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Abstract. In this paper we use the classical Wedderburn’s Kronecker Factor-

ization Theorem to prove that category of bimodules over B and the category

of bimodules over Mn(B) are equivalent, where B is some unital associative

algebra. In addition to this, we classify the irreducible bimodules over Mn(F ).
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1. Introduction

An associative algebra is an F -vector space A with a bilinear binary operation

(x, y) 7→ xy satisfying the following identity:

(x, y, z) = 0,

where (x, y, z) = (xy)z − x(yz) is the associator of the elements x, y, z ∈ A.

The description of the structure of algebras and superalgebras that contain cer-

tain finite-dimensional algebras and superalgebras has a rich history, which has

important applications in representation theory and category theory (for example,

see [2,3,6,7,8,9,10,11,12,14]). The classical Wedderburn Theorem says that if a uni-

tal associative algebra A contains a central simple subalgebra of finite dimension

B with the same identity element, then A is isomorphic to a Kronecker product

S ⊗F B, where S is the subalgebra of the elements that commute with each b ∈ B.

In particular, if A contains Mn(F ) as a subalgebra with the same identity element,

we have A ∼= Mn(S) “coordinated” by S. Kaplansky in Theorem 2 of [5] generalized

the Wedderburn result to the alternative algebras A and the split Cayley algebra
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B. Jacobson in Theorem 1 of [2] gave a new proof of the result of Kaplansky us-

ing his classification of completely reducible alternative bimodules over a field of

characteristic different of 2 and finally V. López-Soĺıs in [8] proved that this result

is valid for any characteristic. Using this result, Jacobson [2] proved a Kronecker

Factorization Theorem for Jordan algebras that contain the Albert algebra with the

same identity element. The statements of this type are usually called Kronecker

factorization theorems.

In [13], K. McCrimmon says that Wedderburn’s Kronecker Factorization The-

orem (KFT) is the grandfather of all Kronecker factorization theorems. Despite

its great importance, we certainly have not found bibliographical references of this

result in ring representation theory or algebras. Motivated by this lack, we thought

it would be useful to describe some applications of the KFT and thus see its utility.

In this note we use the KFT to prove that the category of bimodules over B

and the category of bimodules over Mn(B) are equivalent, where B is some unital

associative algebra. In addition to this, we classify the irreducible bimodules over

Mn(F ).

2. Preliminaries

Let A be an associative algebra over F . A vector space V over F is called an

A-bimodule if there are bilinear mappings A × V → V and V × A → V sending

(a, v) to av and (v, a) to va, respectively. We say that V is an associative bimodule

for A if the algebra E = A⊕ V with the multiplication given by

(a+ v) · (b+ w) = ab+ (vb+ aw),

for all a, b in A and v, w in V , is associative. The algebra E = A⊕ V is called the

split null extension of A by bimodule V where A is a subalgebra and V is an ideal

of E such that V 2 = 0. Specifically, we have E = A⊕V is associative if and only if

(a, b, v) = (a, v, b) = (v, a, b) = 0,

for all a, b ∈ A and v ∈ V , where (x, y, z) := (xy)z − x(yz) is the associator of x, y

and z. Therefore this definition of associative bimodule coincides with the usual

one.

Suppose A has an identity element 1, then the associative bimodule V is called

a unital associative bimodule for A if 1v = v1 = v for all v ∈ V. For the definition

of unital right modules, see [4].

Let us recall some elementary facts about matrix units in Mn(R), where R is a

ring with identity. For i, j = 1, . . . , n, we define eij as a matrix whose entry (i, j)
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is 1 and the other entries are 0. Also, we have the multiplication table

eijekl = δjkeil and
∑

eii = 1.

Hereinafter right modules will mean unital right modules. Similarly, bimodules

will mean unital associative bimodules.

Denote by mod−R the category of right modules for a fixed ring R. Ob(mod−
R) is the class of right modules for R and the morphisms are R-module homomor-

phisms. Products are composites of maps. Similarly, mod − Mn(R) denote the

category of right modules over Mn(R).

Proposition 2.1. Let R be a ring and Mn(R) be the ring of matrices of order n×n

with entries in R. Then the categories mod−R and mod−Mn(R) of modules to

the right over R and Mn(R) respectively, are equivalent.

Proposition 2.1 is proved in the Jacobson’s book (see Proposition 1.4 in [4]). Our

aim is to prove this result for bimodules using the famous KFT.

Above we have defined the eij as the matrices with 1 in the input (i, j) and 0 in

the others. We call the set of these elements a system of unitary matrices that

satisfy

eijekl = δjkeil,
∑

eii = 1

where δ is the Kronecker delta.

As mentioned in the Introduction, the KFT points out a very interesting feature

of central simple algebras, namely, whenever they sit in a larger algebra they do so

in a very particular way. In fact the property of the theorem characterizes finite

dimensional central simple algebras. See the Herstein’s book (see Theorem 4.4.2 in

[1]).

Theorem 2.2. Let A be a unital associative algebra that contains a central simple

subalgebra of finite dimension S with the same identity element, then A is isomor-

phic to a Kronecker product S⊗F B, where B is the subalgebra of the elements that

commute with each b ∈ S.

Define [a, b] := ab− ba the commutator of the elements a, b ∈ A. In Theorem 2.2

we have

B = {a ∈ A : [a, S] = 0},

that is, B = CA(S) is the centralizer of S in A. In particular:

Corollary 2.3. Let A be an algebra with identity element 1 such that A contains a

system of n2 unitary matrix elements. Then A ∼= Mn(B), where B is the subalgebra

of the elements that commute with each eij of the system.
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Denote by F a field of arbitrary characteristic. Corollary 2.3 says that if A

contains Mn(F ) as a subalgebra with the same identity element, then A ∼= Mn(B),

that is, A is “coordinated” by B and acquires the matrix structure of Mn(F ).

3. A categories equivalence

Next, we state and prove the most important results of the article. The first

result is an equivalence of categories. Indeed, it is an analogue of Proposition 2.1

for bimodules and it is given using the KFT. The second application of KFT is

related to the classification of irreducible bimodules.

Let B be an arbitrary unital associative algebra over the base field F . Denote

by

• Bimod−B the category of bimodules for B, where Ob(Bimod−B) is the

class of bimodules over B.

• Bimod−Mn(B) the category of bimodules forMn(B), where Ob(Bimod−
Mn(B)) is the class of bimodules over Mn(B).

Theorem 3.1. The categories Bimod−B and Bimod−Mn(B) are equivalent.

Proof. We want to prove that

Bimod−B ∼= Bimod−Mn(B).

Let N ∈ Ob(Bimod−B) and consider the split null extension E = B ⊕ N of

the associative algebra B by the bimodule N . Since E is an associative algebra

we can form the matrix algebra K = Mn(E) containing Mn(B) as a subalge-

bra. Thus, K contains the ideal M = Mn(N) ∩ K = Mn(N) which is the set

of matrices of K whose entries are in the ideal N of E. Consequently, M is a

bimodule for Mn(B) relative to the multiplication defined in Mn(E). Therefore,

M ∈ Ob(Bimod−Mn(B)) and will be the Mn(B)-bimodule associated with the

given bimoduleN of B. Thus, we have a mapN 7→ M = Mn(N) of Ob(Bimod−B)

to Ob(Bimod−Mn(B)). If f : N −→ N ′ is a B-bimodule homomorphism, then

the map

f̃ :


a11 . . . a1n
...

. . .
...

an1 . . . ann

 7→


f(a11) . . . f(a1n)

...
. . .

...

f(an1) . . . f(ann)


is a homomorphism of Mn(B)-bimodules of M to M ′. The maps N 7→ M = Mn(N)

and f 7→ f̃ constitute a functor
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T : Bimod−B −→ Bimod−Mn(B).

If N ∈ Ob(Bimod−B), denote

M = T(N).

Since E = B ⊕ N , we have that K = Mn(B) ⊕ M . The fact that N2 = 0 in E

implies that M2 = 0 in K, so K is the split null extension of Mn(B) by its bimodule

M .

It can be easily verified that T is actually a functor of the category Bimod−B

to the category Bimod−Mn(B). Furthermore, for every pair of objects N and N ′

of Bimod−B, the following equality holds

T(hom(N,N ′)) = hom(T(N),T(N ′)).

Thus, N and N ′ are isomorphic if and only if T(N) and T(N ′) are isomorphic.

Similarly, the functor T offers a lattice isomorphism of the lattice of the sub-

modules of N relative to B on the lattice of the submodules of M over Mn(B).

To complete the reduction of the theory of bimodules for Mn(B) to that of

bimodules for B, we will show that each Mn(B)-bimodule is isomorphic to some

bimodule associated with a bimodule for B. Consider a bimodule V for Mn(B)

and let

A = Mn(B)⊕ V

be the split null extension of Mn(B) by V . Thus A is an associative algebra

(with identity element 1, the identity of Mn(B)) containing the matrix algebra

Mn(F ) ⊆ Mn(B) as a unital subalgebra, then by Corollary 2.3 of KFT, there

exists a unital associative algebra D such that A = Mn(D), then

Mn(D) = Mn(B)⊕ V.

Let W be the set of elements of D that appear in the entries of the matrices of V .

Then

V := Mn(W ),

where W ◁ D and W 2 = 0 in D, since V ◁ A and V 2 = 0 in A; so D = B ⊕ W

is the split null extension of B by its bimodule W , then W is a bimodule over B.

Thus T(W ) = V. □

Corollary 3.2. Every bimodule V over B is completely reducible if and only if

T (V ) is completely reducible over Mn(B).
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We finalize the paper by classifying the irreducible bimodules which was proved

in [15], but in the proof there is a mistake, because the authors cite the Corollary

2.3 of KFT as if it were KFT itself. Therefore, here we offer the complete proof of

that results and the correction of the mentioned mistake.

Corollary 3.3. All irreducible bimodule for Mn(F ) is isomorphic to the regular

bimodule Reg(Mn(F )).

Proof. Consider an irreducible bimodule V for Mn(F ). Then E = Mn(F )⊕V is a

unital associative algebra containing Mn(F ), with the same identity element. Thus

by Corollary 2.3 of KFT, there exists a subalgebra B of E such that E = Mn(B).

From E = Mn(B), consider the set D of the elements of B that appear in the

entries of the matrices of V . Consequently V = Mn(D), where D◁B and D2 = 0,

since V ◁ E and V 2 = 0 in E. Thus B = F1⊕D is the split null extension of F1

by D, that is, D is an irreducible F -bimodule, because V it is. Therefore D = F ·1,
which implies that V = Reg(Mn(F )). □
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[9] V. H. López Soĺıs, On a problem by Nathan Jacobson for Malcev algebras,

arXiv:2106.01155.
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