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ABSTRACT

In Euclidean 3-space, a family of curves, the co-successor, is motivated and then introduced in
relation to the natural mate. A complete characterization of co-successors is proved, followed by
an application of the co-successor towards describing Bertrand curves and their mates.
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Introduction

Consider a unit-speed curve α : I → E3. α has Frenet-Serret apparatus {κ, τ, T,N,B}, which satisfies the
Frenet-Serret equations, expressed in matrix form as:T ′

N ′

B′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B


where κ > 0.

Definition 0.1. We say a curve is Frenet if its curvature is nowhere zero (τ ̸= 0).

Definition 0.2. We define the natural mate of the unit speed curve α, α : I → E3, to be the unit speed curve whose
tangent vector T (s) = N(s).[5]

It has been shown that the Frenet-Serret apparatus {κ, τ , T ,N,B} of the natural mate is given by

κ = ω, τ = σω =
τ ′κ− κ′τ

ω2
, T = N, N =

δ∗

ω
, B =

δ

ω
,

where ω =
√
κ2 + τ2, σ = τ ′κ−κ′τ

ω3 , δ = τT + κB, and δ∗ = −κT + τB. Extensive studies have been done into
the relationships of curves with their natural mates. However, a direction that has been relatively unexplored
concerns the relationships between curves that have the same natural mate. We motivate and then define the
co-successor of a curve, and after giving several immediate relationships between co-successors, we look at a
simple application to Bertrand pairs.

Throughout this paper, we will assume that α is a unit speed curve with κ > 0 (equivalently, α′′ ̸= 0) unless
otherwise stated. We take the convention that if a curve is distinguished from a second curve by a tilde, overbar,
superscript, or other mark, we distinguish the Frenet-Serret apparatus’ of the curves using the same mark. We
consider two curves to be the same up to rigid translation and rotation.
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1. Motivating co-successors

The Frenet-Serret apparatus of the natural mate can be expressed completely in terms of the Frenet-Serret
apparatus of the curve of which it is the natural mate, thus, every curve has a single unique natural mate. A
natural question is then, given the curvature and torsion of the natural mate, what information can be extracted
about the curvature and torsion of the curve of which it is the natural mate. This first lemma provides a first
attempt at a description of the Frenet-Serret apparatus in terms of that of its natural mate, and are easily
verified.

Lemma 1.1. Suppose α and α are unit speed curves. Then α is the natural mate of α if and only if their Frenet-Serret
apparatus’ satisfy:

κ′ =
κ′

κ
κ− ττ,

τ ′ =
κ′

κ
τ + τκ,

T =
τ

κ
B − κ

κ
N,

B =
κ

κ
B +

τ

κ
N,

N = T .

(1.1)

Remark 1.1. The first two equations of (1.1) provide a pair of coupled first-order differential equations for the
curvature and torsion of α in terms of the curvature and torsion of α. As such, if we try to solve these differential
equations for κ and τ , we expect to obtain more than one solution, dependent on the initial conditions used
for κ and τ , under the constraint that κ > 0. So, we anticipate that there are more than one curve that have the
same natural mate.

2. Co-successor characterization and properties

Definition 2.1. Let α and α be unit speed curves. If α is the natural mate of α, we say that α is a successor of α [8].
Similarly, if α1 and α2 are both successors of the same curve α, then we say that α1 and α2 are co-successors of each other.

Remark 2.1. It can be seen that the relationship of being co-successors is in fact an equivalence relation. This
is because every curve has a unique natural mate, and so if α1 and α2 are co-successors, and α2 and α3 are
co-successors, then all of α1, α2, α3 have the same natural mate. As such, this allows us to talk about the family
of co-successors without referring to a particular pair, and to talk about two co-successors without necessarily
refering to the curve of which they are both successors, since they each only have a single unique natural mate,
which is common between them.

Proposition 2.1. Every co-successor of a generalized helix is a generalized helix.

Proof. This follows from the fact that a curve is a generalized helix if and only if its natural mate is planar. [5],
[6]

Proposition 2.2. Every co-successor of a slant helix is a slant helix.

Proof. This follows from the fact that a curve is a slant helix if and only if its natural mate is a generalized helix.
[5], [6]

While these propositions give trivial relationships between two co-successors, a more general
characterization of co-successors would be more useful. We find there is a simple characterization of co-
successors in terms of a rotation of their curvatures and torsions.
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Theorem 2.1. Suppose α1 and α2 are unit speed curves, then α1 and α2 are co-successors if and only if then there exists
constant ν ∈ R such that the Frenet-Serret apparatus of α2 is given in terms of the Frenet-Serret apparatus of α1 by:

T2

N2

B2

 =

 cos ν 0 sin ν
0 1 0

− sin ν 0 cos ν

T1

N1

B1

 ,

[
κ2

τ2

]
=

[
cos ν − sin ν
sin ν cos ν

] [
κ1

τ1

]
.

(2.1)

We call the number ν the phase separation between α1 and α2.

Proof. Suppose α1 and α2 are co-successors. Then they both have the same natural mate α, with Frenet-Serret
apparatus {κ, τ , T ,N,B}. Let κ1 = r1 cos θ1, τ1 = r1 sin θ1, κ2 = r2 cos θ2, τ2 = r2 sin θ2, where r1, r2, θ1, θ2 are
functions of the arc length parameter, and r1, r2 > 0. This is possible since the curvatures are strictly positive.
Noting that

√
κ2
1 + τ21 = κ =

√
κ2
2 + τ22 , and so r21 = κ2

1 + τ21 = κ2
2 + τ22 = r22 , and so r1 = r2, which we from here

on call r. We additionally have that τ ′
1κ1−κ′

1τ1
κ2 = τ =

τ ′
2κ2−κ′

2τ2
κ2 , which, after substitution, simplifies to θ′1 = θ′2.

Thus, there exists some constant ν such that θ2 = θ1 + ν. After applying sine and cosine identities, we obtain

κ2 = κ1 cos ν − τ1 sin ν,

τ2 = κ1 sin ν + τ1 cos ν.

Noting that N1 = T = N2, the other two vector relations follow from the curvature and torsion relation above
and the expressions for the normal and binormal vectors of the natural mate. From this, we have both matrix
relations.

The converse follows from the fact that N1 = N2, and so their natural mates have equal tangent vectors, and
so are congruent.

Remark 2.2. The above theorem has the potential to be generalized beyond the context with κ1 > 0 and κ2 > 0,
where we assume for all unit speed curves α that α′′ ̸= 0. In particular, just looking at the forms of (2.1), we
first note that if T1, N1, and B1 form a right-handed orthonormal frame, then for arbitrary choice of ν, then T2,
N2, and B2 will also be right-handed and orthonormal. Additionally, it can be shown by direct computation
that if α1 satisfies the Frenet-Serret equations, and the Frenet-Serret apparatus of α2 is related to that of α1 by
equations (2.1), then it follows that the Frenet-Serret apparatus of α2 will also satisfy the Frenet-Serret equations
for any constant ν. However, for many choices of ν, this would lead to κ2 no longer being a strictly positive
function, sometimes being zero or negative, and as such, the frame obtained would no longer be a Frenet frame
as it is usually defined.

Definition 2.2. Let α : I → E3 be a Frenet curve. We say that the unit speed curve α̃ is the conjugate mate of α if the
tangent vector of α̃ is equal to the binormal vector of α.

Corollary 2.1. The conjugate mate α̃ of a Frenet curve α is a co-successor of α with phase separation ±π
2 .

Corollary 2.2. Every co-successor of a curve α can be expressed as a linear combination of α and α̃, the integral curve
of its binormal vector B (If α is Frenet, then α̃ is its conjugate mate). In particular, the co-successor αν of α with phase
separation ν can be expressed as αν = cos να+ sin να̃.
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(Figure 1) A unit speed Frenet curve (black), its conjugate mate (red) and its family of co-successors (green).
The left plot is restricted to positive curvature, while the right plot is not holding this restriction. The

curvature and torsion of the black Frenet curve are given by κ = 17s2

7s2+1 and τ = 2.3 + 0.6 sin(3.3s).

3. Equivalent and mirror curves

Before we can apply the notion of co-successors to Bertrand curves, we need to define several other types of
associated curves.

Definition 3.1. Let α1 : I → E3 and α2 : J → E3 be two regular curves. If there is a diffeomorphism h : I → J such that
T1, N1, and B1 are parallel to T2 ◦ h, N2 ◦ h, and B2 ◦ h respectively, and T1 ◦ h−1, N1 ◦ h−1, and B1 ◦ h−1 are parallel
to T2, N2, and B2 respectively, then we say α1 and α2 are equivalent. [3]

This is an equivalence relation, and additionally, if two curves are equivalent, then their natural mates are
equivalent.

Corollary 3.1. Every natural mate is equivalent to a spherical curve.

Proof. Let α be a unit speed curve. We define α̃(s̃) = T (s(s̃)), which is clearly a spherical curve, where
s(s̃) =

∫
1
κds̃. We see that α̃(s̃) is unit speed, since

dα̃(s̃)

ds̃
=

dα̃(s̃)

ds

ds

ds̃

=
dT (s(s̃)

ds

1

κ

= κ(s(s̃))N(s(s̃))
1

κ(s(s̃))

= N(s(s̃)).

Thus T̃ (s̃) = N(s(s̃)) = (T ◦ s)(s̃). Differentiating this expression with respect to s̃, we get that κ̃Ñ = dT̃
ds̃ =

ds
ds̃

dN
ds = ds

ds̃−κT + τB = ω 1
κ

δ∗

ω , and so Ñ = (N ◦ s)(s̃). This gives by taking the cross product B̃ = (B ◦ s)(s̃).
Thus α is equivalent to α̃, which is spherical.

Definition 3.2. Given a unit speed curve α, the mirror of α across a unit vector M is the curve given by αM =
α− 2M⟨M,α⟩.

Geometrically, this represents reflecting α across the perpendicular plane to M to obtain the new curve αM .
Since every mirror of α can be obtained from any other mirror by a rotation and translation, we consider them
congruent, and will simply refer to αM as the mirror of α, without referencing any particular unit vector M .

Lemma 3.1. A curve αM is the mirror of a unit speed curve α if and only if its curvature and torsion are given by
κM = κ, τM = −τ .
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Additionally, the Frenet frame of αM is given by

TM = T − 2M⟨M,T ⟩,
NM = N − 2M⟨M,N⟩,
BM = −B + 2M⟨M,B⟩.

(3.1)

Proof. Suppose αM is the mirror of α, then αM = α− 2M⟨M,α⟩. Differentiating with respect to the arclength
parameter of α yields αM

′ = T − 2M⟨M,T ⟩, which is unit, and so αM has the same arclength parameter
as α (This is geometrically obvious). Thus, αM

′ = TM = T − 2M⟨M,T ⟩. Differentiating again gives κMNM =
κN − 2κM⟨M,N⟩ = κ(N − 2M⟨M,N⟩). One can easily show that N − 2M⟨M,N⟩ is unit, so we conclude that
NM = N − 2M⟨M,N⟩ and κM = κ. We then have

BM = TM ×NM

= (T − 2M⟨M,T ⟩)× (N − 2M⟨M,N⟩)
= B − 2M × (⟨M,T ⟩N − ⟨M,N⟩T )
= B − 2M × (M × (N × T ))

= B + 2M × (M ×B) = B + 2M⟨M,B⟩ − 2B⟨M,M⟩)
= −B + 2M⟨M,B⟩.

Differentiating, we obtain
−τMNM = BM

′ = τN − 2τM⟨M,N⟩ = τNM ,

and so conclude that τM = −τ .
Suppose the converse holds, then since the mirror of α has the same curvature and torsion of αM , then αM

must be the mirror of α.

Lemma 3.2. The natural mate of the mirror of a curve is congruent to the mirror of the natural mate.

Proof. Let α be a unit speed curve with natural mate α, mirror αM , let the mirror of the natural mate be αM ,
and the natural mate of the mirror be αM .

The result follows by direct calculation

κM =
√

κM
2 + τM 2 =

√
κ2 + τ2 = κ = κM ,

τM =
τM

′κM − κM
′τM

κM
2 = −τ ′κ− κ′τ

κ2 = −τ = τM .

The following two lemmas similarly follow quickly from the definitions.

Lemma 3.3. If two curves are equivalent, then their mirrors are equivalent.

Lemma 3.4. Suppose α1 and β1 are equivalent, both having a co-successor α2 and β2, respectively, with phase separation
ν. Then α2 and β2 are equivalent.

4. Bertrand curves

Definition 4.1. A curve α is Bertrand if there exists another curve α̂ such that α̂(s) = α(s) + λ(s)N(s), where the
normal vectors of the two curves are parallel (N = ±N̂ ). We call these two curves together a Bertrand pair and say that
α̂ is the Bertrand mate of α. [2], [3]

It is easy to show that λ is a constant. It is also a well-known result that a curve α is Bertrand if and only if
there exists constants a, b such that aκ+ bτ = 1.

When discussing a Bertrand pair α and α̂, we will choose our parametrization such that α is unit speed,
while α̂ is not necessarily unit speed.

Corollary 4.1. Let α1 be a Bertrand curve with co-successor α2, then α2 is also Bertrand.
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Proof. This follows from

1 = aκ1 + bτ1

= a(κ2 cos ν − τ2 sin ν) + b(κ2 sin ν + τ2 cos ν)

= (a cos ν + b sin ν)κ2 + (b cos ν − a sin ν)τ2.

Because of the two distinct possibilities in the definition of a Bertrand pair allowing the normal vectors of
the curves to either be parallel or anti-parallel, it is useful to distinguish between these two cases.

Definition 4.2. Let α and α̂ be a Bertrand pair, then we say that α and α̂ are positively (negatively) Bertrand if N = N̂

(N = −N̂ ).

We now apply the notion of a co-successor to obtain an alternative description of the Bertrand mate of a
curve, and obtain a simple relationship between the natural mates of a Bertrand pair.

Theorem 4.1. Suppose α and α̂ are a positively Bertrand pair. Then α̂ is a co-successor of α up to equivalence.

Proof. Suppose α and α̂ are a positively Bertrand pair. Then N = N̂ , and in particular, we can write
T̂ = cos θT + sin θB. Differentiating, where ŝ is the arc-length parameter of α̂, we get that ŝ′κ̂N̂ = ŝ′κ̂N =
−θ′ sin θT + κ cos θN + θ′ cos θB − τ sin θN , and so −θ′ sin θ = θ′ cos θ = 0, implying that θ is a constant. Since
N̂ = N and we have that T̂ = cos θT + sin θB and B̂ = − sin θT + cos θB, which we note are parallel to the Frenet
frame of the co-successor of α with phase separation θ after a change in parametrization. Thus, α̂ is equivalent
to the selected co-successor of α.

Corollary 4.2. Let α and α̂ be a positively Bertrand pair. Then the natural mates of α and α̂ are equivalent.

Proof. This follows since the natural mate of α and its co-successor are equal, and the fact that natural mates of
equivalent curves are themselves equivalent.

Theorem 4.2. Suppose α and α̂ are a negatively Bertrand pair. Then the mirror of α̂ is a co-successor of α up to
equivalence.

Proof. This is proved similarly to Theorem 4.4, except we take T̂ = − cos θT − sin θB, and then consider the
mirror of α̂’s relationship with α.

Corollary 4.3. Let α and α̂ be a negatively Bertrand pair. Then the natural mate of α and the natural mate of the mirror
of α̂ are equivalent.

Proof. This follows since α and its co-successors have the same natural mate, the mirror of α̂ is equivalent to a
co-successor of α, and the fact that the natural mates of equivalent curves are equivalent.
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