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Abstract

Uninorms generalizing triangular norms and triangular conorms
on bounded lattices have attracted considerable attention
recently. In this article, two new approaches are suggested to
generate uninorms with an identity element on a bounded
lattice. These approaches exploit the existences of a triangular
norm (triangular conorm) and a closure operator (interior
operator) on a bounded lattice. Meanwhile, two structures of
idempotent uninorms on bounded lattices are obtained. In
addition, the relationship between the proposed approaches
and the existing constructions is investigated.
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Oz

Sinirh kafesler Uzerinde (iggensel normlari ve (ggensel
konormlari genellestiren uninormlar son zamanlarda oldukga ilgi
cekmistir. Bu makalede bir sinirli kafes Uzerinde bir birim
elemanli uninormlari Greten iki yeni yaklasim énerilmektedir. Bu
yaklagimlar, bir sinirli kafes uzerinde bir lggensel normun
(Gggensel konormun) ve bir kapanis operatorin (i¢ operatoriin)
varliklarindan vyararlanmaktadir. Bu esnada, sinirli kafesler
lizerinde idempotent uninormlarin iki yapisi elde edilmektedir.
Ayrica, onerilen yaklasimlar ve mevcut insaalar arasindaki iligki
arastirilmaktadir.

Anahtar Kelimeler:Sinirl kafes; Uninorm; Kapanis operatérii; i¢
opertator

1. Introduction

Menger (1942) developed the notions of triangular
norms, also known as t-norms, and triangular conorms,
also known as t-conorms. Their thorough investigations
were conducted on the unit interval by Schweizer and
Sklar (1963,1983). Additionally, they applied t-norms and
t-conorms to expand the familiar triangle inequality on
metric spaces to probabilistic metric spaces. Numerous
fields have demonstrated the significance of t-norms and
t-conorms, including fuzzy systems modeling, decision-
making, probabilistic metric spaces, information
aggregation, fuzzy set theory, fuzzy logic (Beliakov et al.
2007, Dubios and Prade 1995, 2000, Klement et al. 2000,
2004a, 2004b).Yager and Rybalov (1996)

uninorms on the unit interval [0, 1], which constitute

proposed

substantial expansions of t-norms and t-conorms. Fodor
etal. (1997) performed an extensive research on them. As
opposed to point 1 (the circumstance that exists for t-
norms) or point 0 (the circumstance that exists for t-
conorms), uninorms permit the position of their identity
anywhere on the unit interval. The composition of these
operators is closely associated with that of t-norms and t-
conorms. This characteristic has been invaluable in
theoretical (De Baets 1999, De Baets et al. 2009, Drewniak
and Drygas 2002) and practical examinations of uninorms,

especially neural networks (Benitez 1997), fuzzy system
modeling (Takacs 2008, Yager 1994, 2001),
processing (Gonzalez-Hidalgo et al. 2015), decision-
making (Yager 2003).

image

Recent works address uninorms as a component of fuzzy
logic and fuzzy set theory, substituting bounded lattices
for the unit interval. Bounded lattices were included in
the description of uninorms on the unit interval by Karagal
and Mesiar (2015). They also determined that on a
bounded lattice, there are always the greatest and
smallest uninorms. Hitherto, a great deal of examination
has concentrated on uninorms, specifically on how to
generate uninorms, on bounded lattices with more in-
tricate framework than the unit interval. Some generation
techniques for uninorms exploting t-norms and t-
conorms were provided on a bounded Ilattice by
Bodjanova and Kalina (2018, 2019). Afterward, two types
of approaches were suggested by Cayli et al. (2019) to
acquire uninorms being internal and locally internal that
have an identity on a bounded lattice. Idempotent
uninorms were examined on bounded lattices structurally
by Cayh (2019). In further research, Dan et al. (2019)
demonstrated on bounded lattices the availability of
different forms of uninorms composed of t-norms and t-
conorms. Two methods for receiving uninorms by way of
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only one of the t-conorm and the t-norm were enhanced
on a bounded lattice by Dan and Hu (2020). Numerous
studies have been conducted about uninorms on
bounded lattices (Cayh 2019, 2020, 2021, He and Wang
2021, Hua and Ji 2022, Sun and Liu 2022, Zhao and Wu
2021).

Ouyang and Zhang (2020) suggested two ways to build
uninorms that possess the identity i € T \ {0,1} through
interior and closure operators on a bounded lattice T.
Their techniques generated by only one of the t-conorm
¥ on [i,1]? and the t-norm @ on [0, {]? can be seen as
expansions of the findings from (Karagal and Mesiar
2015). We describe two new techniques in this study that
present uninorms possessing an identity i, provided that
certain necessary and sufficient requirements are
fulfilled. When examining the closure and interior
operators §,0:T —» T, we identify two forms of the
uninorms N5y and Ny by means of a t-conorm ¥ on
[i,1]?> or a t-norm @ on [0,i]? respectively. As an
efficient result, two forms of idempotent uninorms are
bounded
correspondence between the uninorms developed by our
techniques and those outlined in (Cayli 2019, 2021, Zhao

and Wu 2021). Specifically, when we permit the interior

presented on lattices. We explore the

operator d on T to be d(l) =1 for all [l € T, the
uninorm N, matches up to the uninorms found in (Cayh
2021) with the infimum t-norm on [0, {]2. Furthermore, if
we take account of the closure operator § on T defined
by § (1) = lforalll € T, the uninorm N5 matches up
to the uninorms in (Cayli 2021) on the basis of supremum
t-conorm on [i,1]%. To further demonstrate that our
methods do not need to match up to the established ones
in (Cayli 2019, 2021, Zhao and Wu 2021), we also provide
a few illustrated cases. Interior and closure operators on
bounded lattices are important tools for generating new
forms of uninorms. Thereupon, from a mathematical
standpoint, such forms of uninorms are highly fascinating
analyses on bounded lattices.

This article is drawn up as follows for the remainder: Main
characteristics and definition of uninorms on bounded
lattices are given in Part 2. Part 3 indicates two innovative
techniques for providing uninorms on a bounded lattice
T, considering an additional criteria on the element i €
T \ {0,1} that serves as an identity. These techniques
utilize a t-conorm ¥ on [i, 1] and an interior operator on
T, or a t-norm @ on [0, i]2 and a closure operator on T.
Two forms of idempotent uninorms are acquired on
bounded lattices instantaneously. Moreover, we discuss
on how our approaches relate to the established ones in
literature. To highlight the distinctions between our tools
and the structures suggested in (Cayh 2019, 2021, Zhao

and Wu 2021), we correspondingly offer a few instances.
The findings drawn from our discussion are reviewed in
the concluding part.

2. Preliminaries

The basic ideas and findings of bounded lattices (for
further detail, see, for example, (Birkhoff 1967)) and
uninorms on them are reviewed in this part.A binary
relation if it is

relation < is an order

reflexive,
antisymmetric and transitive. A nonempty set T with an
order relation < is said to be a poset that is written as
(T,<).Fortheelements f,l € T,if f < land f # [, then
the notation f <l is used. If f and [ are incomparable
(that is neither f < nor | < f), the notation f || [ is
used. The set of all elements incomparable to f is
denoted as Hy (thatis Hr = {u € T : f |l u}). Forasubset
A of T, the element k € A is said to be a gratest (resp.
smallest) element of A when u < k (resp. u < k) for all
u € A. If a poset (T,<) has smallest (also known as
bottom) and greatest (also known as top) elements, then
it is said to be a bounded poset.

A poset (T,<) is said to be a lattice if, for any two
elements f,l €T, they have a smallest upper bound
(called join or supremum), written as f V [, and a greatest
lower bound (called meet or infimum), written as f Al.
Unless otherwise indicated in this article, T represents a
bounded lattice (T,<,0,1) that possesses the bottom
and the top elements, which are represented by 0 and 1,
respectively.

Given the elements f,l € T satisfying that f <, the
subinterval [f,l] of T is stated by [f, ] ={u€eT: f <
u<l}

Similarly, we can give the subintervals [f,![, ]f,!], and
1f, [ of T. Notice that ([f,[], <) is a bounded lattice that
possesses the top and bottom elements, represented by
l and f, respectively.

Definition 2.1. (Cayh et al. 2019, Karacal and Mesiar 2015)
A binary operation N:T? — T is called a uninorm if, for
any f,l,k € T, the requirements listed below are met:

i) N(l, f) = N(f, ) (commutativity);

ii)Ifl < f,then N(,, k) < N(f, k) (increasingness);

i) N(I, N(f,k)) = N(N(, f), k) (associativity);

iv) An element i € T exists, called an identity, satisfying
that N(l,i) = [ (identity).

In especial, a uninorm N becomes a t-conorm ¥ when i =

(
(
(
(

0 and at-norm @ wheni = 1.

Example 2.1. (i) The greatest t-norm @": [f, 1] = [f,[] is
delineated by @"(u, k) = u Ak for all u,k € [f,l]. The
fact remains that the smallest t-norm ®": [f,1]? - [f,[]
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gets the value of uAk if [ € {u,k} and f otherwise.
Accordingly, for any t-norm @ on [f,[]?, the inequality
oW < @ < @’ is obtained.

(i) The smallest t-conorm WV:[f,1]®> > [f,1] is
delineated by WY(u, k) = uVk for all u, k € [f,1]. The
fact remains that the greatest t-conorm WW:[f,1]? -»
[f,!] gets the value of u V k if f € {u, k} and [ otherwise.
Accordingly, for any t-conorm ¥ on [f,1]?, the inequality
YV < ¥ < ¥YW s obtained.

Definition 2.2. (Drossos 1999, Drossos and Navara 1996,
Everett 1994) A operation §:T — T is called a closure
operator if, for any elements f,l € T, the requirements
listed below are met:

(i) L < 8(D) (expansion);

(iU Vf)=38) V() (preservation of join);

(iii) (6 (1)) = 6 (D) (idempotence).

Definition 2.3. (Drossos 1999, Drossos and Navara 1996,
Everett 1994) A operation 0:T — T is called an interior
operator if, for any elements f,l € T, the requirements
listed below are met:

(i) (D) < I (contraction);

(iYa(f AND) =o(f) ANo(l) (preservation of meet);

(ii) o(a (1)) = o (1) (idempotence).

3. Construction techniques for uninorms

This part presents a novel technique for creating the
uninorm Ny on a bounded lattice T that possesses an
identity i, as shown in Theorem 3.1. Notably, it makes use
of both a closure operator §:T - T and a t-norm
@:[0,i]? - [0, {]. Additionally, we suggest an alternative
approach in Theorem 3.10 for building uninorm Ny on a
bounded lattice T that possesses an identity i. This
approach uses the presences of an interior operator
0:T - T and a t-conorm ¥: [i, 1]? - [i, 1].

Theorem 3.1. Assume that i € T \ {0,1} and @: [0,i]? -
[0, i] is a t-norm. The undermentioned operation

Nsy: T? - T is a uninorm that possesses an identity i for
every closure operator 6: T —» T iffa >banddVa €

H; U {1}foralld,a € H;and b € [0, i].

N (f, D =
o(f, D) if (f,1) € [0,i]?,
N if (f,0) € [0, i[ X H; U H; % [0, i
U [0,i[ % [i, 1] U [i, 1] x [0, i[,
f if (f,D € (H; V [i,1]) x {i}, (1)
l if (f' l) € {l} X (HL u [l, 1])’
Fyi if (f,0) € H, x H,
\5(f)v () otherwise.

Proof: Necessity: Presume that the operation N is a
uninorm on T that possesses an identity i. We describe
thata > bforalla € H;, b € [0, {[ . Letting that there are

some elements a € H;, b €]0,i[ with a || b, we receive
that

Ny (0. Ngy(@, 1)) = Negy(b,6 (@) v 6 (1))
=N (b, 1) (2
* —bAl=h,

and

N (Nsy(b,a),1) = Nisy(b A a,1)

(3)

=bAaAl=bAa.
Since a ll b, the associativity feature of Ny is
contradicted. Therefore, a > b foralla € H;, b €]0, ] .
Now, we demonstrate d V a € H; U {1} for all d,a € H;.
Presume that there are some elements d,a € H; withi <
d V a < 1. In this case, for the closure operator 6: T - T
presented by § (I) = 1foralll € T, we get that

Ny(d, Nsy(a,a)) = Ngy(d,a vV a)

i = Nepy(d,a) =dVa, @
and
Ny(Nsy(d,a),a) = Nesy(d V a,a)

L =46(dVa)Vvié(a) (5)

o =46(dVva)=1.

Then the associativity feature of N4 is contradicted.
Therefore, d Va € H; U {1} foralld,a € H;.

Sufficiency: Presume thata > bandd V a € H; U {1} for
all d,a € H; and b € [0,i[. We bring out that the
operation Ny is a uninorm on T that possesses an
identity i. Clearly, N4y is commutative and the element i
is an identity of N4). Hence, it remains to verify that Ns)
is associative and increasing.

(i) Increasingness: We prove that, for all f,Lk €T,
Nesy(f, k) < Nsy(L k) if f < L.If k = i, then

N (f, k) =N (f,0) = f

If (f,1) € [0,i[?U {i}? U]i, 1]% U H;?, the increasingness
is obtained. Thence, we deal with all remaining possible
cases.

(i-1) Let £ € [0, i].

e l=iandk €[0,if,

Nsy(f k) = @(f, k) <k = Ny(i, k) = Nsy(L k). (7)
e l=iandk€]i,1]UH,

Nsy(f k) = f ANk < k = Nsy(i, k) = Ny (L k). (8)
e l€]i,1]UH;and k € [0,i],

Nesy(f, k) = D(F, k) < LAk = Negy (L, ). )

e (L€]i,1]UH; and k €]i,1]) or (L €]i,1] and k€
H,),

Nesy(f, k) = f Ak < 8V EK) = Ngy (L k). (10)
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L l,kEHi,

(i-2) Let f =iand! €]i,1].
e ke|o,if,

e ke€li,1]UH,

N (f, k) =k <8 VvEk) = Ngy(L k). (13)
(-3)Let f € H;and l €]i, 1] .

o kel0il

Nsy(f k) = f ANk < LAk =Ny (L k). (14)
e ke€lil],

Nesy(f, k) = () V8(k) < SV 8(k) = Nigy(L k).
(15)

e keH,

Nesy(f k) = FVk < 8V EK) = Ngy (L k). (16)

(ii) Associativity: We prove that for all f,Lk€T,

Nsy(f, Nisy(L k) = Nsy(Nesy(f, D, k).

The associativity holds if i € {f,[,k}. Thence, we deal

with all remaining possible cases.

(i-1) Let f € [0, 1] .

o Lkel0il,

Ny (f, Nsy(Lk)) = Nsy(f, @, k)
£ = o(f, o k))

= N5y (@(f, D, k)

e l€[0,i[andk €]i,1]UH,,

(17)

Ny (f, 1\(_(_6)(1, k)) =N (f,LAk) =N (D

= ®(f, ) = &(f,1) Nk

= Nigy (D (f, 1), k)

e [€]i,1]UH;and k € [0,i],

(18)

= Niy(f, LA k) = Ny (f, k)

e (L€]i,1]UH; and k €]i,1]) or (Il €]i,1] and k€
H,),

Nsy(f, Nsy(Lk)) = Nsy(f,6(D) v 8(k))
¥ =AW VW) =f
3 = Nes (. ) (20)
= N((g) (N(g) (f, l), k)
e Lk€EH,
Ny (fiNsy(Lk)) = Ny(f,IvEk) =fAVE)
..... = Nesy (F A LK) (21)
(ii-2) Let f €]i,1] U H,.
o Lkel0il,
Ny (f, Nsy(Lk)) = Nesy(f, @(L k)
y = FABLK) = d(LK)
r = Negy(Lk) = Ny (f A LK) (22)
e le[0,i[andk €]i,1]UH,,
Nesy(f,Nsy(Lk)) = Negy(f, LA k)
= Ny(Lk) = Ny (F A LK) 23)
(ii-3) Let f € H;and | €1]i,1].
. keloil
Nsy(f, Nsy(Lk)) = Nsy(f, LA k)
= Ny (5(F) v (D), k) (24)
e keli,1lUH,
Nesy(f,Nsy(Lk)) = Negy(f, 6 (D Vv E(k))
=6(fHvé)vé(k) (25)

= Ny (8 (F) V6 (1), k)

Similarly, for the cases f €]i,1] or f,l € H;, the

associativity hold.

Thence, N(s) is a commutative, associative, and increasing

operation on T that possesses an identity i.

Consequently, N4y is a uninormon T.

If we delimitate the closure operator §:T = T by 6(1) =
[ for all L €T, the structure that corresponds to the
uninorm in Theorem 3.1 is as follows:

Corollary 3.2. Assume that i € T \ {0,1} and @: [0, {]? -
[0,i] is a t-norm. The undermentioned operation
Nigy: T? - T is a uninorm that possesses an identity i iff
a>bforalla € Hyand b € [0,i].
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Neay(f, D =
o(f,) if(f,D€E0,i]?
(f/\l if (f,1) € [0,i[ x H; U H; X [0, i]
u[0,i[ x [i,1] U [i, 1] x [0, [, (26)
f if (f,1) € H; x {i},
l if (f,1) € {i} x H;,
fvl otherwise.

Take a note that the uninorm N(q,):T2 — T in Corollary
3.2 is equivalent to the one introduced in Theorem 6 by
Cayh (2019). Hence, the uninorm N(5):T2—>T in
Theorem 3.1 encompasses, as a specific case, the
uninorm constructed in Theorem 6 by Cayl (2019).
Moreover, when taking in Corollary 3.2 the t-norm
@:[0,i]> > [0,i] determined by ® =®", we get
Corollary 3.3 that presents the appearance of an
idempotent uninorm on bounded lattices.

Assume that i €T\ {0,1}. The
Npy:T?*—>T is an
idempotent uninorm that possesses an identity i iffa > b
foralla € H;and b € [0, i[.

Corollary 3.3.

undermentioned  operation

(fvl if (f,D) € [i,1]? UH; X H;
Ui, 1] x H; U H; x 1i, 1],
N, D =3fF  if (F,D € Hyx (1} (27)
l if (f,1) € {i} x H;,
f Al otherwise.

If we admit being an atom of the element i € T \ {0,1},
the structure that corresponds to the uninorm in
Corollary 3.2 is as follows:

Corollary 3.4 Assume that i € T \ {0,1} is an atom. The

undermentioned  operation N ,:T?—>T is an

idempotent uninorm that possesses an identity i.

if (f,)) €[i,1]? UH; X H;

Yl i1 x o, u B, x i1,
WNGDERY if (f,1) € H; x {i}, (28)
! if (f,1) € {i} x H,,

0 otherwise.

Remark 3.5. Assume thati € T \ {0,1}, ¥: [i,1]? -
[i,1] isat-conormand §: T — T is a closure operator.
We develop in Theorem 3.1 an innovative generation for
uninorms on bounded lattices. Specifically,

(i) if we choose f and [ from H;, then our technique puts
for Nisy(f, 1) the output f V [ while the one described in
Theorem 8 by Cayh (2019) puts for N(f,l) the output
Y(FVvilvi.if(f,D)€i, 12U li, 1] x H; U H; x ]i, 1],
in our technique N)(f,1) =68(f)vE() while in
Theorem 8 determined by Gayh (2019) N(f,1) = ¥(f v

i, vV i). On the other hand, both techniques equal in the
remainder domains;

(i) if we choose f and [ from H;, then our technique puts
for N¢s)(f, 1) the output f v [ while the one presented in
Theorem 3.1 by Cayh (2021) puts for N(f, 1) the output
8(f) v 6(D). On the other hand, both techniques equal in
the remainder domains;

(iii) if we choose f and [ from H;, then our technique puts
for N¢s)(f, 1) the output f v [ while the one presented in
Theorem 3.4 by Cayl (2021) puts for N(f, 1) the output
S(HVEWD. If (f,D€Ei,1]?U]i, 1] X H; U H; x ]i, 1],
in our technique N5 (f,1) =6(f)VvE() while in
Theorem 3.4 stated by Cayli (2021) N(f,1) = ¥ (f, 1) for
(f,D €1i,1)? and N(f,) = f V1 for (f,1) € i, 1] x
H; U H; X ]i,1]. On the other hand, both techniques
equal in the remainder domains;

(iv) if we choose f and [ from H;, then our technique puts
for Nisy(f, 1) the output f v [ while the one proposed in
Proposition 3.5 by Zhao and Wu (2021) puts for N(f, 1)
the output §(f) v (). If (f,1) €1i,1]?U i, 1] X H; U
H; X ]i,1], in our technique N (f,1) =38(f) V()
while in Proposition 3.5 represented by Zhao and Wu
(2021) N(f,1) = 1. On the other hand, both techniques
equal in the remainder domains.

Remark 3.6. Assume that i € T \ {0,1}. If we specify the
closure operator 6: T = T by 6(I) =l forall Ll €T, then
the below-mentioned statements are obtained:

(i) Ny fits the definition of the uninorm described in
Theorem 3.1 by Cayli (2021);

(i) Nsy fits the definition of the uninorm presented in
Theorem 3.4 by Cayh (2021) if defining the t- conorm
W: [i,1]% - [i,1] such that ¥ = ¢V;

(i) N¢sy fits the definition of the uninorm proposed in
Proposition 3.6 by Zhao and Wu (2021) if [; || [, foralll; €
[i,1[,l, € H; and the t-conorm W:[i,1]? - [i,1] is
defined by ¥ = 9V,

Observably, the uninorm depicted by the structure in
Theorem 3.1 does not have to match those that are
delineated in (Cayli 2019, 2021, Zhao and Wu 2021). We
show this assertion in the below-mentioned examples.

Example 3.7. Take into consideration the lattice T;
described by Hasse diagram in Figure 1 and the t-norm
@:[0,i]? - [0,i] represented by @ = @". Identify the
closure operator §:T; = T; by §(0)=0, 6(@) =1,
) =6w)=u, 6(t)=t, d(m)=6(m)=m, §(p) =
8(q) = q and (1) = 1. The uninorm Njgy: T; X Ty = Ty

is presented in Table 1 with the help of the framework
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established in Theorem 3.1. In that case, we obtain the
statements listed below:
(i) N5y fulfills that N(sy(n,m) = m and N(sy(n,n) = n;
(i) the uninorm N:T; x T, » T, obtained by the
generation mean in Theorem 8 in (Cayli 2019) fulfills that
Ni(n,m) = 1;
(iii) the uninorms N2, N3: T; X T, — T, respectively, built
by techniques in Proposition 3.6 in (Zhao and Wu 2021)
and Theorem 3.4 in (Cayl 2021) fulfill that N2(n,n) =
N3(n,n) = m.
Hence, N(15) differs from the uninorms N1, N2 and N3 on
T;.

1

e

m

N

v —0NQ

0

Figure 1. The lattice T;

Table 1. Uninorm N(ls) onT;
N

(=]

s u

RATWSI+~2uno
[=N-NeNoNoNeNoN-NoR=}
v nnn o
fefegggeuno
PO TW SIS+~ un O ~
R R R Rt 2 Of &
mF—,R,33rR3I2uo|l
~r~rRr3I3IrRr3I2unolS
R QA R RRT S ol
RPQQ R R R, 2 o
RPRRRPRPRPRRPRE N O|M

Example 3.8. Take into consideration the lattice T,
depicted by Hasse diagram in Figure 2. Determine the
closure operator §: T, = T, by §(0) = 0,6(i) = 6(m) =
d(n)=n,8(p) =6(q) =6(s)=sand§(1) = 1.The
uninorm N(za): T, X T, = T, is presented in Table 2 with
the help of the framework established in Theorem 3.1. In
that case, we obtain the statements listed below:

(i) NG, fulfills that N5y (p, @) = q;

(i) the uninorms N*,N>: T, x T, — T,, respectively, built
by techniques in Theorem 3.4 in (Cayh 2021) and
Proposition 3.5 in (Zhao and Wu 2021) fulfill that
N*(p,q) =N°(p,q) = s.

Hence, N/5) differs from the uninorms, N* and N° on T,.

0

Figure 2. The lattice T,

Table 2. Uninorm Nl on T,

o

NGy
0
1A
14
q
S
m
n
1
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Remark 3.9. The uninorm N4y in Theorem 3.1 matches up
to the t-conorm ¥’ on [i, 1]? stated by

s(Hve if (f.D€li1)?

fvl otherwise.

Nevertheless, N(s) does not need to match up with any

v (D = (29)

other t-conorm except ¥’ on [i,1]%. To indicate this
assertion, assume that the closure operator § on the
lattice T, in Figure 2 has the definition shown in Example
3.8 and the uninorm Ngg|[i,1]* is the t-conorm
¥Y":[i,1]% - [i, 1] given in Table 3.

Table 3. T-conorm ¥" on [i, 1]?

~=§~'€:
3 S |~
~3 3|3
AL
= e

Utilizing the structure manner described in Theorem 3.1,
then we conclude that

Ns) ((N(a)(m' m)), q) = Nigy(¥"(m,m), q)

=5(m)vé(@) =nVs=n,
(30)

and
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Nesy (m, (Negy(m, @))) = Nigy (m, 6Gm) v 8(q))
i = N(6)(m,n)

=¥"(m,n) = 1.
(31)

It contradicts the associativity property of N).
Consequently, N4y does not need to match up with any t-

conorm excluding ¥’ on [i, 1]2.

We develop in the below-mentioned Theorem 3.10 a dual
generation process of uninorms on bounded lattices.
Accordingly, we delineate the form of uninorm N((,) that
possesses an identity i on T, exploiting a t-conorm
W: [i,1]? - [i, 1] and an interior operator o on T.

Theorem 3.10. Assume thati € T \ {0,1}and ¥: [i,1]? -
[i,1] is a t-conorm. The undermentioned operation
Ny T? — T is a uninorm that possesses an identity i for
every interior operator 0:T » T iff a<c and dAa €
H; U {0}foralld,a € H;, c €]i,1].

Ny (f,D) =
(Y(f,D) if (f,1) € [i,1]%
if (f,1) €]i,1] x H; U H; x]i, 1]
fyi Uli, 1] % [0,] U [0, 1] X]i, 1],
1/ if (f,1) € (H; v [0,i]) x {i}, (32)
! if (f, 1) € {i} x (H; v [0,i]),
Al if (f,1) € H; X H;,
o(f)Aa(l) otherwise.

Proof: It is proved using similar circumstances in that of
Theorem 3.1.

If we delimitate in Theorem 3.10 the interior operator
0:T—>T by g(l) =1 for all L €T, the structure that
corresponds to the uninorm in Theorem 3.10 is as follows:

Corollary 3.11. Assume thati € T \ {0,1}and ¥: [i, 1]? -
[(,1] is a t-conorm. The undermentioned operation
Ny T? = T is a uninorm that possesses an identity i iff
a < cforalla € H;, c €]i,1].

WD i (F, D € [i, 1%,
Vi if (f,1) €]i,1] X H; U H; X]i, 1]
Ne () = Ui, 1] x [0,i] U [0, {] x]i, 1],
R f if (f,1) € H; x {i},
l if (f,1) € {i} x H;,
f Al otherwise.

(33)

Take a note that the uninorm N(q,):T2 — T in Corollary
3.11 is equivalent to the one introduced in Theorem 9 by
Cayll (2019). Hence, the uninorm N4y T?2>T in

Theorem 3.10 encompasses, as a special case, the
uninorm constructed in Theorem 9 by Cayh (2019)
Furthermore, when taking in Corollary 3.11 the t-conorm
W:[i,1]* - [i, 1] stated by ¥ =¥, we get Corollary
3.12 that presents the appearance of an idempotent
uninorm on bounded lattices.

Corollary 3.12.
undermentioned

Assume that i€ T\{0,1}. The
Noy:T?*>T is an
idempotent uninorm that possesses an identity i iff a < ¢
foralla € H;, c €]i,1].

operation

if (f,1) € [0,i]* UH; X H;

FAL G x[0,i[ U [0,i] x H,
Ny(f,D =1f if (f,1) € H; x {i}, (34)
l if (f,1) € {i} x H,,
kf V1l otherwise.

If we admit being a coatom of the element i € T \ {0,1},
the structure that corresponds to the uninorm in
Corollary 3.12 is as follows:

Corollary 3.13. Assume thati € T \ {0,1} is a coatom. The

undermentioned  operation N(i,v):T2—>T is an

idempotent uninorm that possesses an identity i.

(f/\l if (f,1) € [0,i]?> U H; X H;
UH; x[0,i[V [0,i[ X H,,
Niw (D =1Ff if (f,1) € H; x {i}, (35)
l if (f,1) €{i} x H,,
1 otherwise.

Remark 3.14. Assume that i € T\ {0,1}, ®:[0,i]* -»
[0,i] isat-norm and a: T — T is an interior operator. For
uninorms on bounded lattices, we formulate a novel
generation procedure in Theorem. 3.10. Specifically,

(i) if we choose f and [ from H;, then our technique puts
for Ny (f, 1) the output f A I while the one described in
Theorem 11 by Cayli (2019) puts for N(f,[) the output
D(f ALLAD. IF (f,D € [0,i[2U [0,i[x H; U H; X [0,i],
in our technique Ny,)(f,1) =a(f)Aa(l) while in
Theorem 11 provided by Cayh (2019) N(f,1) = @(f A
i,I AD).On the other hand, both techniques match up in
the remainder domains;

(ii) if we choose f and I from H;, then our technique puts
for Ny (f, 1) the output f Al while the one proposed in
Theorem 3.10 by Gayh (2021) puts for N(f, ) the output
o(f) Ao (). On the other hand, both techniques equal in
the remainder domains;

(iii) if we choose f and [ from H;, then our technique puts
for Ny (f, 1) the output f Al while the one in Theorem
3.12 by Gayli (2021) puts for N(f,1) the output a(f) A
o) . If (f,)€0,i[?uV[0,i[x H; UH; X [0,i[, in our
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technique N(0)(f,1) = a(f) Aa(l) while in Theorem
3.12 presented by Cayh (2021) N(f,) =@ (f,l) for
(f,D €[0,i[%, and N(f,1) = f Al for (f,1) €[0,i[x
H; UH; x[0,i[. On the other hand, both techniques
match up in the remainder domains;

(iv) if we choose f and [ from H;, then our technique puts
for N (f, 1) the output f Al while the one in Corollary
4.2 introduced by Zhao and Wu (2021) puts for N(f, 1) the
output a(f) Aa(D). If (f,1) € [0,i[2U [0,i[x H; U H; X
[0,1[, in our technique N(0)(f,1) = a(f) A a(l) while in
Corollary 4.2 introduced by Zhao and Wu (2021) N(f, 1) =
0. On the other hand, both techniques equal in the
remainder domains.

Remark 3.15. Let i € T \ {0,1}. If we specify the interior
operatorg:T = T by g(l) = lforalll € T, we obtain the
statements listed below:

(i) the uninorm N5y in Theorem 3.10 matches up to the
uninorm presented in Theorem 3.10 by Cayli (2021);

(ii) the uninorm N4y in Theorem 3.10 matches up to the
uninorm provided in Theorem 3.12 by Cayli (2021) when
defining the t-norm @: [0, i]?> — [0, {] such that & = @*;
(iii) the uninorm Ny in Theorem 3.10 matches up to the
uninorm stated in Corollary 4.4 by Zhao and Wu (2021) if
fillf, for all f; €]0,i],f, € H; and the t-norm
@: [0,i]?> - [0,1] is defined by @ = @".

Analogously to Examples 3.7 and 3.8, we can illustrate
that the uninorm established by Theorem 3.10 does not
need to match up to those that are described in (Cayh
2019, 2021, Zhao and Wu 2021).

4. Conclusions

Uninorms have been thoroughly explored on bounded
lattices similar to the way their investigations on the unit
interval. Constructing uninorms has emerged on bounded
lattices as a fascinating field of research recently. In this
article, a novel method was presented to create uninorms
possessing an identity i € T \ {0,1} on a bounded lattice
T that benefit from both a closure operator § and a t-
norm @ on T. Subsequently, we developed a dual
construction mean for uninorms on T with the underlying
not only the interior operator ¢ but also the t-conorm ¥
on T. We acquired on bounded lattices two forms of
idempotent uninorms as a consequence of these
techniques. For a better comprehension of the newly
developed uninorms, some illustrated examples were
also presented. Moreover, we examined the relative
advantages of our tools against various techniques
previously outlined in (Cayl 2019, 2021, Zhao and Wu
2021). We came to the conclusion that the approaches in

this article do not have to match up to those found in the
literature.
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