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Abstract. We study commutative algebras satisfying the identity ((wx)y)z+

((wy)z)x+ ((wz)x)y− ((wy)x)z− ((wx)z)y− ((wz)y)x = 0. We assume char-

acteristic of the field ̸= 2, 3. We prove that given any λ ∈ F, there exists a

commutative algebra with idempotent e, which satisfies the identity, and has

λ as an eigen value of the multiplication operator Le. For algebras with idem-

potent, the containment relations for the product of the eigen spaces are not

as precise as they are for Jordan or power-associative algebras. A great part

of this paper is calculating these containment relations.
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1. Introduction

Let A be a commutative algebra over a field F satisfying the identity

((wx)y)z + ((wy)z)x+ ((wz)x)y − ((wy)x)z − ((wx)z)y − ((wz)y)x = 0 (1)

and characteristic of the field ̸= 2, 3.

In the study of degree four identities not implied by commutativity, Osborn [7]

classified those that were compatible with the possession of a unit element. Carini,

Hentzel and Piacentini Cattaneo [2] extended this work by dropping this restriction.

The identity (1) appeared as one of the additional degree four identities.

These algebras have been studied by Correa, Hentzel [3] and by Rojas-Bruna

[8]. In [3] the authors assume the additional identity ((xx)x)x = 0 and prove the

algebra is nilpotent. In [8] the author proved the existence of trace form. Moreover

if he assumes the existence of a non degenerate trace form, then the algebra satisfies

the identity ((yx)x)x = y((xx)x).

The paper is structured as follows. Section 2 will be devoted to give examples

and preliminary results. Section 3 deals with idempotent elements. Section 4 is

devoted to zero divisors.
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2. Examples and preliminaries results

Let A be a commutative algebra satisfying identity (1). Using the associator

notation (a, b, c) = (ab)c− a(bc) and commutativity, identity (1) can be written as

(x,w, y)z + (y, w, z)x+ (z, w, x)y = 0, (2)

or

(y, wx, z) + (z, wy, x) + (x,wz, y) = 0. (3)

For every w ∈ A, define the map Gw : A×A×A −→ A, by

Gw(x, y, z) = (x,w, y)z + (y, w, z)x+ (z, w, x)y, ∀ x, y, z ∈ A.

Remark 2.1. It is clear that identity (2) is equivalent to Gw ≡ 0 for every w ∈ A.

Also, for each w ∈ A,Gw is clearly a tri-linear map. If two variables among x, y, z

are equal, then Gw = 0. In fact, take x = y for example then using commuta-

tivity for any w ∈ A, we have Gw(x, x, z) = (x,w, x)z + (x,w, z)x + (z, w, x)x =

0 + (x,w, z)x − (x,w, z)x = 0, and Gw = 0. This means that Gw is a tri-linear

alternating map for every w ∈ A.

This remark implies the following result.

Lemma 2.2. Every 2 dimensional algebra over a field F satisfies identity (2).

Lemma 2.3. For every λ ∈ F, there exists a two dimensional algebra satisfying

identity (2) with idempotent e and where λ is an eigen value of the linear operator

Le.

Proof. In fact the F -vector space A generated by e, u with multiplication given by

e2 = e, eu = ue = λu, u2 = αe+ βu, α, β ∈ F

is a two dimensional algebra which (by Lemma 2.2) satisfies identity (2). □

Remark 2.4. The above Lemma implies that for commutative algebras satisfying

identity (1), the eigen spaces are not restricted to specific values of λ as they are in

Jordan algebras (see Schafer [9], page 97) or Power-Associative algebras (see Albert

[1], Gerstenhaber [4], Schafer [9] page 131).

Example 2.5. The following is a three dimensional algebra with an idempotent e,

satisfying identity (1). The basis is {e, x, y}. The element e is an idempotent and
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x and y are in the eigen space for λ ∈ F. The parameters b1, c1, b2, c2, b3, c3 and

λ ̸= 1
2 are independent. The multiplication table is given by

e x y

e e λx λy

x λx a1e+ b1x+ c1y a3e+ b3x+ c3y

y λy a3e+ b3x+ c3y a2e+ b2x+ c2y

where a1 = c1(−c2+b3)+c3(−b1+c3)
−1+2λ , a2 = b3(−c2+b3)+b2(−b1+c3)

−1+2λ , a3 = b2c1−b3c3
−1+2λ .

Recall that an algebra A is flexible if and only if for every x, y ∈ A, (x, y, x) = 0.

It is immediate that every commutative algebra is flexible.

Proposition 2.6. Let A be a commutative algebra satisfying identity (1). Then

the nucleus of A, N(A) = {x ∈ A | (x,A,A) = (A, x,A) = 0} is an ideal of A.

Proof. It is clear that N(A) is a subspace of A. Since A is flexible, we need only

to prove that for every x ∈ N(A) and for every y, z, w ∈ A, we have

(xy, z, w) = 0, and (w, xy, z) = 0.

The following identity is known as the Teichmuller’s identity and it is satisfied in

every non associative algebra.

(xy, z, w) + (x, yz, w) + (x, y, zw) = x(y, z, w) + (x, y, z)w. (4)

Using that x ∈ N(A), we get (xy, z, w) = x(y, z, w) and flexibility and identity

(2) imply that x(y, z, w) = 0, so (xy, z, d) = 0. On the other hand, flexibility and

identity (3) imply that for every x ∈ N(A), we get that (w, xy, z) = 0. Therefore

N(A) is an ideal of A. □

Proposition 2.7. Let A be a commutative algebra satisfying identity (1). Then

the set H = {x ∈ A | x(A,A,A) = (x,A,A) = 0} is an ideal of A.

Proof. It is clear that H is a subspace of A. Let w be an element in H and x ∈ A.

Then from identity (4) we get

(x, y, zw) = 0 for every y, z ∈ A.

Let (a, b, c) be an element in (A,A,A) and let w ∈ H. Then identity (2) implies

that

(wx)(a, b, c) = −(wx, b, a)c− (c, b, wx)a = 0

and the result follows. □
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Corollary 2.8. Let A be a commutative algebra satisfying identity (1) and let I be

the subspace generated by the associators (a, b, c). Then H(AI) = 0.

Proof. Let consider the elements h ∈ H,x ∈ A, y ∈ I, then h(xy) = (hx)y −
(h, x, y) = 0− 0 = 0 and H(AI) = 0. □

Remark 2.9. In [8] it is proved that if we assume that the algebra A has a non

degenerate trace form, then the subspace generated by the associators (a, b, c) is an

ideal.

3. Idempotent elements

Let A be a commutative algebra satisfying identity (1) over a field F of charac-

teristic ̸= 2, 3. Suppose that A has a Peirce decomposition relative to an idempotent

element e. This means that the operator Le given by Le(x) = ex is diagonalizable.

For each λ ∈ F, let Aλ = {a ∈ A | ea = λa} be the eigen space associated to the

linear operator Le.

Next we introduce the following notation to improve the reading of the paper.

Define

B =
⋃
λ∈F

Aλ.

Our assumption implies that there is a basis contained in B.

Let f : B \ {0} −→ F be the map defined by

f(x) = λ ⇐⇒ x ∈ Aλ.

Theorem 3.1. If e is an idempotent element in A, then for all a, b ∈ B \ {0},

e(ab) = (f(a) + f(b)− 1)ab when f(a) ̸= f(b).

Proof. From identity (1) we get:

0 = ((ea)b)e+ ((eb)e)a+ ((ee)a)b− ((eb)a)e− ((ea)e)b− ((ee)b)a

0 = f(a)(ab)e+ f(b)f(b)ba+ f(a)ab− f(b)(ba)e− f(a)f(a)ab− f(b)ba

0 = f(a)(ab)e+ f(b)f(b)ab+ f(a)ab− f(b)(ab)e− f(a)f(a)ab− f(b)ab.

Then

0 = (f(a)− f(b))(ab)e+ (f(a)− f(b)− f(a)f(a) + f(b)f(b))ab

0 = (f(a)− f(b))(ab)e+ (f(a)− f(b)− (f(a)− f(b))(f(a) + f(b)))ab

0 = (f(a)− f(b))(e(ab) + (1− f(a)− f(b))ab).

If f(a) ̸= f(b), then e(ab) = (f(a) + f(b)− 1)ab. □
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Corollary 3.2. If λ ̸= µ ∈ F, then AλAµ ⊆ Aλ+µ−1, and for every λ ̸= 1, we get

AλA1 ⊆ Aλ.

Theorem 3.3. Let a, b, c ∈ B \ {0}. Then

(i) 0 = (f(a)− f(b))(ab)c+ (f(b)− f(c))(bc)a+ (f(c)− f(a))(ca)b.

(ii) If f(a) = f(c) ̸= f(b), then (a, b, c) = 0.

(iii) If f(a), f(b), f(c) are distinct, then

(a, b, c)

f(a)− f(c)
=

(a, c, b)

f(a)− f(b)
=

(b, c, a)

f(b)− f(a)
(5)

=
(b, a, c)

f(b)− f(c)
=

(c, a, b)

f(c)− f(b)
=

(c, b, a)

f(c)− f(a)
.

Proof. Item (ii) is immediate from item (i), so let us prove the first one. From

identity (1) we obtain: 0 = ((ea)b)c + ((eb)c)a + ((ec)a)b − ((eb)a)c − ((ea)c)b −
((ec)b)a, then

0 = f(a)(ab)c+ f(b)(bc)a+ f(c)(ca)b− f(b)(ba)c− f(a)(ac)b− f(c)(cb)a. (6)

Thus, 0 = (f(a)− f(b))(ab)c+ (f(b)− f(c))(bc)a+ (f(c)− f(a))(ca)b.

This proves item (i).

In order to prove item (iii) we deduce from (6) that

0 = f(a)(b, a, c) + f(b)(c, b, a) + f(c)(a, c, b).

Since (b, a, c) = −(a, c, b) − (c, b, a) and (c, b, a) = −(a, b, c) replacing in the above

identity, we obtain

0 = −f(a)(a, c, b)− f(a)(c, b, a) + f(c)(a, c, b)

and

0 = (−f(a) + f(c))(a, c, b) + (f(a)− f(b))(a, b, c),

that is,

(f(a)− f(b))(a, b, c) = (f(a)− f(c))(a, c, b).

If f(a), f(b), f(c) are distinct, we obtain identities appearing in (5). □

Theorem 3.4. Let a, b, c ∈ B \ {0}. If f(a) ̸= 1, f(b) ̸= 1, f(a) ̸= f(b), then

(ab)c ∈ B and f((ab)c) = f(a) + f(b) + f(c)− 2 whenever (ab)c ̸= 0.

Proof. We have that ab ̸= 0 (otherwise (ab)c = 0). We separate the proof in two

cases.

Case 1 f(ab) ̸= f(c). In this case we have by Theorem 3.1

f((ab)c) = f(ab) + f(c)− 1 = f(a) + f(b) + f(c)− 2.
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Case 2 f(ab) = f(c). This condition implies

f(c) = f(a) + f(b)− 1. (7)

Since f(b) ̸= 1, identity (7) implies that f(c) ̸= f(a). The same way, since f(a) ̸= 1,

identity (7) also implies that f(b) ̸= f(c). If we suppose bc ̸= 0 and f(bc) = f(a),

we get

f(a) = f(b) + f(c)− 1.

Adding to (7), we get

f(c) + f(a) = f(a) + f(c) + 2f(b)− 2.

Dividing by 2, we get f(b) − 1 = 0, which contradicts the hypothesis of the

theorem. Finally, we conclude that bc = 0 or f(bc) ̸= f(a). In the same way if

we suppose ac ̸= 0 and f(ac) = f(b), we get f(a) − 1 = 0, which also contradicts

the hypothesis of the theorem. We conclude that {ac = 0 or f(ac) ̸= f(b)} and

{bc = 0 or f(bc) ̸= f(a)}. Using the same argument as in Case 1, we conclude that

{(ac)b = 0 or (ac)b belongs to Aµ} and {(bc)a = 0 or (bc)a belongs to Aµ} where

µ is given by:

µ = f(a) + f(b) + f(c)− 2.

Finally, Theorem 3.4 item (i) implies

(ab)c =
(f(c)− f(b))

f(a)− f(b)
(bc)a+

(f(a)− f(c))

f(a)− f(b)
(ac)b,

then we get that (ab)c ∈ Aµ. □

Corollary 3.5. If λ, µ, β ∈ F, λ ̸= µ, λ ̸= 1, µ ̸= 1, a ∈ Aλ, b ∈ Aµ, c ∈ Aβ , then

(ab)c ∈ Aλ+µ+β−2.

We do not know if A1 is closed under multiplication, but we can prove the

following result.

Theorem 3.6. The subspace S spanned by the set {ab | a ∈ Ax, b ∈ A2−x, x ∈
F \{1}} is a sub-ring of A contained in A1∪{0} which absorbs multiplication from

A1. Furthermore (A1, S,A1) = 0.

Proof. Suppose that f(a) ̸= f(b) and f(a) + f(b) − 1 = 1. Note that this is the

case when f(a) = x ̸= 1 and f(b) = 2− x. Note also that f(b) ̸= 1.

Since f(a) ̸= f(b) from Theorem 3.3 item (i), we have that for every c ∈ B \{0},
we get:

(ab)c =
−1

f(a)− f(b)

[
(f(b)− f(c))(bc)a+ (f(c)− f(a))(ca)b

]
.
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If f(c) = 1, then

(ab)c =
−1

f(a)− f(b)

[
(f(b)− 1)(bc)a+ (1− f(a))(ca)b

]
.

Let x = f(a), y = f(b). Then (AxAy)A1 ⊆ (AyA1)Ax+(A1Ax)Ay ⊆ AxAy ⊆ A1

where last two contentions are implied by Corollary 3.2.

If s ∈ S, a, b ∈ A1, then identity (1) implies

0 = ((sa)b)e+ ((sb)e)a+ ((se)a)b− (sb)a)e− ((sa)e)b− ((se)b)a.

Thus, 0 = (sa)b+ (sb)a+ (sa)b− (sb)a− (sa)b− (sb)a = (a, s, b). □

4. Zero divisors

Zero divisors are important in order to find relations among the different eigen

spaces. The following theorem is important because allows us to found zero divisors,

as is showed in Corollary 4.2 and Corollary 4.3.

Theorem 4.1. For every triplet a, b, c of nonzero elements in B, we get:

(i) If f(a), f(b), f(c) are distinct, then (ab)c, (bc)a, (ca)b are all in the eigen

space with λ = f(a) + f(b) + f(c)− 2.

(ii) If f(a), f(b), f(c) are distinct, then

f(bc)(ab)c = f(ab)(bc)a ∧ f(ca)(ab)c = f(ab)(ca)b, (8)

which implies

(ab)c

f(ab)
=

(bc)a

f(bc)
=

(ca)b

f(ca)
(9)

provided that all denominators are not zero.

Proof. Item (i) Without loss of generality it is enough to prove that (ab)c is in

the eigen space with value λ = f(a) + f(b) + f(c) − 2. Since f(a), f(b), f(c) are

all different, at most only one of them is 1. If 1 /∈ {f(a), f(b)}, the result follows

from Theorem 3.4. Let us suppose that f(a) = 1 (the case f(b) = 1 is analogous).

Theorem 3.1 says ab = 0 or ab ∈ B with f(ab) = f(a) + f(b) − 1 = f(b), then

(ab)c = 0 or (ab)c ∈ B with f(ab) = f(b) ̸= f(c), then f((ab)c) = f(ab)+f(c)−1 =

f(b) + f(c)− 1 = 1 + f(b) + f(c)− 2 = f(a) + f(b) + f(c)− 2.
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Item (ii) From item (i) and Theorem 3.1, we obtain the following identities:

((ba)c)e = (f(a) + f(b) + f(c)− 2)((ab)c)

((bc)e)a = (f(b) + f(c)− 1)((bc)a)

((be)a)c = f(b)((ab)c)

−((bc)a)e = (−f(a)− f(b)− f(c) + 2)((bc)a)

−((ba)e)c = (−f(a)− f(b) + 1)((ab)c)

−((be)c)a = −f(b)((bc)a)

Adding the identities and using identity (1), we get 0 = (f(b) + f(c)− 1)((ab)c) +

(−f(a)− f(b) + 1)((bc)a) so that 0 = f(bc)(ab)c− f(ab)(bc)a, from where the first

identity in (8) is immediate. Second identity of (8) is obtained by permuting (a, b, c)

in the first one and of course identities in (9) are obvious from (8). □

The previous theorem has two corollaries:

Corollary 4.2. Let f(a), f(b), f(c) be all distinct. If f(ab) = 0 and (f(bc) ̸= 0 or

f(ca) ̸= 0), then (ab)c = 0.

Proof. It is immediate from identity (8). □

Corollary 4.3. If f(a), f(b), f(c) are distinct and f(a)+ f(b) = 1, then (ab)c = 0.

Proof. Indeed the assumption f(a), f(b), f(c) being distinct implies f(b)+f(c) ̸= 1

and f(a)+f(c) ̸= 1, because f(a)+f(b) = 1, and f(b)+f(c) = 1 imply f(a) = f(c).

Same argument holds for f(a) + f(c). □

Next lemma gives some particular zero divisors.

Lemma 4.4. If e is an idempotent element in A, then for all a, b, c, d ∈ A, the

elements

x1 = ((((ee)e)b)c)− ((((ee)e)c)b) + ((((be)e)c)e)− ((((ce)e)b)e)− ((((be)e)e)c) + ((((ce)e)e)b), (10)

x2 = ((ee)(ad))− ((de)(ae)) + (((ee)a)d)− (((de)a)e)− (((ae)e)d) + (((ad)e)e) (11)

satisfy x1x2 = 0.

Proof. We want to prove that x1x2 = 0.

We produced with Albert all possible multiplications of {a, b, c, d, e}, e appearing
5 times and we assume the relation xy − yx to produce a basis of the resulting

algebra. We define the polynomial map H(x, y, z, w) = (x, y, z)w + (z, y, w)x +

(w, y, x)z so that identity (2) can be written as H(x, y, z, w) = 0, and we create all

substitutions into H(x, y, z, w) with up to 5 taps as is ((((H(x, y, z, w)r)s)t)u)v.

We create a matrix A whose rows (except for the last one) has the coefficients

of all substitutions of this 5 taps evaluation in the basis given by Albert of this



202 MANUEL ARENAS, IVÁN CORREA, IRVIN ROY HENTZEL AND ALICIA LABRA

algebra. The last row of A have the coefficients in the given basis of the identity

we wanted to prove to be zero, x1x2.

The size of the basis is 55653 that corresponds to the columns of the matrix.

All identities have degree nine so the number of rows of A is 29924. The columns

corresponding to the elements of the basis of degree 9 are from 25729 to 55653 so

the number of them is 55653−25729 = 29924, which coincides with number of rows

of A. To prove x1x2 = 0 it is enough to find a row vector V such that V A = 0

whose the last entrance V29924 is different from zero in the field F. If this is the case

and we denote by R1, . . . , R29924 the rows of A, we have that

29924∑
n=1

VnRn = 0

from where we get

R29924 = −
(

1

V29924

)(29923∑
n=1

VnRn)

)
.

If we assume H(x, y, z, w) = 0, we get that Rn = 0 for every 1 ≤ n ≤ 29923, then

R29924 = 0 and we conclude that x1x2 = 0. Using Mathematica we found a V such

that V A = 0 and V29924 = 512. Therefore assuming char(F ) ̸= 2, we obtain the

desired V . So x1x2 = 0. □

Remark 4.5. In fact we obtained a smaller row vector W satisfies WS = 0 where

S is a smaller matrix obtain by removing rows of A, but it is easy to construct the

desired V from W by adding zeroes in the columns corresponding to the deleted

rows of A.

Remark 4.6. In order to have a proof with a smaller matrix A, we can use the

fact that the identities included such as H(ee, a, e, b) which expands to zero, can

be simplified using ee = e. Therefore one should be able to shorten the proof when

ee = e is used.

We will use the fact that x1x2 = 0 to reduce ((ab)e)e even when a and b are in

the same eigen space. We have the following result:

Theorem 4.7. Let a, b, c, d ∈ B. If f(b) ̸= 1, f(c) ̸= 1, f(b) ̸= f(c), f(a) = f(d) =

p, then (bc)

(
p(1− 2p)ad+ (1− p)(ad)e+ ((ad)e)e

)
= 0. That is, if we put q(t) =

t2 + (1− p)t+ p(1− 2p), then (bc)(q(Re)(ad)) = 0.

Proof. We expand the individual factors in the expression of x1, x2.
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For x1,

((((ee)e)b)c) = +f(b)(bc), −((((ee)e)c)b) = −f(c)(cb) = −f(c)(bc),

((((be)e)c)e) = +f(b)f(b)(bc)e, −((((ce)e)b)e) = −f(c)f(c)(cb)e,

−((((be)e)e)c) = −f(b)f(b)f(b)(bc), +((((ce)e)e)b) = +f(c)f(c)f(c)(cb).

Therefore, x1 = [f(b)− f(c)− f(b)3 + f(c)3](bc) + [f(b)2 − f(c)2](bc)e or

x1 = (f(b)− f(c))

[(
1− f(b)2 − f(b)f(c)− f(c2)

)
(bc) + (f(b) + f(c))(bc)e

]
.

For x2,

((ee)(ad)) = +e(ad), −((de)(ae)) = −f(a)f(d)(ad),

(((ee)a)d) = +f(a)(ad), −(((de)a)e) = −f(d)(ad)e,

−(((ae)e)d) = −f(a)f(a)(ad) + (((ad)e)e) = +((ad)e)e.

We have x2 = +[−f(a)f(d) + f(a)− f(a)f(a)](ad) + [1− f(d)](ad)e+ ((ad)e)e

or

x2 = f(a)[−f(d) + 1− f(a)](ad) + [1− f(d)](ad)e+ ((ad)e)e.

If f(b) = f(c), then x1 is zero. If f(b) ̸= f(c), then by Theorem 3.1 (bc)e =

(f(b) + f(c)− 1)bc and

x1 = (f(b)−f(c))

[(
1−f(b)2−f(b)f(c)−f(c2)

)
(bc)+(f(b)+f(c))(f(b)+f(c)−1)(bc)

]
.

In general we have that (b−c)(1−b2−bc−c2+(b+c)(b+c−1)) = (b−1)(b−c)(c−1),

then

x1 = (f(b)− 1)(f(b)− f(c))(f(c)− 1)(bc). (12)

Thus if f(b) = 1 or f(c) = 1 or f(b) = f(c), we have x1 = 0.

We have that

x2 = f(a)[−f(d) + 1− f(a)](ad) + [1− f(d)](ad)e+ ((ad)e)e.

If f(a) ̸= f(d), then by Theorem 3.1 (ad)e = (f(a)+f(d)−1)ad, and ((ad)e)e) =

(f(a) + f(d)− 1)2(ad). Then

x2 =

[
− f(a)[f(d)− 1+ f(a)]+ (1− f(a))(f(a)+ f(d)− 1)+ (f(a)+ f(d)− 1)2

]
ad

= (f(a) + f(d)− 1)

[
− f(a) + 1− f(d) + f(a) + f(d)− 1

]
ad = 0.

If f(a) = f(d) = p, then

x2 = p(1− 2p)(ad) + (1− p)(ad)e+ ((ad)e)e. (13)
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Finally if f(b) ̸= 1, f(c) ̸= 1, f(b) ̸= f(c), f(a) = f(d) = p, since x1x2 = 0,

identities (12) and (13) imply that

(bc)

(
p(1− 2p)ad+ (1− p)(ad)e+ ((ad)e)e

)
= 0.

Now if we put q(t) = t2+(1−p)t+p(1−2p), then we have (bc)(q(Re)(ad)) = 0. □

Discussion: We have a formula for the eigen space of the product when the

elements come from different eigen spaces.

Theorem 4.7 says that when the elements come from the same eigen space, the

eigen space of the product satisfies

x2 = p(1− 2p)(ad) + (1− p)(ad)e+ ((ad)e)e

because elements like this which are not zero annihilate a good deal of the rest of

the space. Namely, the product of distinct eigen spaces except f(a) = 1 or f(b) = 1.

Remark 4.8. We use Mathematica to make the numerical calculations in this

paper. We use Professor Dave Jacob’s program “Albert” for intuition and for an

independent check of our results (see [5], [6]).
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