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Abstract
This study presents a comprehensive 3D analysis of hybrid Fe3O4/Al2O3 nanofluid flow over a
stretched plate, incorporating the effects of buoyancy, Hall current, rotation, nonlinear thermal radia-
tion, and Joule heating. A key novelty of the work lies in extending previous models by introducing
mixed convection flow and a concentration equation, alongside thermophoresis and Brownian motion,
offering a deeper understanding of hybrid nanofluid behavior in complex thermal environments. The
governing partial differential equations are transformed into nonlinear ordinary differential equations
using similarity transformations and solved numerically via the shooting method. These findings have
critical implications for optimizing heat exchangers, cooling systems, and chemical reactors, where
efficient thermal management is essential. The study’s integration of multiple physical phenomena
highlights its novelty and contributes valuable insights to the field of computational fluid dynamics
and industrial applications. It is observed that increased buoyancy enhances the primary fluid velocity,
but reduces the secondary velocity. This results in lower temperature and concentration profiles,
indicating that buoyancy significantly affects the fluid’s flow and thermal behavior.
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1 Introduction

This study has the potential for wide-ranging practical applications, particularly in industries
where efficient heat and mass transfer solutions are critical. Hybrid nanofluids, with their en-

➤ Received: 17.02.2024 ➤ Revised: 08.12.2024 ➤ Accepted: 10.12.2024 ➤ Published: 30.12.2024

495

https://orcid.org/0009-0005-6401-1061
https://orcid.org/0000-0002-7918-5364
https://orcid.org/0000-0002-1622-3634


496 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 4, 495–513

hanced thermal properties, can significantly improve the performance of industrial heat exchang-
ers. In power plants, refrigeration systems, and chemical industries, where heat management
plays a key role in operational efficiency, hybrid nanofluids allow for faster and more uniform
heat dissipation, leading to improved system performance and energy savings. Similarly, in
cooling systems for electronics, such as in data centers, high-performance processors, and elec-
tronic devices, hybrid nanofluids can provide a highly effective thermal management solution,
preventing overheating and extending the lifespan of electronic components. The study is also
relevant to energy systems such as solar thermal systems and nuclear reactors, where precise
control over heat transfer is essential for optimizing energy conversion and ensuring safety. The
integration of magnetic fields and mixed convection flows in the analysis helps tailor heat transfer
processes, making them more efficient in energy-intensive environments. Moreover, in chemical
reactors, the incorporation of chemical reactions in the nanofluid model supports more accurate
temperature and concentration control, ensuring that reactions proceed at optimal rates. This has
practical implications for industries such as petrochemicals and pharmaceuticals, where precise
thermal management can lead to higher yields and more efficient processes. Khan et al. [1] have
applied mathematical modelling and heat transport investigation in hybrid nanofluids under the
impact of thermal radiation. Adnan et al. [2] have studied the numerical investigation of heat
transport in the nanofluids under the impact of magnetic fields and applications from industrial
zones. Hakeem et al. [3] have discussed MHD Boundary Layer Flow over a Stretching Sheet:
A New Stochastic Method. Kumar et al. [4] have expressed a heat transfer study for the flow
of non-Newtonian nanofluid past a Riga plate with variable thickness. Fayz-Al-Asad et al. [5]
have reviewed the influence of Fin Length on Magneto-Combined Convection Heat Transfer
Performance in a Lid-Driven Wavy Cavity. Hossain et al. [6] have discussed a Numerical Study
of the Effect of a Heated Cylinder on Natural Convection in a Square Cavity in the Presence of a
Magnetic Field. Raghunath et al. [7] have studied the thermodynamic and buoyancy force effects
of Cu and TiO2 nanoparticles in engine oil flow over an inclined permeable surface. Zhang et al.
[8] have analyzed 3D-MHD mixed convection in a Darcy-Forchheimer Maxwell fluid: Thermo
diffusion, diffusion-thermo effects, and activation energy influence.
The amalgamation of nano-sized particles such as carbon, copper, titanium, and their oxides
in a conventional fluid is called nanofluid. Choi [9] pioneered the enhancement of thermal
conductivity in fluids like oil, ethylene glycol, and water by adding nanoparticles, leading to
applications in engine cooling, refrigerators, chillers, fuel cells, and microelectronics. Nanofluids
also have medical applications, such as safer surgeries and cancer therapy. Ashorynejad et al.
[10] found that magnetic fields increase wall shear stress in nanofluids, while Omar et al. [11]
showed that higher nanoparticle concentrations boost heat flux and drag force. Mabood et al.
[12] noted decreased heat and mass transfer with larger Lewis numbers and Brownian motion.
Mabood et al. [13] studied unsteady nanoliquid flow on heated plates. Khan et al. [14] examined
Powell-Eyring nanofluid flow, incorporating Brownian motion and thermophoretic effects, which
was later extended by investigating dipole influence on the thermally radiative flow of Williamson
nanofluids [15]. Ahmad et al. [16] explored nanofluid flow over a Riga surface, highlighting
electromagnetic control of flow behavior.
The insights into thermophoresis, Brownian motion, and joule heating in this study offer valu-
able contributions to the aerospace and automotive industries. In these sectors, lightweight,
high-efficiency cooling solutions are necessary for engines, exhaust systems, and avionics, where
managing heat effectively is crucial for performance and safety. The ability of hybrid nanofluids
to enhance thermal management in such applications underscores their potential to revolutionize
heat transfer technologies across diverse industrial sectors. Shah et al. [17] have studied Brow-
nian motion and thermophoretic diffusion effects on the dynamics of MHD upper convected
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Maxwell nanofluid flow past a vertical surface. Shah et al. [18] have possessed modeling of
bioconvective flow existing with tiny particles and quartic autocatalysis reaction across the strat-
ified upper horizontal surface of a paraboloid of revolution. Oreyeni et al. [19] have discussed
the thermal performance of radiative magnetohydrodynamic Oldroyd-B hybrid nanofluid with
Cattaneo–Christov heat flux model: Solar-powered ship application. Fayz-Al-Asad et al. [20]
have reviewed the analytic simulation of the MHD boundary layer flow of a chemically reacting
upper-convected Maxwell fluid past a vertical surface subjected to double stratifications with
variable properties.
In rotating machinery like turbines, pumps, and centrifuges, the analysis of rotation effects is
critical because these machines generate significant heat during operation. The findings of this
study could help improve the cooling systems used in such machinery, ensuring smooth operation
and preventing overheating. Additionally, in biomedical applications, hybrid nanofluids have
potential uses in hyperthermia treatments for cancer, where precise control over heat delivery
is required to target tumor cells without damaging surrounding tissues. Dhananjay et al. [21]
have studied the impact of rotation on the onset of cellular convective movement in a Casson
fluid-saturated permeable layer with temperature-dependent thermal conductivity and viscosity
deviations. Sunitha et al. [22] have studied Unsteady MHD rotating mixed convective flow
through an infinite vertical plate subject to Joule heating, thermal radiation, Hall current, and
radiation absorption. Hari Babu et al. [23] have reviewed Heat and Mass Transfer on Unsteady
MHD Chemically Reacting Rotating Flow of Jeffrey Fluid Past and Inclined Plates under the
Impact of Hall Current, Diffusion Thermo, and Radiation Absorption. Raghunath et al. [24]
have possessed the Hall current and thermal radiation effects of 3D rotating hybrid nanofluid
reactive flow via stretched plate with internal heat absorption. Raju et al. [25] have expressed
Chemical Radiation and Soret Effects on Unsteady MHD Convective Flow of Jeffrey Nanofluid
Past an Inclined Semi-Infinite Vertical Permeable Moving Plate. Sridevi et al. [26] have reviewed
an investigation into the impact of thermal radiation and chemical reactions on the flow through
porous media of a Casson hybrid nanofluid including unstable mixed convection with stretched
sheet in the presence of thermophoresis and Brownian motion.
Magnetohydrodynamics (MHD) explores the behavior of electrically conducting fluids, like
plasmas and liquid metals, in the presence of magnetic fields, which influence the fluid’s motion
and create complex interactions. MHD has significant applications across various fields. In
industrial cooling systems, particularly for nuclear reactors, MHD helps control the flow of
liquid metal coolants, enhancing heat transfer. In astrophysics and geophysics, MHD explains
phenomena like solar flares and planetary magnetic fields. It’s also critical in fusion reactors for
controlling plasma in magnetic confinement systems like tokamaks. In industry, MHD pumps
transport conductive fluids like molten metals without mechanical components, and in biomedical
fields, magnetic nanoparticles guided by magnetic fields are used for targeted drug delivery. The
study of hybrid nanofluids such as Fe3O4 and Al2O3 in MHD systems further enhances thermal
and electrical properties, making them vital for advanced energy systems, biomedical applications,
and efficient cooling technologies. Patil et al. [27] revealed the Newtonian heating effect in
unsteady mixed convective flow caused by a moving vertical plate. They analyzed that skin
friction and convection parameters increase the temperature. Akbar and Khan [28] deliberated on
the influence of magnetic fields with Newtonian heating. Refs. [29] - [30] analyzed the effects of
Newtonian heating with different types of MHD flow characteristics.
The novelty of this paper lies in its comprehensive 3D analysis of hybrid nanofluids Fe3O4/Al2O3
under the influence of buoyancy, Hall current, and rotation effects, which have not been thor-
oughly explored in prior studies. Unlike traditional nanofluid models, this research integrates
the enhanced thermal properties of hybrid nanofluids, making them more relevant to industrial
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applications requiring efficient heat dissipation. The paper goes beyond existing studies by in-
troducing complex phenomena such as nonlinear thermal radiation, Joule heating, and chemical
reactions, which significantly impact the fluid’s thermal and dynamic behavior in real-world
conditions. Furthermore, the addition of thermophoresis and Brownian motion provides a detailed
understanding of nanoparticle dynamics in a stretched plate configuration. The use of similarity
transformations and the shooting method for solving the nonlinear ordinary differential equations
allows for accurate numerical solutions, contributing to the field of computational fluid dynamics.
Moreover, this study extends the work of Essam et al. [31] by incorporating mixed convection
flow and the concentration equation, providing a more robust analysis of heat and mass transfer
interactions. The findings demonstrate that increased hybrid nanoparticle concentration enhances
fluid flow and heat dissipation, offering new insights into optimizing heat transfer processes in
various industries.

2 Formulation of the problem

We consider the flow of a rotating, electrically conducting fluid containing hybrid nanoparticles
(Fe3O4 and Al2O3). The flow occurs over a stretched plate, and several physical effects are acting
on the system. The fluid flows with a uniform velocity (Uw) parallel to the plate, as shown by the
arrows along the x-axis. This suggests that the fluid has been uniformly accelerated along the
plate’s surface. The system is subjected to a rotational motion characterized by a constant angular
velocity (ω), which acts about the z-axis. This rotation can introduce Coriolis forces and influence
the velocity distribution in the fluid. The fluid contains Fe3O4/Al2O3 hybrid nanoparticles. These
nanoparticles have unique thermal and electromagnetic properties, affecting the heat transfer
and magnetic behavior of the system. Nonlinear thermal radiation is applied to the system. The
radiation acts as an energy source and affects the heat flux within the fluid. qr denotes the radiative
heat flux, which can influence the temperature distribution. A uniform magnetic field of intensity
B0 is applied to the plate (along the z-axis). This magnetic field will interact with the electrically
conducting fluid, inducing electromagnetic forces (Lorentz force) that affect the fluid’s motion.
The presence of a Hall current indicates that the magnetic field generates an electric current in the
fluid. This further complicates the electromagnetic interactions within the fluid and impacts the
overall flow behavior. The temperature at the plate surface is denoted as Tw, while T∞ represents
the temperature of the fluid far away from the surface. This temperature gradient drives heat
transfer between the plate and the fluid as shown in Figure 1. The flow equations that are used to
define the model were written by Essam et al. [31].

Figure 1. Analyses of geometry interpretation
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In this particular flow, the boundary conditions that are suitable are as follows

w = 0, u = Uw, v = 0, T = Tw, C = Cw at z = 0,
w → 0, u → 0, v → 0, T → T∞, C → C∞ at z → 0.

(6)

An overview of the practical properties of hybrid nanofluid is provided below. One may get more
information on these qualities in [31] and the references therein.
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Nano-solid-particles, base fluid, and hybrid nanofluid are each represented by the subscripts s1,
s2, nf, and hnf, respectively, in this context. The percentages of solid volume that come from
Fe3O4/Al2O3 are represented by the symbols ϕ1 and ϕ2, respectively. It is indicated in Table 1 that
this is the case. The use of dimensionless numbers is a technique that is often utilized in the area
of mathematical analysis as a means of simplifying problems. A similarity inversion is the method
that is used in order to achieve the procedure of transforming dimensional partial differential
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Table 1. The thermophysical characteristics of water, iron oxide, and aluminum oxide discussed in [31, 32]

Physical properties water (H2O) Fe3O4 Al2O3

ρ
(

kg
m3

)
997.100 05180.00 03970.00

σ
(
Ω−1m−1) 025 × 10−2 025 × 103 035 × 106

Cp

(
(kg)−1 J K−1

)
4179.00 0670.00 0765.00

k
(
W m−1K−1) 0.61300 09.700 040.00
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By introducing Eq. (7) into Eqs. (2), (3), (4), and (5), it is feasible to build a set of non-linear
ordinary differential equations. This is a procedure that may be carried out.(
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In this context, the prime represents the differentiation, and it is represented by the equation ϕ2.
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Following this, the updated boundary conditions that correspond to the transformation (5) are as
follows:

f (η) = 0, g (η) = 0, f
′
(η) = 1, θ (η) = 1, ϕ (η) = 1 at z = 0,

f
′
(η) → 0, g (η) → 0, v → 0, θ (η) → T∞, ϕ (η) → C∞ at z → ∞.

(12)

In this context, prime refers to the differentiation that occurs with regard to the primary thermo-
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dynamic physical characteristics that exhibit the flow dynamics.
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3 Physical quantities of interests

In this context, the skin friction along the x and y axes is represented by the symbols C fx and
C fy the local Nusselt number is represented by the symbol Nux, and the Sherwood number is
represented by the symbol Shx.
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The following provides an illustration of the factor of skin friction, the Nusselt digit, and the
number determined by Sherwood in their relevant non-dimensional geometries and in the context
of the similitude variable. These representations are supplied in the following paragraphs.
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4 Method of solution

In all cases, the set of nonlinear coupled ordinary differential equations (ODEs) (8)-(12) has been
numerically solved using the fourth-order Runge-Kutta method combined with a shooting strategy.
The program utilized for this purpose is MATLAB, with a step size of ∇η = 0.01 and an error
limit of 10−6. By incorporating additional variables, the nonlinear ODEs are transformed into a
system of linear first-order ODEs, which is one of the advantages of this method. In the second
stage of the procedure, the boundary value problem is converted into an initial value problem by
assigning guessed values to the unknown starting values according to the specific requirements
of the problem at hand. The shooting method then adjusts these estimated values to align with
the defined boundary conditions. After the necessary number of iterations to refine the guessed
values, forward integration is performed to provide numerical solutions for the desired points
and intervals. However, certain restrictions apply: some partial differential equations (PDEs) that
describe the governing equations do not admit similarity transformations and cannot be converted
into ODEs. Only specific types of flow problems are suitable for similarity transformations, leading
to comparable solutions. Additionally, a particular problem may have multiple solutions; in such
cases, it is essential to select the most reliable solution and discuss the rationale behind this choice.
To assess the accuracy of the present code and validity check, the numerical values of f

′′
(0), g

′
(0)

and NueRex
−1/2 are presented in Table 2 and Table 3. From the Table 2, the comparison of velocity
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values for the rotation parameter at 0.50, 1.00, and 2.00 reveals a strong agreement between the
results of the current study and those reported in previous studies by [31] and Abdel-Wahed
[33]. Specifically, at λ = 0.50 the current study’s results (-1.14576) are closely aligned with both
Abdel-Wahed (-1.13874) and Essam et al. (-1.13830), indicating a consistent trend in the velocity
profiles. Similarly, at λ = 1.00, the values are nearly identical, with the current study showing
-1.32452 compared to -1.32503 and -1.32505 from the previous studies. Finally, at λ = 2.00, the
current study’s result of -1.64574 remains in close proximity to the values of -1.62232 and -1.65233
from the earlier works. This good agreement across the rotation parameter values suggests that the
methodologies and assumptions used in our study are valid and that the results are reliable. The
consistency also reinforces the credibility of the underlying physics governing the flow behavior
under the specified conditions, thereby validating the model employed in this analysis. Overall,
these findings not only confirm the accuracy of our results but also enhance the understanding of
the dynamics involved in the flow under the influence of rotation.
Table 3 presents a comparison of results for various values of the rotation parameter Rd and θw
under the conditions where λ = 0 and Nb = Nt = Sc = Rc = 0. The data shows a close agreement
between the results of the current study and those of previous studies by Essam et al. [31] and
Abdel-Wahed [33].
For Rd = 0 and θw=1.00, the current study reports a value of 1.867, which is very similar to the
values reported by Abdel-Wahed (1.8572) and Essam et al. (1.8576). This proximity suggests that
our results are consistent with established findings under these specific conditions. At Rd = 1.00
and θw=1.00, the current study’s result (2.234) aligns closely with those of Abdel-Wahed (2.2367)
and Essam et al. (2.2364), indicating strong validation of the model and numerical methods used
in this analysis. Similarly, for θw=1.100 and θw=1.500, the results from the contemporary study
(2.311 and 2.600, respectively) remain consistent with the values from the previous studies, with
small deviations that fall within acceptable ranges.
These findings highlight the reliability of the current study’s results and reinforce the accuracy
of the methodologies employed. The close alignment with prior research not only validates
the numerical techniques used but also enhances the understanding of the underlying physical
phenomena being investigated. Overall, this agreement underscores the robustness of the results
obtained in this study.
The results of the numerical simulations for the rate coefficients, which include the shear rate and
the heat transfer rate, have been generated and are shown in Table 4 for the modification of various
contributing components. In conclusion, the results of the simulations have been produced. The
higher values of the nanoparticle concentration, magnetic parameter, and thermal buoyancy all
contribute significantly to the rise in the rate of shear stress, as shown by the findings of the
research. Additionally, the concentrations of nanoparticles of (Fe3O4 and Al2O3) both increase
the magnitude of the rate of heat transfer; nevertheless, the other contributing elements have a
retarding impact on the profile of the rate of heat transfer. This is because the nanoparticles of
these two materials are composed of nanoparticles.

5 Results and discussion

When a boundary layer is being simulated on a stretched plate, it is being done so under the
effect of a spinning hybrid nanofluid that is composed of (Fe3O4/Al2O3) nanoparticles and water
as the base fluid. The nanofluid that has been created is a combination of two different types
of nanoparticles that have been blended. For the purpose of this study, the effect of a number
of different elements, including the magnetic field, the Hall current, the rotation parameter, the
Brownian motion parameter, the thermophoresis parameter, Joule heating, and nonlinear thermal
radiation, was investigated across the boundary layer. The effective completion of this assignment
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was made possible by making use of Figure 2 to Figure 23 throughout the method. For the
purpose of determining the magnitude of the transversal velocity, the y-axis is employed, whereas
the x-axis is utilized for the purpose of determining the magnitude of the longitudinal velocity.
In addition, Table IV provides an illustration of the influence that each of the components that
were used has on the movement of heat and the friction that takes place on the surface that
surrounds the environment. A subsequent part will be devoted to the presentation of an analysis
and interpretation of the data that were obtained.
Diagrammatic representation of the velocity field for a variety of magnetic values (M) is shown
in Figure 2, Figure 3 and Figure 4 consequently. Figure 2 depicts the pattern of a decrease in the
velocity of the liquid as the quantity of M enhances. An increase in the magnitude of the magnetic
factor results in the production of a resistive force that is often referred to as the Lorentz force.
This Lorentz force serves to impede the velocity of the liquid, resulting in a decrease in the velocity
of the liquid. As a result, a physical phenomenon taking place in which the velocity distribution
decreases occurs whenever the quantity of M increases. The reversal behavior has been observed
in the case of longitudinal and temperature fields.

Figure 2. The consequence of M on f ′ (η) Figure 3. The consequence of M on g (η)

Figure 4. The consequence of M on θ (η) Figure 5. The consequence of N on f
′
(η)



504 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 4, 495–513

Figure 6. The consequence of N on g (η) Figure 7. The consequence of N on θ (η)

Figure 8. The consequence of N on ϕ (η) Figure 9. The consequence of m on f ′ (η)

Figure 5, Figure 6, Figure 7 and Figure 8 depict the impact of buoyancy on velocity, temperature,
and concentration profiles. The paragraph describes the physical implications of buoyancy on
fluid velocity, temperature distribution, and concentration gradients. When buoyancy increases, it
enhances the primary velocity of the fluid. However, this intensified primary velocity causes a
decrease in the secondary velocity component. As a result, the temperature and concentration
profiles across the fluid domain are also reduced. This suggests that buoyancy plays a significant
role in altering the flow characteristics and thermal behavior of the fluid, ultimately influencing
its overall transport properties.
The presence of a Hall current, generated by a strong magnetic field, leads to Joule heating, which
subsequently increases both the thickness of the thermal boundary layer and the temperature
within it. The influence of the Hall current parameter m on longitudinal and transverse velocity
profiles is illustrated in Figure 9 and Figure 10. Specifically, the results in Figure 9 indicate that an
increase in the Hall current parameter correlates with a rise in the longitudinal velocity within
the fluid’s temperature profile. Additionally, Figure 10 depicts the effects of the Hall parameter
m on transverse momentum, revealing an inverse relationship between the Hall parameter and
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Figure 10. The consequence of m on g (η) Figure 11. The consequence of λ on f ′ (η)

Figure 12. The consequence of λ on g (η) Figure 13. The consequence of λ on θ (η)

Figure 14. The consequence of λ on ϕ (η) Figure 15. The consequence of Rd on θ (η)
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Figure 16. The consequence of Rd on ϕ (η) Figure 17. The consequence of Ec on θ (η)

Figure 18. The consequence of Nb on θ (η) Figure 19. The consequence of Nb on ϕ (η)

Figure 20. The consequence of Nt on θ (η) Figure 21. The consequence of Nt on ϕ (η)



Bhargava et al. | 507

Figure 22. The consequence of Rc on ϕ (η) Figure 23. The consequence of Sc on ϕ (η)

transverse velocity. This inverse dynamic has been confirmed through careful observation and
analysis.
The influence of the rotation factor on longitudinal velocity is illustrated in Figure 11. The rotation
parameter, commonly denoted as λ, indicates that a high rotation rate is associated with increased
longitudinal acceleration, which ultimately exceeds the stretching rate. An increase in the rotation
parameter leads to enhanced centrifugal force, resulting in pressure being exerted on the fluid.
This pressure causes the liquid to experience greater radial movement than under other conditions.
Figure 12 visually represents the impact of the rotation parameter on forward velocity in the
longitudinal direction. Additionally, data analysis indicates that higher transverse acceleration is
linked to improved values, as depicted in Figure 13 and Figure 14.
Figure 15 and Figure 16 illustrate the impact of the radiation factor on temperature and concen-
tration distribution. These graphs show that both the acceleration and temperature of the liquid
increase as the radiation factor is amplified. Physically, this radiation enhances surface heat flow,
leading to a higher expected temperature in the boundary layer. In contrast, the concentration
consistently exhibits a decreasing trend as the radiation factor increases.
The role of the Eckert number (Ec) is crucial in these effects. Figure 17 visually represents how the
temperature field responds to changes in the Eckert number. An increase in the Eckert number
results in a rise in the temperature field, highlighting a direct relationship. This indicates that
regardless of the magnitude of the increase in Ec, the temperature will also rise accordingly.

Table 2. Comparison of f
′′
(0), g

′
(0) with a previous studied when λ =0, Nb = Nt = Rc = 0

Abdel-wahed [33] Essam et al [31] Present Result

λ f
′′
(0) g

′
(0) f

′′
(0) g

′
(0) f

′′
(0) g

′
(0)

0.50
1.0
2.0

-1.13874
-1.32503
-1.62232

-0.51273
-0.83714
-1.28728

-1.13830
-1.32505
-1.65233

-0.51275
-0.83717
-1.28720

-1.14576
-1.32452
-1.64574

-0.509788
-0.834575
-1.277851

The influence of the Brownian motion factor Nb on velocity and temperature profiles is shown in
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Table 3. Comparison of Rex
−1/2 Nux with a previous studied when λ =0, Nb = Nt = Sc = RC = 0

Rd θw Abdel-wahed [33] Essam et al [31] Contemporary Study
0.0 1.0 1.8572 1.8576 1.867
1.00 1.0 2.2367 2.2364 2.234
1.00 1.100 2.3044 2.3043 2.311
1.00 1.500 2.6086 2.6083 2.600

Table 4. The rate coefficients exhibit a significant behaviour with respect to the parameters

ϕ1 ϕ2 M m Ec Rd Nb Nt C fx C fy Nux

0 0.01 0.5 1.0 0.001 0.5 0.5 0.5 -0.98686 1.23141 1.27615
0.10 -0.99191 1.74131 1.43121
0.20 -1.01928 1.97562 1.76151

0.10 -1.25242 1.62524 1.87252
0.20 -0.98712 1.24231 1.62332

0.10 -0.12635 1.65242 1.73635
0.20 -0.98173 1.78267 1.52363

0.20 -0.82753 1.28363 1.65343
0.40 -0.99835 1.56727 1.43534

0.20 -0.27454 1.53737 1.75634
0.40 -0.75637 1.67383 1.25353

0.20 -0.86454 1.53436 1.09637
0.40 -0.64364 1.45353 0.98367

0.5 -0.98752 1.21421 1.01245
1.0 -0.54752 1.10214 1.22457

0.30 -0.75421 1.22545 1.54878
0.30 -0.22101 1.00124 1.65475

Figure 18 and Figure 19. As Nb increases from 0.3 to 1.2, the velocity in the boundary layer de-
creases, as seen in Figure 18. Meanwhile, Figure 19 demonstrates that dimensionless temperature
rises with increasing Nb due to more frequent collisions among nanofluid particles, which gener-
ate thermal energy and elevate the nanofluid temperature. The analysis of the thermophoresis
parameter Nt reveals its significant impact. As illustrated in Figure 20 and Figure 21, increasing
Nt raises both the boundary layer temperature and the concentration of nanoparticles. Increasing
Nt from 0.25 to 1.0 also enhances the velocity and temperature of nanoparticles at the surface. The
thermophoresis parameter can have positive or negative values; a negative value indicates a hot
surface, while a positive value signifies a cold surface.
The primary focus in this context is the conversion of mechanical energy into thermal energy.
The observed phenomenon can be attributed to thermal energy dissipation. This is illustrated in
Figure 22, which shows the impact of the chemical reaction parameter Rc on concentration. There
is a clear correlation where an increase in Rc leads to a reduction in the concentration of perimeter
coating.
Figure 23 visually represents the effect of the Schmidt factor on the concentration profile. It
has been established that mass diffusivity and momentum diffusivity are interconnected. As
the Schmidt factor decreases, the concentration profile also diminishes, resulting in a thinner
concentration boundary layer in the mixed nanoparticles hybrid nanofluid.
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6 Conclusion

• The velocity of the liquid decreases as the magnetic value (M) increases, due to the Lorentz force
acting as a resistive force that impedes flow. This results in a diminishing velocity distribution
and a reversal behavior is also observed in the longitudinal and temperature fields.

• Buoyancy significantly impacts fluid dynamics. As it increases, the primary velocity rises while
the secondary velocity decreases, leading to reduced temperature and concentration profiles.
This alteration affects the fluid’s overall transport properties.

• The Hall current generated by a strong magnetic field causes Joule heating, increasing the
thickness of the thermal boundary layer and the temperature within it. An increase in the Hall
current parameter (m) enhances the longitudinal velocity, while its relationship with transverse
velocity is inversely correlated, as observed through careful study.

• The rotation factor, significantly influences longitudinal velocity, with higher rotation rates
leading to greater longitudinal acceleration, often exceeding stretching rates. Increased rotation
generates centrifugal forces that apply pressure to the fluid, causing particles to move radially
faster than under other conditions. A higher transverse acceleration is also associated with
improved values.

• Additionally, increased radiation enhances both liquid temperature and acceleration, as ra-
diation boosts surface heat flow, raising temperatures in the boundary layer. In contrast,
concentration tends to decrease.

• The Eckert number (Ec) plays a crucial role in these effects, with rising values correlating with
increased temperature fields.

• As Brownian Motion Factor (Nb) increases from 0.3 to 1.2, the boundary layer velocity decreases,
while the dimensionless temperature rises due to more frequent collisions among nanofluid
particles generating thermal energy.

• Increasing Thermophoresis parameter (Nt) leads to higher boundary layer temperatures and
nanoparticle concentrations, as well as enhanced velocity and temperature at the surface.
The sign of Nt indicates surface temperature conditions, with negative values suggesting hot
surfaces.

• An increase in Chemical Reaction Parameter Rc correlates with a reduction in concentration,
indicating that higher reaction rates lead to decreased concentration levels in the fluid.

• A lower Schmidt factor reduces the concentration profile, resulting in a thinner concentration
boundary layer in the mixed nanoparticles hybrid nanofluid, reflecting a connection between
mass and momentum diffusivity.
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