
DATA SCIENCE AND APPLICATIONS, VOL. 4, NO. 1, 21-26, 2021 

21 

 

1
Abstract— Investments in aviation were experiencing 

difficult times due to the Covid-19 pandemic, and poverty 

drives the industry to generate value with existing products. 

Therefore, technology providers modernize legacy systems 

with AI add-ons like the usage of old CCTV cameras for 

securities operations even if they are not designed for these 

purposes [1].  In this study, the detection of objects such as 

people, luggage, and vehicles are executed and tested for the 

aviation ecosystem with a real-time computer vision 

application built on existing CCTV cameras. Also, the 

detection performance measurements and achievements of the 

application are shared. 

Keywords— artificial intelligence, machine learning, deep 

learning, human detection, airport, security, CNN, CCTV 

I. INTRODUCTION 

With the onset of the Covid-19 epidemic, airports and 
airlines quickly began to conduct various researches on safe 
travel methods. As a result of these researches, measuring the 
airport passengers' social distance with existing CCTV 
cameras and preventing violations is considered an important 
solution by many airports [1]. In this study, following this 
trend, a computer vision application has been developed to 
work on the airport CCTV camera images in real-time by 
using open source libraries defined by literature review and 
enables the detection of objects such as people, luggage, and 
vehicles. Also, the detection performance measurements and 
achievements of the application are shared. 

According to the research, the number of published 
articles related to object detection increased more than 20 
times in 2018 compared to 1998 [2]. When the 20-year 
development period of Computer Vision-based object 
detection is examined, it is seen that traditional methods like 
Viola-Jones Detector, Histogram of Oriented Gradients, and 
Deformable Part-based Model have been developed and used 
during the first 10 years [3-6]. However, with the rebirth of 
the convolutional neural network in the last 8-10 years, the 
widespread use of deep learning techniques has increased 
[7][8]. Object detection, classification, and tracking on 
videos have become extremely easy today, with numerous 
algorithms born and developed with this wind of revolution. 
After the literature review, it is seen that in the past 10 years, 
many successful algorithms, such as CNN, RCNN, SSPNet, 
Fast RCNN, Faster RCNN, YOLO, SSD, FPN, Retina-Net, 
RefineDet, TridentNet, have been developed and used by 
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deep learning developers and experts [9-16]. Also, open-
source frameworks like TensorFlow, PyTorch, and 
Deeplearning4j have a great impact on the rapid 
implementation of these developments from the academic 
world to the business.  

Deep learning techniques, which meet the complex 
business requirements at a high level in detection and 
classification issues, naturally require very high 
computational power levels [17], but this is not the only 
challenge architects struggle with. They are also struggling 
with difficulties such as using a neural network for different 
purposes, dividing and managing the GPU power for 
different blocks, performing distributed training with the 
multi-GPU to shorten the training process, and eliminating 
CPU / GPU incompatibilities [18]. In addition to dealing 
with architectural difficulties in projects, it is also necessary 
to work on business-related functions that have not yet been 
resolved strongly in the literature. For example, abnormal 
behavior detections and classifications of crowds [19][20], 
abandoned luggage detection [21], depth-related calculations 
on RGB cameras are some of the common business-level 
challenges that developers are facing [22][23].  

In this study, details of the application development 
processes, algorithms, business-level test results, library 
comparisons, and configurations of the developed 
application are shared in other sections. 

II. METHODOLOGY 

In the evolution of the state-of-the-art object detectors, 3 
main architectures were mostly used. As the earliest 
approach, the “Classical Detectors” emerged as basic FIR 
filters, which applies a predefined function kernel, which is 
used to extract the target object features over image pixels 
where the operation is basically called a convolution process. 
The most known CNN architecture “LeNet” was proposed 
by LeCun et al. [24] to solve the handwritten digit 
recognition problem during his researches at Bell labs. 

The successors of the classical detectors have 
outperformed the convolution-based detection approach with 
the rise of deep learning techniques, which lead to the birth 
of  the “Two-State Detectors”. As the main difference from 
the classical approach, the two-state detectors operate on 
region-based proposals. Region proposal methods focus on a 
sparse set of candidate proposal regions where the target 
objects may lie. Thus they eliminate negative object 
locations to simplify the search space. As the next step, the 
classifiers are operated on these sparse regions to detect the 
objects. The (R-CNN) algorithm [25] can be regarded as one 
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of the most used two-stage detector algorithms where more 
generalized extensions such as (Faster RCNN) [12] based 
variants are still used in low-scale edge devices for object 
detection tasks. 

 However, another latest object detection algorithm 
family operates very similarly to human eye biology by 
executing only a single detection stage step. The algorithms 
that fall into this family are called “Single State Detectors”. 
Today three main single state detection algorithms can be 
listed as SSD (single shot detector) [14], YOLO (you only 
look once) [13], and RetinaNet [15]. Among three 
algorithms, YOLO, which is implemented on the Darknet 
framework [26], is the fastest with acceptable near accuracy 
compared to (Faster RCNN) [27][28]. The YOLO 
algorithm's main advantage is that a single neural network 
evaluates the whole image rather than the proposed regions 
where the two-stage detection algorithm does.  

The CNN algorithm considered in this paper has been 
built on an open-source platform complied from the Darknet 
framework [26] which is written in C, with CUDA, CuDNN 
and OpenCV bindings that implement the YOLO 
architecture of the 4th version. Tthe DLL of the C libraries 
has ben encapsulated by the managed .Net wrappers so that 
algorithm can be called from the main application on-
premise manner. Video capturing and CCTV stream 
capturing features has been implemented on managed 
OpenCV wrapper EmguCV libraries. The camera 
enumeration process has been implemented with the 
opensource Directshow library. 

III. TEST AND RESULTS 

With the application developed, detection and 
classification performance measurements were carried out on 
many different types of videos. Some of the videos had very 
distant images, so the videos' classification range limit was 
defined and performance analyses were calculated for only 
defined areas. Precision, Recall, F1 score, and IOU 
(Intersection over Union) calculations were made for the 
videos' model outputs. Also, all images used in the study 
have 720p resolution. 

a) Test Video 1 - Road 

 

b) Test Video 2 - Road 

 

c) Test Video 3 - Road 

 

Fig. 1.  Test videos for road 

The first tests were carried out on 3 different road videos, 
which can also be seen in Fig. 1. In these tests, the model 
was expected to detect and classify vehicle types (truck, car, 
motorbike) and people. When the videos are examined, it is 
seen that the camera also displays very distant vehicles in 
Test Video 1 and Test Video 3. In classification analysis, 
performances within a 100-meter range were measured in 
these videos, and instantaneous faulty detections were 
ignored. 

 As seen in Table I, the model could not detect 2 humans 
in Test Video 1 because they were 90 meters far from the 
camera. Also, for the same video, vehicle classification 
failures of model happened with the vehicles which are too 
far from the camera. Moreover, another finding in parallel 
with this result is it has been seen that in the same video that 
the confidence level for nearby vehicles is mostly exceeding 
90%, but for far vehicles, it could be lower than 60%. 

TABLE. I.  CLASSIFICATION PERFORMANCE OF MODEL ON 
DIFFERENT ROAD VIDEOS 

Classification Performances 

C
ar

s 

Videos TP TN FP FN Precision Recall  F1 

Test Video 1 33 0 1 3 0,97 0,92 0,94 

Test Video 2 53 0 0 0 1,00 1,00 1,00 

Test Video 3 111 0 0 0 1,00 1,00 1,00 

Sum of All 197 0 1 3 0,99 0,99 0,99 

T
ru

ck
s 

Videos TP TN FP FN Precision Recall  F1 

Test Video 1 5 0 0 1 1,00 0,83 0,91 

Test Video 2 3 0 0 0 1,00 1,00 1,00 

Test Video 3 2 0 0 0 1,00 1,00 1,00 

Sum of All 10 0 0 1 1,00 0,91 0,95 

M
o
to

rb
ik

e 

Videos TP TN FP FN Precision Recall  F1 

Test Video 1 2 0 0 0 1,00 1,00 1,00 

Test Video 2 3 0 0 0 1,00 1,00 1,00 

Test Video 3 3 0 0 0 1,00 1,00 1,00 

Sum of All 8 0 0 0 1,00 1,00 1,00 

H
u

m
an

s 

Videos TP TN FP FN Precision Recall  F1 

Test Video 1 1 0 2 0 0,33 1,00 0,50 

Test Video 2 71 0 6 3 0,92 0,96 0,94 

Test Video 3 3 0 0 1 1,00 0,75 0,86 

Sum of All 75 0 8 4 0,90 0,95 0,93 

  
  When the results of Test Video 2 were examined, it is 
seen that all buses were classified correctly, but there was 
no bus in other videos, so this finding is not included in 
comparisons. The range and camera position enabled people 
sitting in the front seats of the vehicles to be detected. 
However, the confidence level for human detection was 
mostly measured below 60%, while the confidence level for 
vehicle detection was above 90%. The reasons are that 
model could only see half of the person's bodies, and there 
are distorting effect of the light reflections on the vehicle 
windows. 

 In Test Video 3, only the people on the motorcycles 
were detected because the people inside the vehicles were 
not visible. The analysis was carried out according to that 
condition.  

 When the detection and classification performance results 
shared in Table I for 3 videos of the model are examined, it 
is seen that the model is successful in vehicle classification 
with a 100-meter viewing range and 720p camera resolution. 
However, it is successful in detecting people at shorter 
distances. In the other tests of this study, as seen in Fig. 2, 
more detailed inferences were obtained from the videos 
specific to human classification. 
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 Confidence levels dropped to 30% in Test Video 4. The 
classification of people who are away from the camera 
proved to be much weaker. In Test Video 5, the confidence 
level was generally seen above 90% due to the camera's 
distance to people and people walking on a clear 
background. In the last video about Human Walking, the 
confidence level was mostly calculated as 97% and above in 
the classification of those passing between the camera and 
the parked vehicle. 

 
a) Test Video 4 – Human Walking 

 

b) Test Video 5 – Human Walking 

 

c) Test Video 6 – Human Walking 

 

Fig. 2.  Test videos for human walking 

 As shown in Table II, when the model's joint 
performance in all 3 videos is evaluated together, the F1 
score value becomes 0.83. According to the range of the 
camera and resolution, this value can be up to 0.98. 

TABLE. II.  CLASSIFICATION PERFORMANCE OF MODEL ON 

DIFFERENT HUMAN WALKING VIDEOS 

Classification Performances 

H
u

m
an

s 

Videos TP TN FP FN Precision Recall  F1 

Test Video 4 192 0 97 16 0,66 0,92 0,77 

Test Video 5 56 0 2 0 0,97 1,00 0,98 

Test Video 6 34 0 3 0 0,92 1,00 0,96 

Sum of All 282 0 102 16 0,73 0,95 0,83 

 
 Within the scope of another test, the videos displayed in 
Fig. 3 and the classification tests of luggage such as 
suitcase, backpack, and handbag were performed.  

When the results in Table III are examined, it is seen that 
the model sometimes detects backpacks as handbags in Test 
Video 7.  

 In Test Video 8, it was determined that the model could 
not classify the suitcases with covers on them. Besides, 
since there are only suitcases in this video, the classification 
result related to other objects is not shared. 

 There was a higher success in classifying covered 
suitcases in Test Video 9 than in Test Video 8, but the 
confidence level ranges from 20% to 30% for such 
suitcases. Also, there were no handbags in the video, so the 
results of classification for that object not shared in Table 
III.  

a) Test Video 7 - Luggages 

 

b) Test Video 8 - Luggages 

 

c) Test Video 9 - Luggages 

 

d) Test Video 10 - Luggages 

 

Fig. 3.  Test videos for luggage classification 

 The model sometimes classifies backpacks as a suitcase 
while backpacks are on the carousel in the Test Video 9. In 
Test Video 10, detection and classification performances 
were calculated only for luggage close to the camera. 
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TABLE. III. CLASSIFICATION PERFORMANCE OF MODEL ON 

DIFFERENT LUGGAGE VIDEOS 

Classification Performances 

H
an

d
b
ag

 Videos TP TN FP FN Precision Recall  F1 

Test Video 7 12 0 7 4 0,63 0,75 0,6
9 Test Video 10 6 0 8 0 0,43 1,00 0,6

0 Sum of All 18 0 15 4 0,55 0,82 0,6
5 

S
u

it
ca

se
 

Videos TP TN FP FN Precision Recall  F1 

Test Video 7 13 0 7 0 0,65 1,00 0,7
9 Test Video 8 27 0 2 2 0,93 0,93 0,9

3 Test Video 9 60 0 2 8 0,97 0,88 0,9
2 Test Video 10 5 0 3 0 0,63 1,00 0,7

7 Sum of All 10
5 

0 14 10 0,88 0,91 0,9
0 

B
ac

k
p

ac
k
 Videos TP TN FP FN Precision Recall  F1 

Test Video 7 6 0 7 0 0,46 1,00 0,6
3 Test Video 9 7 0 6 1 0,54 0,88 0,6

7 Test Video 10 7 0 2 1 0,78 0,88 0,8
2 Sum of All 20 0 15 2 0,57 0,91 0,7

0   

When the results of the 4 tests shared in Table III are 
examined together, the model's classification success does 
not seem as high as vehicle or human classification, 
although the camera is close to the related objects. It can 
only be said that suitcases are a little easier to classify than 
backpacks and handbags. 

a) Test Video 11 – Aircrafts 

 

b) Test Video 12 – Aircrafts 

 

Fig. 4.  Test videos for aircraft classification 

TABLE. IV. IOU PERFORMANCES OF MODEL ON DIFFERENT 
TEST VIDEOS 

IoU Performances of Model 

Videos Types Average IoU 

Test Video 1 Road 0,89 

Test Video 2 Road 0,93 

Test Video 3 Road 0,94 

Test Video 4  Human Walking 0,81 

Test Video 5  Human Walking 0,92 

Test Video 6  Human Walking 0,95 

Test Video 7  Luggages 0,95 

Test Video 8  Luggages 0,96 

Test Video 9  Luggages 0,93 

Test Video 10  Luggages 0,92 

Test Video 11  Aircrafts 0,97 

Test Video 12  Aircrafts 0,64 

 
 The model was able to classify all 124 aircraft displayed 
in Test Video 11 and 12 shown in Fig. 1, in cases where 
they did not pass consecutively. For example, among the 

aircraft in line in Test Video 12, only the aircraft seen in 
front can be classified. 

 As important as measuring classification performance is 
the measurement of Intersection over Union (IOU) metrics 
for the model outputs. The calculated averages of IOU for 
each test video are shared in Table IV, but some points 
where the minimum intersection is seen are also shared in 
Fig. 5. 

  It is seen that the larger the size of the objects in the 
pictures, the better the IOU ratio. Besides, it was determined 
that the IOU ratio for the objects positioned one after the 
other easily decreased. However, the model easily rose up 
above 0.9 in many test videos. 

a) Test Video 6 – Human Walking 

 

b) Test Video 2 - Road 

 

c) Test Video 9 - Luggages 

 

d) Test Video 12 – Aircrafts 

 

e) Test Video 11 – Aircrafts 

 

Fig. 5.  Some of segmentation errors 
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IV. CONCLUSION 

 Various findings have been reached due to the tests 
performed on 13 different 720p resolution videos focused on 
more than 700 objects.The vehicle classification success of 
the model within the range of 100 meters seems high. If the 
camera is at a sufficient distance from the passing vehicles, 
the people inside the vehicles and motorbikes can also be 
classified with approximately 60% confidence level. 
However, it has also been observed that the reflections on the 
windows of the vehicles can affect these results. 

In the classification of people, model performance has 
not been as high as the model's vehicle classification 
performance. While the distance between the camera and 
humans is less than about 20 meters and under defined 
conditions, the F1 score varies between 0.77 and 1 in human 
classification. Also, it is seen that model fails to classify 
humans when they are standing behind each other. Besides, 
if the ground on which people are walking is homogeneous, 
model classification performance increases. The 
classification performance scores calculated for the luggage 
class were smaller than the other object class classifications 
mentioned above. It has been observed that the model can 
mix backpack and handbag if they are on walking people. 
Also, suitcases and backpacks can be mixed on the carousels. 
Another finding is that sometimes model fails in the 
classification of covered suitcases. When the suitcase, 
backpack, and handbag are compared among themselves, it 
is seen that the model is more successful in the suitcase 
classifications. 

Finally, the model produces highly successful results in 
aircraft classification, but if the aircraft is positioned one 
after the other in front of the camera, the model cannot detect 
the aircraft behind and draws the segmentation border 
incorrectly. When the IuO values are examined in general, if 
the model's objects are not sequenced consecutively, the 
model achieves similar success in segmentation for all 
objects. However, as the objects move far away from the 
camera, segmentation errors increase. In other words, the 
confidence level of classified objects increases as the objects 
get closer to the camera. 

This study's results, which determine the model's success 
and failure points, show that the relevant model can be 
evaluated in many business scenarios. Various possible 
studies can be done to increase the performance of the 
model. In addition to the transfer learning, with the images 
taken from the field where the model will be used, the 
model's business-specific training can increase the 
performance of the model. It will also be helpful to increase 
the number of nodes in the model. In addition to the model 
modifications, the camera equipment positioning will also 
produce useful results. It would be beneficial to position the 
cameras as close as possible to the objects. Also, the 
camera's height should be considered carefully to prevent 
displaying objects in front of each other. 
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