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ABSTRACT

In this study, we deal with non-degenerate translators of the mean curvature flow in the well-
known hyperbolic Einstein’s static universe. We classify translators foliated by horospheres and
rotationally invariant ones, both space-like and time-like. For space-like translators, we show a
uniqueness theorem as well as a result to extend an isometry of the boundary of the domain to the
whole translator, under simple conditions. As an application, we obtain a characterization of the
the bowl when the boundary is a ball, and of certain translators foliated by horospheres whose
boundary is a rectangle.
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1. Introduction

The dynamic interplay between mean curvature flow (MCF) and the background of the hyperbolic Einstein’s
static universe (HESU) forms the core of our exploration in this study. The MCF, as a geometric evolution
process, has been a pivotal subject of study with applications ranging from physics to mathematics. The study
of the MCF traditionally focus on hypersurfaces within Euclidean space Rn. One approach involves examining
specific solutions know as translating solutions or translators, which remain invariant under a subgroup of
translations in the ambient space. The fundamental tool is to simplify the MCF to the equation

H = v⊥, (1.1)

where n ≥ 2, H represents the mean curvature vector of the immersion, v is a constant (unit) vector, and
v⊥ denotes the orthogonal projection of v into the normal bundle of the hypersurface. Some authors have
simplified the equation (1.1) by examining rotationally invariant hypersurfaces, see [6]. Moreover, in [10] they
have adopted a broader approach, incorporating a cohomogeneity one action on M . This action involves
the isometries of a Lie group, and it is structured such that the resulting hypersurfaces have constant mean
curvature, with at most two exceptions (refer to [1] for further information). For example, in [4] and [5], Bueno
considered rotationally invariant translators in the product of the real hyperbolic plane and a real line, denoted
as H2 ×R. In [11], Lira and Martín generalized the study by Bueno to Riemannian products M ×R. Also, Pipoli
considered translators in the solvable group Sol3 in [14] and the Heisenberg group in [15]. On the other hand,
Kim in [9] moved to the Minkowski space, again using some groups of isometries on space-like translators. This
Lorentzian setting was studied in much more general Lorentzian spaces in [10]. Some other similar problems
have been extensively examined in the existing literature ([2],[6],[8],[12],..., and references therein).

Our approach involves translators of the MCF in HESU. This study takes into account both the hyperbolic
nature and static structure of the HESU. The involved techniques in our study are basically three, namely, the
action of Lie groups of isometries to simplify some PDE into an ODE, the use of dynamical systems to solve
a boundary problem, and general theory of elliptic quasilinear PDE. That is to say, this provides a framework
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for understanding translations of MCF in the context of the HESU, aiming to classify specific instances that
emerge in this universe.

The structure of this paper is the following: In Section 2, we review basic tools, highlighting that a graphical
translator is characterized by a function satisfying the PDE (2.2). We also exhibit a big family of time-like
translators in HESU which can be constructed from minimal or totally geodesic hypersurfaces in the hyperbolic
space.

In Section 3, we present the classification and properties of space-like and time-like translators foliated by
horospheres, in Theorems 3.1 and 3.2.

Section 4 is devoted to exploring rotationally invariant translators, which are those invariant by SO(n). To
facilitate it, we first recall the Lorentz space Ln+1 as an essential mathematical background. We obtain a full
classification of these translators, both space-like and time-like, obtaining 5 types in total, in Theorems 4.1
and 4.2. An important space-like example is known as the bowl. Except the bowl, all of them exhibit one conic
singularity. The only time-like example is a bigraph, known as the spindle, and defined through the construction
outlined in Lemma 4.7.

Finally, in Section 5, as an application of our findings, we show a uniqueness result for space-like translators
based on the boundary, in Theorem 5.2. The methods employed throughout involves tools from quasilinear
elliptic partial differential equations and isometries. As an consequence, we prove that an isometry of the
sphere can be extended to the translator under simple conditions. With this tool, we prove that a space-like
translator whose boundary is a round ball has to be a compact piece of a bowl. In our last result, we characterize
certain translators foliated by horospheres whose boundary is a rectangle in Corollary 5.4.

2. Preliminaries

Let M = Hn, n ≥ 2, be the hyperbolic space with its usual hyperbolic metric gHn . We define the metric ⟨, ⟩ as
the usual metric in Euclidean space. We consider the Hyperbolic Einstein Static Universe (HESU), namely, the
product M̄ = Hn ×R with Lorentzian metric g = gHn − dt2. Take (p, t) ∈ Hn ×R. Given an open subset Ω of Hn,
we consider a function u ∈ C∞ (Ω,R) and construct its graph map Γ : Ω → M̄ , where Γ(p) = (p, u(p)). Given the
metric γ = Γ∗⟨, ⟩ on Ω, we assume that F : (Ω, γ) →

(
M̄, g

)
is a non-degenerate hypersurface. Under the usual

identifications, for each X ∈ TM , we have

dF (X) = (X, du(X)) = (X, ⟨∇u,X⟩) ,

where ∇u is the ⟨, ⟩-gradient of u. The upward vector field is

ν =
1

W
(∇u, 1) , W = +

√
ε (|∇u|2 − 1), (2.1)

where ε := sign
(
|∇u|2 − 1

)
= ±1 is a constant function on the whole Ω. Note that g (ν, ν) = ε. The following

proposition is known (see for example [10]).

Proposition 2.1. Under the previous setting, Γ is a graphical translator if, and only if, function u satisfies the quasilinear
PDE

div

(
∇u√

ε (|∇u|2 − 1)

)
=

1√
ε (|∇u|2 − 1)

. (2.2)

Example 2.1. Take M a minimal or a totally geodesic hypersurface in Hn. Then, the product M ×R is also a
time-like translator in Hn ×−1 R, and it is not graphical. Indeed, since it is minimal or a totally geodesic in Hn,
then M ×R is also minimal or a totally geodesic, so its mean curvature vector H = 0. But now, ∂t ∈ T (M ×R).
Then, H = 0 = (∂t)

⊥, the projection of ∂t onto T (M ×R).

3. Translators foliated by Horospheres

Before going any further, let us introduce the following space
(
Rk, ⟨, ⟩

)
= Flat Euclidean Space. We use the

following model of the hyperbolic space

Hn = {(x1, . . . , xn) ∈ Rn|x1 > 0} , n ≥ 2,
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equipped with the hyperbolic metric gHn = gp = 1
x1

2 ⟨, ⟩p, p ∈ Hn. The (n− 1)-dimensional Horosphere in Hn is
given by

Hn−1 = {p = (x1, . . . , xn) ∈ Hn|x1 = x̂1} , x̂1 > 0.

We give a normal vector N : Hn−1 −→ THn, p ∈ Hn−1 7→ x1∂1|p. The tangent space TpH
n−1 of Hn−1 can be

written as
p ∈ Hn−1, TpH

n−1 = {X ∈ Rn|X1 = 0} ,

where for all X ∈ TpH
n−1, one has g (X,N) = 0. Let ∇ be the Levi-Civita connection on Hn and A is the

Shape operator of N (Weingarten’s operator). Given X =
∑n

i=2 Xi∂i
(
becauseX1 = 0, X ∈ THn−1

)
, a simple

computation gives
AX = X.

We get p ∈ Hn−1, h(p) = traceg(A) = (n− 1).
Take Ω ⊂ Hn open and connected, u ∈ C∞ (Ω,R). Let Γ : Ω = Ω̊ ⊂ Hn −→ M, p 7→ (p, u(p)) be a translator, as

in Section 2. We wish the graph of Γ to be foliated by horospheres. Therefore, Ω has to be also foliated by
horospheres, that is to say Ω = I ×Rn−1, I ⊂ R an interval. We wish u to be invariant by horospheres, so that u
only depends on one variable, namely,

u : Ω → R, u : I ×Rn−1 → R, (x1, . . . , xn) 7→ u(x1).

Let Σ be the Lie group such that the orbits of Σ in Hn are just the horospheres, that is to say Σ =
(
Rn−1,+

)
. The

map
Φ : Rn−1 ×Hn → Hn,

((v1, . . . , xn−1) , (x1, . . . , vn)) 7→ (x1, x2 + v1, . . . , xn + vn−1) ,

is an smooth action of Σ on H by isometries. The projection map is

ρ : Hn → R, ρ (x1, . . . , xn) = ln (x1) .

We put ρ (Ω) = I . In particular, f : I ⊂ R → R, u = f ◦ ρ such that F (p) = (p, f(ρ(p))), and then graph (f ◦ ρ) is
foliated by horospheres. Take s ∈ R, Hs = ρ−1(s) one horosphere. We compute the mean curvature of Hs with
respect to −∇ρ.

h = div (∇ρ) =

n−1∑
i=1

g (∇ei∇ρ, ei) = n− 1,

where (e1, . . . , en−1, en = ∇ρ) is a local orthonormal frame on THn on each level set. According to Theorem 3.5
of paper [10], Γu is a translator if, and only if,

f ′′ (s) =
(
1− f ′(s)2

)
(1− f ′(s)(n− 1)) , n ≥ 2. (3.1)

Case I. If ε = −1 then, 0 < (−1)
(
−1 + f ′(s)2

)
therefore, |f ′(s)| < 1, Γ is space-like.

Case II. If ε = +1 then, 0 < (+1)
(
−1 + f ′(s)2

)
therefore, |f ′(s)| > 1, Γ is time-like.

Now, let us take z, we get

w′(s) = (1− w(s)2)(1−mw(s)) where m ∈ R, m ≥ 1, (3.2)

From now, we will discuss all possible solutions to this ODE.

3.1. Case w(s) = ±1

Function f becomes f(s) = ±s+ f0. We discard this case, because the associated hypersurfaces Γ are
degenerate.

3.2. Case w(s) = 1
m

We obtain the function f1(s) =
s
m + f0.
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3.3. Case w(s) ̸= ±1 and w(s) ̸= 1
m

We make some computations:

w′(s)

(1− w(s)2)(1−mw(s))
= 1 ⇒

∫
w′(s)

(1− w(s)2)(1−mw(s))
ds = s− s0

for some s0 ∈ R. Take the change of variable x = w(s),∫
dx

(1− x2)(1−mx)
= s− s0. (3.3)

3.3.1. Assume that m=1 We have from (3.3)

P(x) :=

∫
dx

(1− x2)(1− x)
= −1

4
ln|1− x|+1

2
· 1

1− x
+

1

4
ln|1 + x|. (3.4)

Clearly, we need the following intervals R− {−1,+1} = (−∞,−1) ∪ (−1,+1) ∪ (+1,+∞). and we obtain
different functions, by restricting function P to the different intervals, namely, P1 = P|(−∞,−1), P2 = P|(−1,+1),
P3 = P|(+1,+∞). We show some properties of them:

1. limx→−∞ P1(x) = 0, limx→−1
x<−1

P1(x) = −∞; P1 strictly decreasing, Im(P1) = (−∞, 0).

2. limx→−1
x>−1

P2(x) = −∞, limx→1
x<1

P2(x) = +∞; P2 strictly increasing, Im(P2) = R.

3. limx→1
x>1

P3(x) = −∞, lim+∞ P3(x) = 0; P3 strictly increasing, Im(P3) = (−∞, 0).

−∞ −1

Figure 1. Function P1

−1 1

Figure 2. Function P2

+∞
1

Figure 3. Function P3
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Now, we are going to construct the inverse function of P1 : (−∞,−1) → R. Recall P1 (w(s)) = s− s0 ∈ (−∞, 0)
so that s < s0. Therefore, given s0 ∈ R, we define

t1 : (−∞, s0) → (−∞,−1), s 7→ t1(s) = P−1
1 (s− s0).

We can now define f2,

f2 : (−∞, s0) → R, s 7→ f2(s) =

∫ s

s0

t1(v)dv + f̂2, f̂2 ∈ R.

We construct the inverse function of P2 : (−1,+1) → R. Recall P2 (w(s)) = s− s0 ∈ (−∞,+∞). Therefore, given
s0 ∈ R, we define

t2 : R → (−1, 1), s 7→ t2(s) = P−1
2 (s− s0).

We can define f3,

f3 : R → R, s 7→ f3(s) =

∫ s

s0

t2(r)dr + f̂3, f̂3 ∈ R.

Similarly, given s0 ∈ R, we define

t3 : (−∞, s0) → (1,+∞), s 7→ t3(s) = P−1
3 (s− s0).

We can define f4,

f4 : (−∞, s0) → R, s 7→ f4(s) =

∫ s

s0

t3(k)dk + f̂4, f̂4 ∈ R.

3.3.2. Assume that m > 1 We have from (3.3)

Q(x) :=

∫
dx

(1− x2)(1−mx)
=

1

2m− 2
ln|1− x|+ 1

2m+ 2
ln|1 + x|− m

m2 − 1
ln|1−mx|. (3.5)

For m > 1, it is clear that we need the following intervals

R− {−1,+1, 1/m} = (−∞,−1) ∪ (−1, 1/m) ∪ (1/m,+1) ∪ (+1,+∞),

and we obtain different functions, by restricting function Q to the different intervals, namely, Q1 = Q|(−∞,−1),
Q2 = Q|(−1,1/m), Q3 = Q|(1/m,+1), Q4 = Q|(+1,+∞). We show some properties of them:

1. limx→−1
x<−1

Q1(x) = −∞, limx→−∞ Q1(x) = − m
m2−1 ln(m) < 0; decreasing, Im(Q1) =

(
−∞, m

1−m2 ln(m)
)
.

2. limx→−1
x>−1

Q2(x) = −∞, limx→ 1
m

x< 1
m

Q2(x) = +∞; Q2(x) increasing, Im(Q2) = R.

3. limx→ 1
m

x> 1
m ,

Q3(x) = +∞, limx→+1
x<1

Q3(x) = −∞; Q3(x) decreasing, Im(Q3) = R.

4. limx→+1
x>1

Q4(x) = −∞, limx→+∞ Q4(x) =
m

1−m2 ln(m) < 0; Q4(x) increasing, Im(Q4)=
(
−∞, m

1−m2 ln(m)
)
.
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−∞ −1

m
1−m2 ln(m)

Figure 4. Function Q1

−1 1/m

Figure 5. Function Q2

11
m

Figure 6. Function Q3

+∞
1

m
1−m2 ln(m)

Figure 7. Function Q4

Theorem 3.1. Consider a space-like translator Γ : Ω → Hn ×−1 R, Γ(p) = (p, u(p)) for all p ∈ Ω, where u ∈ C2 (Ω).
Then, Γ is foliated by horospheres if, and only if, there exists f ∈ C2 (I), I ⊆ R such that u = f ◦ ρ and f is one of the
following:

1. f1 : R → R, f1(s) = s
n−1 + f0, f0 ∈ R.

2. n = 2, f3 : R → R, f3(s) =
∫
P2

−1(s)ds+ f0, f0 ∈ R.

3. n > 2, f6 : R → R, f6(s) =
∫
Q2

−1(s)ds+ f0, f0 ∈ R.

4. n > 2, f7 : R → R, f7(s) =
∫
Q3

−1(s)ds+ f0, f0 ∈ R.

Theorem 3.2. Consider a graphical time-like translator Γ : Ω → Hn ×−1 R, Γ(p) = (p, u(p)) for all p ∈ Ω, where
u ∈ C2 (Ω). Then, Γ is foliated by horospheres if, and only if, there exists f ∈ C2 (I), I ⊆ R such that u = f ◦ ρ and
f is one of the following:

1. n = 2, f2 : (−∞, s0) → R, f2(s) =
∫
P1

−1(s)ds+ f0, f0 ∈ R.

2. n = 2, f4 : (−∞, s0) → R, f4(s) =
∫
P3

−1(s)ds+ f0, f0 ∈ R.

3. n > 2, f5 :
(
−∞, 1−n

n2−2n ln(n− 1)
)
→ R, f5(s) =

∫
Q1

−1(s)ds+ f0, f0 ∈ R.

4. n > 2, f8 :
(
−∞, n−1

2n−n2 ln(n− 1)
)
→ R, f8(s) =

∫
Q4

−1(s)ds+ f0, f0 ∈ R.

4. Rotationally Invariant Translators

We introduce the Lorentzian Space

Ln+1 = Rn+1, ⟨(x1, . . . , xn+1) , (y1, . . . , yn+1)⟩L = x1y1 + . . .+ xnyn − xn+1yn+1, n ≥ 2,

We consider the model of the hyperbolic space

Hn =
{
p ∈ Ln+1/ ⟨p, p⟩L = −1, pn+1 > 0

}
.
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Simple computations provide TpHn =
{
V ∈ Rn+1/⟨V, p⟩L = 0

}
. Now, let us define χ : Hn → Rn+1, χ(p) = p the

position vector, which is a unit normal time-like vector field to Hn on Ln+1. Since AχV = +V, equivalently
Aχ = +idTpHn , it is clear that Hn → Ln+1 is totally umbilical. We define

ρ : Hn+1 → [1,+∞), (p1, . . . , pn) 7→ pn+1.

We have ρ−1 {s} = {p ∈ Hn|pn+1 = s, s ≥ 1} , so that this set is a (n− 1) sphere of radius
√
s2 − 1. Simple

computations show

∇ρ = −∂n+1 − ⟨∂n+1, χ⟩
L
χ,

⟨∇ρ,∇ρ⟩L = ⟨−∂n+1 − ⟨∂n+1, χ⟩χ,−∂n+1 − ⟨∂n+1, χ⟩χ⟩ = ⟨∂n+1, χ⟩2 − 1 ̸= +1.

We reparametrize the projection, obtaining

τ : Hn → (0,+∞), τ = ln
(√

ρ2 − 1 + ρ
)
.

Clearly, ρ = cosh(τ), and now ∇τ = 1√
ρ2−1

∇ρ, is a unit normal to each level set. We compute the mean

curvature of each level set, namely,

h = div(∇τ) = div

(
∇ρ√
ρ2 − 1

)
= (n− 1) coth(τ).

Assume that u = f ◦ ρ for some f : I → R. This means that Γu is foliated by spheres. According to Theorem 3.5
of paper [10], we have:

Proposition 4.1. A function u = f ◦ τ provides a graphical, rotationally invariant, translator Γu if, and only if, the
function f : I ⊂ (0,+∞) → R is a solution to the following ODE:

f ′′(s) =
(
1− (f ′(s))2

)
(1− (n− 1) coth(s)f ′(s)) . (4.1)

Our next target is to study the solutions to (4.1). For this aim, we take w = f ′ in (4.1) and deal with the
following ODE

w′(s) =
(
1− w2(s)

)
(1− (n− 1) coth(s)w(s)) . (4.2)

Remark 4.1. Given a solution w to this ODE, each primitive f =
∫
w will provide a graphical rotationally

invariant translator in the following way. Define u := f ◦ τ , being Γu its graph.
Firstly, we have the trivial solutions

w+1, w−1 : (0,+∞) → R, w+1(s) = +1, w−1(s) = −1.

The primitives f±1 =
∫
w±1 will provide degenerate hypersurfaces, but we will need them in the computations

of rest of this section.
From now, we will use the book [17]. Indeed, we define the following dynamical system:

X : R2 → R2, X(s, z) =
(
sinh(s),

(
1− z2

)
(sinh(s)− (n− 1) cosh(s)z)

)
. (4.3)

The zeros of X are
p0 = (0, 0), p1 = (0, 1), p−1 = (0,−1).

We need to compute

∂X

∂s
=
(
cosh(s), (1− z2) (cosh(s)− (n− 1) sinh(s)z)

)
,

∂X

∂z
=
(
0,−2z (sinh(s)− (n− 1) cosh(s)z) +

(
1− z2

)
((1− n) coth(s))

)
.

We denote the differential of X at p by DX(p). We classify the points p0, p1 and p−1 according to the eigenvalues
of DX(p):

DX(p0) =

(
1 0
1 1− n

)
, DX(p1) =

(
1 0
0 2(n− 1)

)
, DX(p−1) =

(
1 0
0 2(n− 1)

)
, n ≥ 2.

Clearly, p1 and p−1 are sources because both eigenvalues are positive. But p0 is a saddle point. We introduce ξ ={
(s, z) ∈ R2|s ≥ 0

}
, ξ+ =

{
(s, z) ∈ R2|z > 1

}
, ξ− =

{
(s, z) ∈ R2| z < −1}, and ξ0 =

{
(s, z) ∈ R2| −1 < z < 1}.
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Lemma 4.1. For each solution w to (4.2), there exist an integral curve of X .

Proof. We take w : I → R a solution to (4.2). We consider a solution to s′(r) = sinh (s(r)), say s(r). Take
z(r) = w (s(r)) so that γ(r) = (s(r), z(r)) = (s(r), w (s(r))) is an integral curve of X .

Lemma 4.2. For each integral curve γ : Ko → R2 such that, γ(r) = (s(r), z(r)) with s an bijective map, then w :=
z ◦ s−1 is a solution to (4.2).

Proof. Since γ is an integral curve of X (that is,X (γ(r)) = γ′(r)), then

s′(r) = sinh (s(r)) , z′(r) =
(
1− z(r)2

)
(sinh(s(r))− (n− 1) cosh(s(r))z(r)) .

As s is bijective, then s′
(
s−1(y)

)
= sinh(y) for any y ∈ Ko. Therefore,

w′(y) =
z′
(
s−1(y)

)
s′ (s−1(y))

=
(
1− w(y)2

)
(1− (n− 1) coth(y)w(y)) .

This completes the proof.

Lemma 4.3. For each solution to the ODE z′(r) = (1− n)
(
1− z(r)2

)
z(r), the curve β(r) = (0, z(r)) is an integral

curve of X .

Proof. We take the curve β(r) = (0, z(r)). Then, we show that β is an integral curve of X . Indeed, β′(r) =
(0, z′(r)) = X (0, z(r)) =

(
sinh(0), (1− z(r)2)(sinh(0)− (n− 1) cosh(0) z(r))) =

(
0, (1− z(r)2)(1− n)z(r)

)
, that

is, z′(r) = (1− n)(1− z(r)2)z(r).

4.1. The Space-like Case

The space-like translators appear when |f ′| < 1, that is, when |w| < 1.

Lemma 4.4. Each solution w to (4.2) with initial condition (s0, z0) ∈ ξ0, namely, w(s0) = z0, can be extended (as
solution) to w : (0,+∞) → R. Also, lims→0 w(s) ∈ {−1, 0,+1}.

Proof. We take a local solution w to (4.2) such that −1 < w(s) < +1, which is bounded by the constant solutions
w±(s) = ±1. Therefore, w can be extended to w : (0,+∞) → R. By Lemma 4.1, we construct an integral curve
γw : (0,+∞) → R of X from w. By Lemma 4.3, γw and β can only coincide at some point p such that X(p) = 0.
But this only holds when p ∈ {p0, p+1, p−1}, namely, when lims→0 w(s) ∈ {−1, 0,+1}.

We define of function ϑ : ξ → R given by

ϑ(s, z) =
(
1− z2

)
(sinh(s)− (n− 1) cosh(s)z) . (4.4)

We need the set α = {(s, z) ∈ ξ | ϑ(s, z) = 0} = {(s, z) ∈ ξ | z = tanh(s)/(m− 1)}.

Proposition 4.2. Let w : (0,+∞) → (−1, 1) be a solution to (4.2) such that |w(s0)| < 1 for some s0 ∈ (0,+∞). Then,
it is one of the following:

1. There exists a unique ŵ : [0,+∞) → (−1,+1) solution to (4.2) such that ŵ(0) = 0. For all s ∈ (0,+∞), it holds
ŵ(s) < tanh(s)

n−1 .

2. If w(s0) < tanh(s0)/(n− 1), then w(s) < tanh(s)/(n− 1) for any s ≥ s0. In addition, if w(s0) < ŵ(s0), then
lims→0 w(s) = −1.

3. If w(s0) > ŵ(s0), then lims→0 w(s) = +1.

In all cases, it holds lims→+∞ w(s) = 1
n−1 .

Proof. 1. We want to solve the boundary problem:

w′(s0) =
(
1− w(s)2

)
(1− (n− 1) cosh(s)w(s)) , w(0) = 0.

If there is a solution, the associated integral curve of X will start at (0, 0). The eigenvalues of DX(0, 0) are
λ1 = 1, λ2 = 1− n and then their eigenvectors are V1 = (n, 1) and V2 = (0, 1) respectively. By Theorem 3.2.1. of
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the book [17], there exists an integral curve γ of X such that γ(0) = (0, 0) and γ′(0) = V1 (Integral submanifolds).
Then, by Lemma 4.2, we obtain the needed solution to the boundary problem.

In addition, assume by contradiction that there exist s0 ∈ (0,+∞) such that ŵ(s0) >
tanh(s)
n−1 > 0. We have

ŵ′(s0) < 0 and ŵ(0) = 0. By continuity, there exist s1 ∈ (0, s0) such that ŵ(s1) =
tanh(s1)

n−1 . There exist s2 ∈ (s1, s0)

such that ŵ′(s1) > 0 and ŵ′(s2) >
tanh(s2)

n−1 . But then,

0 < ŵ′(s2) =
(
1− ŵ′(s2)

2
)
(1− (n− 1) coth(s0)ŵ(s2)) < 0,

which is a contradiction.
2. We recall function ϑ, (4.4). Assume that (s0, w(s0)) satisfies ϑ(s0, w(s0)) = 0. Then, w′(s0) = (1−

w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) = 0. Moreover, there exists δ > 0 small enough such that if s ∈ (s0 − δ, s0), then

w′(s) = (1− w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) < 0; and if s ∈ (s0, s0 + δ), then w′(s) > 0. That is to say, if the graph

of w touches the set α, then w has a local minimum. Therefore, if the graph of w is below α at some point, then
it remains below α for any other further point.

In addition, if w(s0) < ŵ(s0), by Lemma 4.4, lims→0 w(s) ∈ {−1, 0,+1}. Since z0 < ŵ(s0), by uniqueness
of solutions to ODE, we have w(s) < ŵ(s) for all s ∈ (0,+∞). Also, ŵ(0) = 0 > lims→0 w(s) and therefore,
lims→0 w(s) = −1.

3. If w(s0) > ŵ(s0), then w′(s0) = (1− w(s0)
2)ϑ(s0, w(s0))/ tanh(s0) < 0. Therefore, the graph of w remains

above the graph of ŵ in (0, s0). By Lemma 4.2, the only possible limit is lims→0 w(s) = +1.
Finally, when s becomes big, if the graph of w is above α, then w is strictly decreasing. However, if the graph

of w is below α, w is strictly increasing. Then, lims→+∞ w(s) = lims→+∞ tanh(s)/(n− 1) = 1/(n− 1).

Definition 4.1. We define the function f̂(s) =
∫
ŵ(s)ds+ f0. The associated rotationally invariant translator is

called the bowl.

By Proposition 4.2, we immediately have the following result.

Theorem 4.1. Given a rotationally symmetric space-like translator Γ in Hn ×−1 R, there exist f : (0,+∞) → R such
that f is a solution to the ODE (4.2), and Γ(p) = (p, f(ρ(p))), for all p ∈ Hn. There are 3 types of functions f =

∫
w,

namely the bowl, those with lims→0 w(s) = 1 and those with lims→0 w(s) = −1.

Remark 4.2. In items 2 and 3 Proposition 4.2, lims→0 w(s) = ±1. This means that when approaching to the axis
of rotation, the translator will hit the axis with an angle of π/4. Therefore, there is a conic singularity.

4.2. The Time-like Case

Lemma 4.5. Given (s0, z0) ∈ R2 such that s0 > 0, z0 > 1, the associated solution can be extenden to w : [0, s0 + ε) →
[1,+∞) with lims→0 w(s) = +1.

Proof. The constant solution w+(s) = +1 is a bound from below. Since, ϑ(s, z) > 0, for all (s, z) ∈ ξ+. We know
w is increasing. Then, we can extend to [0, s0 + ε) similarly to item 2 of Proposition 4.2, lims→0 w(s) = +1.

Lemma 4.6. Given (s0, z0) ∈ R2 such that s0 < 0, z0 < 1, the associated solution can be extended to w : [0, s0 + ε) →
(−∞,−1] with lims→0 w(s) = −1. Since, ϑ(s, z) < 0, forall (s, z) ∈ ξ−.

Proof. The proof is very similar to Lemma 4.5.

Take g a function which is the inverse of f . We compute 1 = g′ (f(s)) f ′(s) and therefore 0 = g′′ (f(s)) f ′(s)2 +
g′ (f(s)) f ′′(s). Then,

g′′ (f(s)) = −
(
1− f ′(s)2

)
(1− coth(s)f ′(s))

f ′(s)3
.

We take f ◦ g(t) = t, which implies 0 = f ′′ (g(t)) g′(t)2 + f ′ (g(t)) g′′(t). We obtain the following ODE

g′′(t) = (g′(t)− 1) (coth (g(t))− g′(t)) . (4.5)

Lemma 4.7. Given a solution g : (t0 − ε, t0 + ε) → R to ODE (4.5). Then, g′′(t0) = − coth(g0) < 0, there are
two functions f± : (g0 − δ, go] → R solutions to the (4.1), which are inverse functions of g with lims→g0 f

′
±(s) =

lims→g0
1

g′(f±(s)) = ±∞. We construct two graphical translator from f± rotationally invariant and together they make a
smooth hypersurface.
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Proof. Choose t0 ∈ R. We consider the following IVP:

g′′(t) =
(
ε′ + ε̃g′(t)2

)
(coth (g(t)− g′(t))) , g′(t0) = 0, g(t0) = s0 ∈ I.

As usual, there exists a smooth solution α : (t0 − ε, t0 + ε) → R. Note that t0 is a critical point of α and
α′′(t0) = ε′ coth(s0). Case coth(s0) ̸= 0 : Then, t0 is an extremum of α. The restrictions g+ = g| (t0, t0 + ε) and
g− = g| (t0 − ε, t0) will be injective, by reducing ε if necessary. Construct their inverse functions f+ and f−
satisfy (4.1). To do so, we put f+ (g(t)) = t, and therefore

1 = f ′
+ (g(t)) g′(t), 0 = f ′′

+ (g(t)) g′(t)2 + f ′
+ (g(t)) g′′(t),

f ′′
+ (g(t)) g′(t)2 = −f ′

+ (g(t))
(
ε′ + ε̃α′(t)2

)
(coth (g(t)− g′(t))) .

Next, we change s = g(t), and then g′(t) = 1/f ′
+(s), so that

f ′′
+(s)

f ′
+(s)

2
=

1

f ′
+(s)

2

(
ε̃+ ε′f ′

+(s)
2
)
(1− coth(s)f+(s)) .

A similar computation holds for f−. The union of the corresponding graphical translators and their common
boundary provide a smooth translator, because g is a smooth map and f+, f− are tools to reparametrize its
graph.

Definition 4.2. The spindle is the rotationally invariant hypersurface obtained in Lemma 4.7.

Remark 4.3. According to Lemmas 4.5 and 4.6, lims→0 w(s) = ±1. Again, we have a conic singularity of angle
π/4.

Theorem 4.2. Any rotationally invariant, time-like translator in Hn ×−1 R is an open subset of a spindle.

Proof. Take w : (s0 − ε, s0 + ε) → (1,+∞) a solution to (4.2). By Lemma 4.5, we can extend w : [0, s0 + ε) →
(1,+∞), and lims→0 w(s) = 1. We will show that there exist s1 > s0 + ε such that lims→s1 w(s) = +∞ (finite-time
blow-up). We have

w′(s) = (1− w(s)2)(1− (n− 1) coth(s)w(s)) = sinh(s)ϑ(s, w(s)).

We can get F (s, z) =
(
1− z2

)
(1− (n− 1) coth(s)z). With this, we have w′(s) = F (s, w(s)). We define Υ =

(0,+∞)× [1,+∞), and F,G : Υ → R, we consider G(s, z) =
(
z2 − 1

)
z. Clearly, F (s, z) ≥ G(s, z), for any (s, z) ∈

Υ. Next, the solution to z′(s) = G (s, z(s)) with z (s0) = z0 is z : (0, s0 +A) → R,

z(s) =
1√

1− e2s−2(s0+A)
, A = −1

2
ln

(
1− 1

z02

)
, A ∈ R.

Note that lims→s0+A z(s) = +∞. These previous computations imply that there exist s1 ∈ (s0, s0 +A) such that
lims→s1 w(s) = +∞. We start with f , and then we take w = f ′ > 1. Every w has a finite-time blow-up, so we
use Lemma 4.7. Therefore every f is strictly increasing and g = f ′ so at some point, limz→z0 g

′(z) = 0. The same
reasoning works when w = f ′ < −1.

5. Isometries and a Quasilinear Elliptic PDE

Lemma 5.1. When ε = −1, PDE (2.2) behaves as a quasilinear elliptic operator. Moreover, it is locally uniformly elliptic.

Proof. We use the model of half-plane :

Hn = {(x1, . . . , xn) ∈ Rn|x1 > 0} , n ≥ 2.

B1 = (∂1, . . . , ∂n) , B2 = (ei = x1∂i : i = 1, . . . , n) .

We know the hyperbolic metric is g = gHn = 1
x1

2 ⟨, ⟩ ; g (ei, ej) = x1
2 g (∂i, ∂j) = ⟨∂i, ∂j⟩ = δij , where as usual, δij

denotes the Kronecker’s delta. We take ui = ∂iu, and then

∇u = x2
1

n∑
i=1

ui∂i.
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Take |∇u|2 =
∑n

i=1 x1
2ui

2; ∇∂i∂j =
∑n

k=1 Γ
k
ij∂k. We assume |∇u|2 < 1, then 1 > x1

2
∑n

i=1 ui
2 . We make some

computations :
1

W
= div

(
∇u

W

)
=

−(∇u)(W )

W 2
+

1

W
div(∇u),

1 = div(∇u)− (∇u)(W )

W
. (5.1)

div(∇u) =

n∑
i=1

g (∇ei∇u, ei) = x1
2

n∑
i=1

uii + 2u1x1 +

n∑
i,j=1

x1
2Γi

ijuj .

W =
(
1− |∇u|2

)1/2
=

(
1−

n∑
i=1

x1
2ui

2

)1/2

,

(∇u)(W ) =

(
x1

2
n∑

i=1

ui∂i

)(
1−

n∑
j=1

x1
2uj

2

)1/2

= −x1
3

W
u1

n∑
j=1

uj
2 − x1

4

W

n∑
i,j=1

uiujuij .

We insert all these computations in (5.1).

0 =

n∑
i,j=1

(
δij +

x1
2uiuj

W 2

)
uij +

2u1

x1
+

x1u1

W 2

n∑
i=1

ui
2 +

n∑
i,j=1

uiΓ
j
ji −

1

x1
2
.

We multiply by W 2x2
1. Later, we will that this is not a problem.

0 =

n∑
i,j=1

(
x1

2

(
1−

n∑
k=1

x1
2uk

2

)
δij + x1

4uiuj

)
uij + 2u1x1

(
1−

n∑
k=1

x1
2uk

2

)

+ x1
3u1

n∑
i=1

ui
2 +

n∑
i,j=1

x1
2

(
1−

n∑
k=1

x1
2uk

2

)
uiΓ

i
ji(x)− 1 +

n∑
k=1

x1
2uk

2.

We define

aij , b : Hn ×Rn → R, aij(x, p) = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
δij + x1

4pipj , and

b(x, p) = 2u1x1

(
1−

n∑
k=1

x1
2uk

2

)
+ x1

3u1

n∑
i=1

ui
2 +

n∑
i,j=1

x1
2

(
1−

n∑
k=1

x1
2uk

2

)
uiΓ

i
ji(x)− 1

+

n∑
k=1

x1
2uk

2.

Let us check that the matrix A =
(
aij
)

is positive-define.We rewrite it as

A = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
In + x1

4B, B = ptp.

By taking p, q ∈ Rn, we see B = ptp, ⟨p, q⟩ = pqt, Bpt = ptppt = |p|2pt, and therefore

Apt =

(
x1

2

(
1−

n∑
k=1

x1
2pk

2

)
+ x1

4|p|2
)
pt,

where In is the identity matrix. Clearly, Bpt = |p|2pt, and given q ⊥ p such that pqt = 0, then, Aqt =
x1

2
(
1−

∑n
k=1 x1

2pk
2
)
qt. Therefore, the eigenvalues of A are:

λ1 = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
x1

4|p|2, λ2(p) = x1
2

(
1−

n∑
k=1

x1
2pk

2

)
.

167 dergipark.org.tr/en/pub/iejg

https://dergipark.org.tr/en/pub/iejg


Translators of the Mean Curvature Flow in Hyperbolic Einstein’s Static Universe

We define
Λ =

{
(x, p) ∈ Ω×Rn|x1

2|p|2 < 1, x1 > 0
}
, λ1, λ2 : Λ → R.

In Λ, λ2 > 0 and λ1 > 0, so that the operator Q is elliptic. Also, given U ⊂ Λ such that U is open and Ū compact,
then in U

λ1

λ2
= 1 +

x1
2|p|2

1−
∑n

k=1 x1
2pk2

≥ 1,

is bounded from above and from below. That is to say, Q is locally uniformly bounded.

We recover Theorem 10.2 of paper [7];

Theorem 5.1. Let Ω be a bounded open domain in Rn. Let u, v ∈ C0
(
Ω̄
)
∩ C2 (Ω). Let Q be a quasilinear operator such

that :

1. Q is locally uniformly elliptic with respect to either u or v;

2. aij do not depend on z;

3. b is non-increasing in z for each (x, p) ∈ Ω×Rn;

4. aij , b are continuously differentiable with respect to the p-variables in Ω×R×Rn.

Assume that Qu = Qv in Ω and u = v on ∂Ω. Then u ≡ v in Ω.

From Lemma 5.1 and Theorem 5.1, we immediately obtain the following uniqueness result.

Theorem 5.2. Let Ω be a bounded open domain in Hn. Let u, v ∈ C0
(
Ω̄
)
∩ C2 (Ω) such that Γu, Γv are space-like

translators, and u = v on ∂Ω. Then u ≡ v in Ω.

Proof. By Lemma 5.1, Our operator Q is quasilinear elliptic and locally uniformly bounded. In addition, Q does
not depend on z. We know aij , b ∈ C∞(Ω×Rn). Clearly, Q is on the conditions of Theorem 5.1.

Lemma 5.2. Let Ω be a suitable subset of Hn. Take u : Ω → R such that Γu be a graphical translator in Hn ×−1 R. Take
σ an isometry of Hn. Given û := u ◦ σ, then Γû is also a graphical translator in Hn ×−1 R.

Proof. We take W =
√

1− |∇u|2 such that div
(∇u

W

)
= 1

W . We denote Ŵ =
√

1− |∇û|2, and then a long but

straightforward computation shows div
(

∇û
Ŵ

)
= 1

Ŵ
.

Corollary 5.1. Take Ω a bounded open domain in Hn. Assume that there exists an isometry σ : Hn → Hn such that
σ(Ω̄) = Ω̄. Let u ∈ C0

(
Ω̄
)
∩ C2 (Ω) such that Γ(p) = (p, u(p)) is a space-like translator, and u ◦ σ = u on ∂Ω. Then, u

is also invariant with respect to σ, that is to say, Γ is also invariant by σ × id.

Proof. We define û := u ◦ σ ∈ C0
(
Ω̄
)
∩ C2 (Ω). Clearly, û is also a space-like translator, that is, Qû = 0. Therefore,

Qu = Qû. Given x ∈ ∂Ω, û(x) = u (σ(x)) = c = u(x) By Theorem 5.1, u = û.

Remark 5.1. There are no assumptions on the topology of ∂Ω.

Figure 8. An example of Ω̄ which is symmetric with respect to a hyperplane.
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Corollary 5.2. Let Ω be a bounded open domain in Hn which is invariant by a subgroup G of Iso (Hn). Take
u : Ω̄ → R such that Γu is a space-like translator, and u ◦ σ = u on ∂Ω, for all σ ∈ G. Then, Γu is also invariant by
Ĝ := {σ × id : Hn ×−1 R → Hn ×−1 R |σ ∈ G}.

We write B (c, r) the ball of center c and radius r > 0, and B∗ (c, r) = B (c, r) \ {c}.

Corollary 5.3. Let Ω = B∗ (c, r) \ (c) ⊂ Hn, r > 0, u : Ω̄ → R satisfying Γu is a space-like translator with a possible
singularity at c, and u is constant on ∂B (c, r). Then Γu is a rotationally invariant. In addition, if u ∈ C2 (B (c, r)) then,
Γu is a compact piece of the bowl.

Proof. The punctured ball Ω is symmetric with respect to all totally geodesic Hn−1 passing through the center.
By Theorem 5.1, u is symmetric with respect to all totally geodesic Hn−1 passing through the center of Ω. This
means that Γu is rotationally symmetric. So we recall Theorem 4.2. In addition, if u is smooth at c, then Γu has
to be a piece of a bowl, bearing in mind that this is the only smooth example in the whole Ω.

Corollary 5.4. Take f : [a1, b1] → R, 0 < a1 < b1, one of the solutions in Theorem 3.1. Define c = f (a1), d = f (b1) and
a2, b2 ∈ R, a2 < b2. Then, there exists one and only one function u : Ω = [a1, b1]× [a2, b2] → R such that:

1) Γu is a space-like translator.
2) For all t ∈ [a1, b1], u (t, a2) = u (t, b2) = f(t); for all s ∈ [a2, b2], u (a1, s) = c, u (b1, s) = d.

Note that Γu is foliated by horocycles as in Theorem 3.1.

Proof. Existence is just one of the examples in Theorem 3.1. Uniqueness: Take u, v ∈ C0 (Ω) ∩ C2(Ω̊) in
conditions 1 and 2. We use Theorem 5.1, so u = v.
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