identifying and learning about many plant pests, especially 

grasshoppers. Some of the other very important results are; It seems possible to provide guidance for teaching purposes, data-

forecasting, agricultural practices, and pesticide use. 

 

The following are the paper's main contributions: A large dataset containing 11 different types of grasshopper species, named 

the GHCD11. It consists of mix of images with different scale, size, rotation, shapes, backgrounds, and views. In this way, any 

classification algorithm could be strong enough to deal with these challenges. A novel methodology that could classify the 

grasshopper species with high accuracy is proposed. The proposed methodology consists of various stages. The grasshopper 

images are first converted to neutrosophic field in the first stage. Thus, stronger features are obtained. Additionally, a cross-scale 

joint approach is used to integrate these discriminatory features with rotation invariant LBP features. The proposed methodology 

has both higher classification accuracy and lower time complexity than deep learning models. The proposed methodology could 

achieve up to 99.7% classification accuracy even while working with challenging dataset of wide range in image scale, rotation, 

and size. It does not require high-powered expensive graphics cards. Besides, grayscale grasshopper images exhibit greater 

resilience to noise in the neutrosophic domain. The presence of neutrosophic components plays a role in noise suppression, 

leading to a more accurate detection of edges. The proposed approach guarantees the extraction of more robust features. This 

marks the inaugural integration of neutrosophic set theory and the LBP method into an insect species identification system 

through extensive state-of-the-art research. The method put forth demonstrates resilience in the face of challenges such as noise, 

rotation, and variations in lighting conditions. 

 

5. Conclusions 
 

Species identification in grasshoppers has traditionally been based on body organs (cephalo, thorax, and abdomen) and genital 

organs (genital plate). There is no automatic grasshopper species identification system available yet. In this study, many plant 

pests and other insect species (grasshoppers, etc.)  have been detected by image processing and machine learning methods. The 

CLBP method undergoes reinterpretation through the lens of the neutrosophic set, leading to the development of a novel feature 

extraction approach that leverages neutrosophic set components. The outcome is an image imbued with enhanced significance, 

achieved through the mitigation of noise effects. Besides, the neutroCLBP based grasshopper classification framework is 

proposed. In this framework, the neutrosophic membership components of the grasshopper image were utilized. In this way, 

noise effects were minimized, and a more informative image was generated. The proposed framework has remarkable 

performance with acceptable computational expense. The experiments represent that the proposed framework could accurately 

classify grasshopper species. The comparative experiments show that the neutroCLBP improves the classification accuracy of 

LBP-based current handcrafted features at least about 1% and at most about 11% thanks to the hybrid approach. Besides, the 

multi-scale strategy positively affected discrimination of the grasshopper images with high intra-class variation and inter-class 

similarity. The average accuracy is up to 99.77%, which is higher than VGG16, VGG19, ResNet50, ResNet152, MobileNet, 

DenseNet121, DenseNet169, DenseNet201 models with reasonable computational cost. The proposed framework could also 

used for education in plant protection.  
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