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1Abstract—This paper compares various unsupervised 

feature extraction techniques and supervised machine learning 

models for fault detection and classification in a power 

distributed generation system. The modified IEEE 34 bus test 

feeder was implemented for the study case simulated through 

PowerFactory DigSILENT software. Data analysis results from 

three-phase voltages and currents collected were performed in 

Python. Simulation results confirm that by applying 

dimensionality reduction techniques such as feature extraction 

and wavelet family selection adequately, high identification and 

classification accuracy can be obtained, excluding the less 

essential characteristics and preventing the machine learning 

models from overfitting or underfitting the datasets.  

 
 Index Terms— Data mining, fault diagnosis, feature 

extraction, machine learning.  

I. INTRODUCTION 

One of the most demanding high-quality services, which 

is experiencing vast and rapid development nowadays, is the 

electricity supply [1]. Consequently, the electrical grid has 

been defined as the most extensive engineered system 

worldwide due to its indispensability in our daily lives and 

importance to the economies and progress of countries [2, 

3]. Likewise, continuity and reliability have become 

essential requirements for customers that are particularly 

susceptible to power blackouts [4]. Therefore, fault 

condition detection is critical for reliable services [5]. 

Furthermore, detecting short circuits in distribution networks 

is much more difficult than in transmission networks because 

they are typically unbalanced and asymmetrical due to the 

increasing incorporation of renewable energy on the load 

side as distributed generation (DGs) [6]. This consequence 

has triggered the modernization and development of the 

smart grids, incorporating modern measurement and 

communication systems into the power systems’ real-time 

monitoring [5, 7, 8]. Nowadays, the stakeholders’ main goal 

is to improve the power grids by making them more 

intelligent, reliable, and sustainable. Fault detection systems 

yield a practical, fast, and reliable form of relaying 

operations. Additionally, they should perform satisfactorily 

under multiple operating conditions and diverse electrical 

grid parameters. When it comes to fault detections, they are 

supposed to be detected first, then correctly classified, and 
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finally cleared in the shortest amount of time to maintain 

reliance and service continuity [4]. 

Methods for fault detection, classification, and location in 

power distribution systems in the presence of DGs and the 

intelligent agent’s incorporation have been studied and 

published over the years [6, 10]. For instance, in [5] and [8], 

data mining has been incorporated into the protection 

functions to extend performance limits by producing 

enhanced conditions of states within the present protection 

technology limitations over the distribution network. On the 

other hand, in [11], they incorporate statistical machine 

learning methods for preventive maintenance, using 

historical electrical data collected that has been turned into 

models that aim to forecast the risk of failures for 

components and systems. Due to their versatility, high 

capability, and high accuracy performances, machine 

learning implementation for fault detection and classification 

in power systems has grown significantly in recent years 

[12]. In [1], [4], [6] and [18], authors have used Artificial 

Neural Networks (ANNs) for fault detection, classification, 

and location, collecting three-phase voltages and currents as 

input data for performing the output predictions. In [7], two 

techniques for fault identification and classification have 

been presented based on TA-QSSVM and A-QSSVM, 

respectively, a modification of the Support Vector Machine 

(SVM) algorithm; both methods are unsupervised and online 

with good performance during their accuracy calculation. 

Besides, [9] introduces a protection scheme using statistical 

models like energy, entropy, and standard deviation for 

microgrids using Wavelet Transforms (WTs) and Decision 

Trees (DTs) as a discriminating function. [12] has presented 

a semi-supervised machine learning approach based on co-

training over a microgrid, where the harmony search 

algorithm is implemented to identify optimal wavelet 

transform families during the data pre-processing step. In [3, 

14], the authors tested three machine learning algorithms and 

used the third level of decomposition for the wavelet 

transform in data pre-processing. The simulations showed 

the high capability of the Random Forest algorithm (RF) 

over the other algorithms. In [15], there are three families of 

discrete wavelet transforms (DWT) for feature extraction 

over the input data (e.g., motor current). After their 

extraction, classification results were performed by RF and 

XGBoost machine learning algorithms. [16, 17], they 

implemented WT and DWT for feature extraction, 
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respectively. Zero-sequence current has been collected to 

perform fault detection in conjunction with Principal 

Component Analysis, SVM, and the Adaboost+CART 

algorithm as discriminant functions. 

This research is based on the detection and classification 

of faults in a power-distributed network. Despite the 

previous contributions mentioned, a lack of interest was 

observed in selecting the WT or DWT families for data pre-

processing. Furthermore, through this research, it has been 

concluded that the appropriate selection of WFT or DWT 

families and level of decomposition can improve the 

performance and accuracy of the machine learning 

algorithms. Additionally, unsupervised dimensionality 

reduction algorithms are applied to feature extraction 

techniques. Simulation results validate that using feature 

extraction techniques and wavelet packet transform selection 

effectively can achieve high identification accuracy by 

removing the less relevant features from consideration, 

preventing the machine learning algorithms from overfitting 

or underfitting the datasets. 

The rest of the paper is organized as follows: Section II 

reviews the proposed methods. Simulation results are 

presented in Section III. Conclusions are presented in 

Section IV. 

II. PROPOSED METHOD 

The proposed method is based on three-phase voltages 

and currents collected from the IEEE 34 bus test feeder 

simulations: The zero-sequence voltage signal is 

implemented for wavelet family selection using the 

minimum entropy decomposition and the Support Vector 

Machine algorithm. After its identification, the model is set 

with the best wavelet mother and decomposition level results 

to perform the feature extractions. In the training and test 

subsets, the data is split and scaled. Six types of 

unsupervised dimensionality reduction are applied in order 

to reduce a high-dimension to a low-dimension, increasing 

the machine learning algorithm’s performance. The fault 

detection is performed by applying zero-sequence voltage 

components. For ground fault detection, the zero-sequence 

current is used for its identification. The three-phase voltage 

and current features are applied for the exact fault 

classification. 

A. Experimental Electrical Model 

A three-phase system with a balanced or unbalanced 

electrical grid has been described as the power system's 

backbone [3, 12]. It is also crucial to foresee the absence of 

results in terms of reliability and continuity in balanced or 

unbalanced three-phase systems. Similarly, distribution 

networks are seeing a surge in the penetration of distributed 

generation, which is being driven by financial considerations 

and cost savings. The advantages of adopting decentralized 

generation and grid topology designs as a long-term solution 

for the rising quantities of load demand and interconnections 

have been proven in previous studies [20]. 

B. Case of Study 

The IEEE 34 bus test feeder, located in Arizona, USA, 

was selected as a test system in this paper. The system 

consisted of unbalanced loads distributed over the array of 

three-phases and one-phase (i.e., AN and BN) grid 

configurations; operational voltage levels are 24.9 kV and 

4.16 kV, with a total load of 1769 kW and 1044 MVAr 

distributed over the grid; two capacitors installed at buses 

844 and 848; and two regulators located in the line segments 

at 814-850 and 832-852, respectively. The test feeder is 

modelled and tested using the DIgSILENT PowerFactory 

software. Additionally, a three-phase meshed topology 

arrangement has been incorporated between nodes 816 and 

832, with a length of 2.5km and 301 configurations [20]. 

Distributed generations have been modelled and placed at 

the weakest point over the feeder; two three-phase PV 

systems and one generator model available in the software's 

static generator library of the DIgSILENT software are used 

and placed in nodes 840, 848, and 890, respectively [20-22]. 

Fig. 1 shows the modelled IEEE 34 bus test feeder. Fault 

simulations have been carried out all over the electrical 

system and are stored in Excel files. The detection and 

classification stages have been performed in Jupyter 

Notebook and Python 3 with the implementation of Numpy, 

Skicit-learn, and Pandas libraries available in the software. 

Computer information Intel (R) Core (TM) i5-6400 CPU 

@2.70Hz, RAM 8GB, X64 bits Windows 10 Enterprise. 

 
Fig. 1. Modified IEEE 34 bus test feeder 

C. Input Data 

Fig. 1 shows the modelled test feeder in DIgSILENT 

software, where different fault cases were simulated. Fault 

data was generated through the DPL code and different 

conditions such as random fault resistance, different fault 

locations, distributed generation level penetration, and 

various fault current inception angles. Table I shows a 

summary of the fault conditions in this paper. 

TABLE I. FAULT DATA CONFIGURATIONS 

Condition Values 

Fault type LLL, LL, LLG, LG 

Fault resistance in () 0, 20,50,80,100 

Fault location in (%) 10, 25, 50,75,95 

Fault angle inception in () 0, 45,90,120 

DGs’ level penetration in (%) 0, 25, 50, 75, 100 

 

After simulating the model, three-phase voltages and 

currents are recorded. The collected data is then processed 

with the Clarke Transform (1) to obtain the voltage and 

current zero sequence component [3, 23]. It is essential to 

mention that the fault or non-fault presences during the 

energy harvesting process have been omitted. Through the 

signals’ analysis, it was concluded that different operating 

states exhibit different behaviors, which can be observed in 

the harmonic spectrum content or magnitudes of dominant 

frequencies. Therefore, a zero-sequence voltage component 

has been implemented to detect faults over the grid and 

select the best wavelet transform for data processing and 
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feature extraction; additionally, the zero-sequence current 

component has been used for ground fault detection and 

classification. 

D. Wavelet Transform 

A wavelet transform is a powerful tool consisting of low- 

and high-pass filters used in signal processing, voice 

recognition, and a wide variety of applications due to its 

good performance in frequency components (i.e. high and 

low-frequency) [13]. In this paper, the features contained in 

the voltage and current waveforms and zero-sequences are 

extracted with the discrete wavelet transform [3, 9, 12, 13, 

15]. The discrete wavelet transform (DWT) coefficients are 

employed and collected using equation (2) derived from the 

discretization of CWT [15]. Where (j, k) are integer 

positives, ψ* represents the mother wavelet's complex 

conjugate, and x(t) is the signal analyzed. 

The use of several wavelet families for signal analysis has 

been documented in previous research; however, no reason 

or technique for picking the mother wavelet has been 

presented. Aside from that, the mother wavelet selection and 

decomposition levels may have a significant impact on how 

regardless of its size the feature vectors are, which can result 

in significantly different outcomes from the study. As a 

consequence, in this paper, a combination of the grid 

searching method and the support vector machine is used to 

optimize the selection of wavelet family and grades of 

decomposition. 

E. Feature Extraction 

The data collected from the simulation is raw data 

presented in quite large dimensions and unscaled. Thus, to 

obtain high accuracy, robust results, and low computational 

complexity, the data must be as small as possible in 

dimensions. In this paper, the proposed method preprocesses 

the voltage and current signals through the discrete wavelet 

transform and extracts the most useful statistical features by 

applying feature extraction techniques that might contain 

essential data during transient events such as faults or 

perturbations [5, 9, 15, 24]. Then features are implemented 

to build the data-mining model using dimensionality 

reduction and machine learning algorithms for fault 

detection and classification. Twelve statistical features were 

used for feature extraction in this paper; the dataset has 7655 

instances, which contain three-phase voltage and current 

with a 2-second duration. The details of the statistical 

features are shown in Table II. 

 

 

 

 

TABLE II. STATISTICAL FEATURES 

Feature Functions 

Energy 

  

(3) 

Mean Absolute 

 

 

(4) 

R.M.S 

  

(5) 

Variance 

 

 

(6) 

Standard Deviation 

 

 (7) 

Kurtosis 

 

 

(8) 

Skewness 

 

 

(9) 

Shape Factor 

 

 

(10

) 

Impulse Factor 

 

 

(11

) 

Crest Factor 

 

 

(12

) 

Clearance Factor 

 

 

(13

) 

Shannon’s Entropy 

 

 

(14

) 

One of the essential procedures when dealing with data is 

that the data must be on the same scale because they might 

contain characteristics that vary significantly in magnitudes, 

units, and range, affecting the performance of the algorithms 

implemented for their analysis. Previous research has shown 

that rescaling the data increases the accuracy and 

performance of the algorithms. Therefore, the 

standardization function has been implemented, consisting 

of rescaling the data to have a mean of 0 and a standard 

deviation of 1. Equation (15) shows its representation. 

F. Dimensionality Reduction 

Data compression is an essential subject in machine 

learning because it can help improve data storage, 

computational efficiency, and predictive performance. 

Unsupervised dimensionality reduction techniques have 

been implemented in this paper for feature extraction to 

identify the most relevant and not relevant patterns 

effectively, summarizing the original feature dataset from a 

high-dimensional space onto a low-dimensional feature 

 

(1) 

 

(2) 

 
(15) 
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subspace for their processing [10, 24-27]. A summary of the 

unsupervised dimensionality reduction techniques 

implemented in this paper is shown in Table III. 

TABLE III. UNSUPERVISED DIMENSIONALITY REDUCTION 

TECHNIQUES 

Symbol Name 

PCA Principal Component Analysis 

KPCA Kernel Principal Component Analysis 

LLE Locally Linear Embedding 

Isomap Isometric Mapping 

DL Mini-Batch Dictionary Learning 

ICA Independent Component Analysis 

G. Machine Learning Algorithms for Decision Making 

Machine learning algorithms aim to infer comprehensible 

correlations or discover patterns between system variables in 

datasets that can be used later to forecast or comprehend 

system behaviors. Moreover, choosing the correct algorithm 

for those tasks often depends on the amount, quality, and 

correlation of their data features, which involves a process of 

trial and error [9, 24-27]. The proposed study uses five 

supervised machine learning algorithms (i.e. Logistic 

Regression (LR), Support Vector Machine (SVM), Decision 

Trees (DT), Random Forest (RF), and K-Nearest Neighbors 

(KNN)) in contrast with six unsupervised dimensionality 

reduction algorithms to perform the data analysis in DWT 

selection, ground-fault detection, detection, and 

classification faults over the grid. 

The machine learning algorithms’ robustness depends on 

their optimal hyperparameters’ adjustment. Therefore, the 

proper values of the hyperparameters may boost the 

efficiency of the training model and test dataset accuracy 

[24-26]. In this paper, the Grid Search Algorithm has been 

proposed as an optimal model for hyperparameter selection. 

This algorithm is based on implementing a trial and error 

method to select the best parameters that give the best 

accuracy from a subset of hyperparameters. However, 

choosing the best hyperparameters sometimes leads the 

model to underfit or overfit the dataset, providing an 

unsatisfactory performance. Consequently, a K-Folds Cross-

Validation model has been implemented to trade off the bias 

and variance to avoid underfitting or overfitting the training 

model [24-26]. 

H. Model Evaluation 

The extracted features using pipeline models are fed into 

the five machine learning algorithms. Quantifying the quality 

of algorithms’ predictions is assessed by applying the 

metrics and scoring listed in Table IV [26]. TN, TP, FP, and 

FN mean True Negative, True Positive, False Positive, and 

False Negative. For multiclass labels, a weighted average 

has been implemented; refer to [24-26]. Besides, Receiver 

Operating Characteristic (ROC) curves and the Area Under 

the Curve (AUC) percent have been implemented to 

visualize the algorithm’s performance. 

 

TABLE IV. METRICS AND SCORING LIST 

Name Functions 

Confusion 

Matrix 
 

 

(16

) 

Accuracy 

 

 

(17

) 

Precision 

 

 

(18

) 

Recall 

 

 

(19

) 

F1 

 

 

(20

) 

Log-loss 

 

 

(21

) 

III. SIMULATION RESULTS 

A. Wavelet family selection 

After calculating the zero components from the 3-phase 

voltages and currents using equation (1), a subset of 600 

instances was collected randomly to process the best wavelet 

family transform and decomposition levels using a zero-

sequence voltage signal. In this paper, the Haar, db3, db4, 

db6, Sym4, and Coif2 wavelets were selected and compared 

in order to find the best wavelet family and decomposition 

level for signal analysis [3, 9, 12, 13, 15]. Table II: Twelve 

features were calculated from the subset. A proportion of 

70:30 subset was used for training and testing models using 

the Grid Search algorithm and Support Vector Machine as a 

discriminant algorithm. The accuracy of detailed 

components at different decomposition levels is presented in 

Fig. 2. Accuracy results show that the db3 wavelet family at 

the seventh decomposition level provides the most 

distinctive accuracy value (i.e., 96.85%); thus, the wavelet 

decomposition step has been set to those values in order to 

determine the features of the three-phase voltages and 

currents for the next steps of the model. 

 
Fig. 2. Wavelet family results 

B. Fault Detection Results 

The proposed fault detection algorithm is based on the 

zero-sequence voltage signal. The training and test ratios 

were chosen as 65:35, consisting of an unbalanced dataset 

(i.e., no-faults and faults); twelve features were calculated 

and scaled before performing dimensionality reduction. The 
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Grid Search algorithm was used for the best hyperparameter 

selection. A 5-fold cross-validation approach was utilized in 

order to validate the trained model and trade-off the bias and 

variance. The most remarkable results are presented in Figs. 

3–8; a summary of errors is presented in Table V. 

 
Fig. 3. Fault detection results using Logistic Regression 

 

 
Fig. 4. Fault detection results using Support Vector Machine 

 

 
Fig. 5. Fault detection results using Decision Tree 

 

 
Fig. 6. Fault detection results using Random Forest 

 

 
Fig. 7. Fault detection results using K-Nearest Neighbors 

 

 The best-adjusted model using dimensionality reduction 

techniques was analysed through the F1-score, where 

99.61% of LR through K-PCA was reached. Furthermore, 

99.92% of the SVM and RF and 99.73% of the DTs were 

reached using the ICA algorithm. Besides, 99.96% of the K-

NN algorithm was reached using PCA and K-PCA 

algorithms. 

 

 
Fig. 8. Fault detection ROC-AUC curves results 

C. Ground Fault Detection Results 

For future decision-making, it is essential to verify if the 

fault that occurred is or is not a ground fault. Hence, the 

zero-sequence current signal is implemented to identify 

whether a ground fault has happened in a feeder. Feature 

vectors are extracted based on Table II for their analysis. In 

addition to verifying its presence or not through machine 

learning algorithms, it is being investigated whether its 

detection can be improved by applying dimensionality 

reduction algorithms, as proposed in Table III. The results 

are presented in Fig. 9 to Fig. 14. In addition, a summary is 

presented in Table VI, where it presents the loss functions 

used for its identification and predictions. 

 
Fig. 9. Ground fault detection using Logistic Regression 

 

 
Fig. 10. Ground fault detection using Support Vector 

Machine 

 

 
Fig. 11. Ground fault detection using Decision Trees 
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Fig. 12. Ground fault detection using Random Forest 

 

 
Fig. 13. Ground fault detection using K-Nearest Neighbors 

 

 
Fig. 14. Ground fault detection ROC and AUC curves results 

 

Among the best results of F1-scores obtained with 

dimensionality reduction algorithms, the following can be 

highlighted: 96.62% obtained through the implementation of 

the ICA algorithm in SVM, 97.69% in DT implementing 

PCA, 97.81% in RF with ICA, and 99.23% in KNN with K-

PCA. On the other hand, despite the improvements achieved 

in LR with dimensionality reduction algorithms, its poor 

performance in ground fault identification can be seen in the 

results, reaching 90.92%. 

D. Fault Classification Results 

The first step for decision-making in situations of 

uncertainty is to know that something is happening, which 

leads to the identification of the situation discussed in the 

previous sections. After getting prior knowledge, it is 

necessary to identify the puzzle’s pieces or situation 

experienced. Therefore, following the same model presented 

above, a fault classification model is proposed by 

implementing dimensionality reduction and machine 

learning algorithms. The results of the applications are 

presented below, from Fig. 15 to Fig. 19. A summary of cost 

functions and classification results is presented in Table VII. 

 
Fig. 15. Fault classification using Logistic Regression 

 

 
Fig. 16. Fault classification using Support Vector Machine 

 

 
Fig. 17. Fault classification using Decision Trees 

 

 
Fig. 18. Fault classification using Random Forest 

 

 
Fig. 19. Fault classification using K-Nearest Neighbors 

 

From the results obtained, it can be highlighted that most 

of the proposed models achieved significant increases in the 

discriminant algorithms, which led to better performance in 

identifying faults on the electrical network. For instance, in 

the LR algorithm, 99.81% was reached by implementing the 

PCA algorithm; in SVM and RF, 99.85% and 99.53% were 

reached using the ICA algorithm, respectively. Besides, in 

DT and KNN, 98.84% and 99.66% were reached by 

applying PCA and K-PCA algorithms, respectively. 
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TABLE V. FAULT DETECTION SUMMARY RESULTS 

 

Log-

Loss 

Mean 

Abs. 
TP FP TN FN 

LR 0.135 0.035 2424 79 162 15 

LR+PCA 0.043 0.012 2415 7 234 24 

LR+KPCA 0.030 0.007 2422 2 239 17 

LR+LLE 0.122 0.069 2366 111 130 73 

LR+Isomap 0.089 0.043 2361 37 204 78 

LR+DL 0.132 0.060 2350 71 170 89 

LR+ICA 0.045 0.009 2415 0 241 24 

SVM 0.068 0.010 2429 16 225 10 

SVM+PCA 0.019 0.004 2427 0 241 12 

SVM+KPCA 0.026 0.007 2424 4 237 15 

SVM+LLE 0.027 0.004 2437 10 231 2 

SVM+Isomap 0.033 0.007 2425 6 235 14 

SVM+DL 0.118 0.053 2334 38 203 105 

SVM+ICA 0.008 0.001 2435 0 241 4 

DT 0.105 0.056 2321 32 209 118 

DT+PCA 0.058 0.010 2421 9 232 18 

DT+KPCA 0.037 0.007 2426 7 234 13 

DT+LLE 0.138 0.016 2406 9 232 33 

DT+Isomap 0.116 0.012 2413 6 235 26 

DT+DL 0.214 0.040 2385 52 189 54 

DT+ICA 0.037 0.005 2432 6 235 7 

RF 0.027 0.011 2425 15 226 14 

RF+PCA 0.026 0.005 2434 9 232 5 

RF+KPCA 0.033 0.005 2436 10 231 3 

RF+LLE 0.020 0.003 2436 6 235 3 

RF+Isomap 0.029 0.004 2434 7 234 5 

RF+DL 0.246 0.015 2406 6 235 33 

RF+ICA 0.018 0.001 2435 0 241 4 

KN 0.055 0.026 2393 23 218 46 

KN+PCA 0.026 0.007 2437 0 241 2 

KN+KPCA 0.026 0.007 2437 0 241 2 

KN+LLE 0.091 0.003 2436 4 237 3 

KN+Isomap 0.041 0.002 2433 0 241 6 

KN+DL 0.047 0.015 2404 5 236 35 

KN+ICA 0.016 0.002 2434 0 241 5 

TABLE VI. GROUND FAULT DETECTION SUMMARY RESULTS 

  

Log-

Loss 

Mean 

Abs. 
TP FP TN FN 

LR 0.30 0.12 1454 76 912 238 

LR+PCA 0.26 0.11 1450 48 940 248 

LR+KPCA 0.26 0.11 1450 48 940 248 

LR+LLE 0.26 0.12 1506 135 853 186 

LR+Isomap 0.28 0.13 1411 61 927 281 

LR+DL 0.34 0.14 1426 97 891 266 

LR+ICA 0.26 0.11 1450 48 940 248 

SVM 0.19 0.09 1473 23 965 219 

SVM+PCA 0.16 0.05 1606 39 949 86 

SVM+KPCA 0.12 0.04 1613 35 953 79 

SVM+LLE 0.19 0.05 1629 59 929 63 

SVM+Isomap 0.14 0.04 1656 68 920 36 

SVM+DL 0.33 0.09 1535 84 904 157 

SVM+ICA 0.15 0.04 1629 51 937 63 

DT 0.26 0.08 1554 81 907 138 

DT+PCA 0.48 0.03 1651 37 951 41 

DT+KPCA 0.43 0.05 1614 52 936 78 

DT+LLE 0.53 0.04 1638 56 932 54 

DT+Isomap 0.67 0.05 1635 76 912 57 

DT+DL 0.38 0.09 1557 104 884 135 

DT+ICA 0.79 0.04 1647 54 934 45 

RF 0.18 0.06 1632 114 874 60 

RF+PCA 0.48 0.09 1642 29 959 50 

RF+KPCA 0.11 0.03 1643 28 960 49 

RF+LLE 0.18 0.04 1646 63 925 46 

RF+Isomap 0.13 0.04 1644 62 926 48 

RF+DL 0.24 0.09 1561 100 888 131 

RF+ICA 0.13 0.03 1650 32 956 42 

KN 0.22 0.07 1613 105 883 79 

KN+PCA 0.25 0.01 1670 17 971 22 

KN+KPCA 0.34 0.01 1678 12 976 14 

KN+LLE 0.63 0.02 1662 29 959 30 

KN+Isomap 0.45 0.04 1634 54 934 58 

KN+DL 0.30 0.09 1552 110 878 140 

KN+ICA 0.38 0.01 1681 24 964 11 

TABLE VII. FAULT CLASSIFICATION SUMMARY RESULTS 

  

Log-

Loss 

Mean 

Abs. 

Correct 

Classified 

Mis-

classified 

LR 0.24 0.14 2571 109 

LR+PCA 0.05 0.05 2675 5 

LR+KPCA 0.13 0.18 2628 52 

LR+LLE 0.12 0.31 2598 82 

LR+Isomap 0.16 0.39 2590 90 

LR+DL 0.15 0.40 2585 95 

LR+ICA 0.07 0.08 2670 10 

SVM 0.09 0.09 2604 76 

SVM+PCA 0.09 0.09 2629 51 

SVM+KPCA 0.75 0.06 2635 45 

SVM+LLE 0.09 0.12 2583 97 

SVM+Isomap 0.08 0.08 2612 68 

SVM+DL 0.03 0.02 2669 11 

SVM+ICA 0.02 0.01 2676 4 

DT 0.32 0.07 2627 53 

DT+PCA 0.40 0.05 2649 31 

DT+KPCA 0.40 0.05 2649 31 

DT+LLE 0.45 0.04 2645 35 

DT+Isomap 0.62 0.07 2632 48 

DT+DL 0.81 0.10 2617 63 

DT+ICA 0.55 0.06 2637 43 

RF 0.28 0.12 2577 103 

RF+PCA 0.23 0.21 2665 15 

RF+KPCA 0.20 0.07 2625 55 

RF+LLE 0.12 0.07 2622 58 

RF+Isomap 0.10 0.02 2664 16 

RF+DL 0.21 0.07 2624 56 

RF+ICA 0.14 0.02 2667 13 

KN 0.09 0.04 2646 34 

KN+PCA 0.12 0.02 2671 9 

KN+KPCA 0.12 0.02 2671 9 

KN+LLE 0.24 0.05 2654 26 

KN+Isomap 0.15 0.04 2650 30 

KN+DL 0.34 0.09 2617 63 

KN+ICA 0.11 0.03 2660 20 

IV. CONCLUSIONS 

This paper studied the importance of wavelet family 

selection for feature extraction. Additionally, unsupervised 

dimensionality reduction models have been applied to the 

machine learning algorithms over a distributed network to 

improve predictions and classifications. The method 

developed utilizes three-phase voltages and currents as 

inputs to the model. Then, the zero-sequence components 

are calculated and implemented for wavelet selection, 

ground fault identification, and fault detection. The 

unsupervised dimensionality reduction algorithms extract the 

most relevant features for training the machine learning 

algorithms. The grid search algorithm and K-fold cross-

validation were implemented to choose the appropriate 
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hyperparameters and reduce overfitting or underfitting in the 

models. The simulation results prove that some of the 

proposed models have achieved satisfactory performance in 

fault detection and classification over the network studied. 
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