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Abstract 

Uninorms generalizing triangular norms and triangular conorms 
on bounded lattices have attracted considerable attention 
recently. In this article, two new approaches are suggested to 
generate uninorms with an identity element on a bounded 
lattice. These approaches exploit the existences of a triangular 
norm (triangular conorm) and a closure operator (interior 
operator) on a bounded lattice. Meanwhile, two structures of 
idempotent uninorms on bounded lattices are obtained. In 
addition, the relationship between the proposed approaches 
and the existing constructions is investigated.  

 
Keywords: Bounded lattice; Uninorm; Closure operator; Interior 
operator

Öz 
Sınırlı kafesler üzerinde üçgensel normları ve üçgensel 
konormları genelleştiren uninormlar son zamanlarda oldukça ilgi 
çekmiştir. Bu makalede bir sınırlı kafes üzerinde bir birim 
elemanlı uninormları üreten iki yeni yaklaşım önerilmektedir. Bu 
yaklaşımlar, bir sınırlı kafes üzerinde bir üçgensel normun 
(üçgensel konormun) ve bir kapanış operatörün (iç operatörün) 
varlıklarından yararlanmaktadır. Bu esnada, sınırlı kafesler 
üzerinde idempotent uninormların iki yapısı elde edilmektedir. 
Ayrıca, önerilen yaklaşımlar ve mevcut inşaalar arasındaki ilişki 
araştırılmaktadır. 
 
Anahtar Kelimeler:Sınırlı kafes; Uninorm; Kapanış operatörü; İç 
opertatör 

  

 

1. Introduction 

Menger (1942) developed the notions of triangular 

norms, also known as t-norms, and triangular conorms, 

also known as t-conorms. Their thorough investigations 

were conducted on the unit interval by Schweizer and 

Sklar (1963,1983). Additionally, they applied t-norms and 

t-conorms to expand the familiar triangle inequality on 

metric spaces to probabilistic metric spaces. Numerous 

fields have demonstrated the significance of t-norms and 

t-conorms, including fuzzy systems modeling, decision-

making, probabilistic metric spaces, information 

aggregation, fuzzy set theory, fuzzy logic (Beliakov et al. 

2007, Dubios and Prade 1995, 2000, Klement et al. 2000, 

2004a, 2004b).Yager and Rybalov (1996) proposed 

uninorms on the unit interval [0, 1], which constitute 

substantial expansions of t-norms and t-conorms. Fodor 

et al. (1997) performed an extensive research on them. As 

opposed to point 1 (the circumstance that exists for t-

norms) or point 0 (the circumstance that exists for t-

conorms), uninorms permit the position of their identity 

anywhere on the unit interval. The composition of these 

operators is closely associated with that of t-norms and t-

conorms. This characteristic has been invaluable in 

theoretical (De Baets 1999, De Baets et al. 2009, Drewniak 

and Drygaś 2002) and practical examinations of uninorms, 

especially neural networks (Benítez 1997), fuzzy system 

modeling (Takács 2008, Yager 1994, 2001), image 

processing (González-Hidalgo et al. 2015), decision-

making (Yager 2003). 

Recent works address uninorms as a component of fuzzy 

logic and fuzzy set theory, substituting bounded lattices 

for the unit interval. Bounded lattices were included in 

the description of uninorms on the unit interval by Karaçal 

and Mesiar (2015). They also determined that on a 

bounded lattice, there are always the greatest and 

smallest uninorms. Hitherto, a great deal of examination 

has concentrated on uninorms, specifically on how to 

generate uninorms, on bounded lattices with more in- 

tricate framework than the unit interval. Some generation 

techniques for uninorms exploting t-norms and t-

conorms were provided on a bounded lattice by 

Bodjanova and Kalina (2018, 2019). Afterward, two types 

of approaches were suggested by Çaylı et al. (2019) to 

acquire uninorms being internal and locally internal that 

have an identity on a bounded lattice. Idempotent 

uninorms were examined on bounded lattices structurally 

by Çaylı (2019). In further research, Dan et al. (2019) 

demonstrated on bounded lattices the availability of 

different forms of uninorms composed of t-norms and t-

conorms. Two methods for receiving uninorms by way of 
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only one of the t-conorm and the t-norm were enhanced 

on a bounded lattice by Dan and Hu (2020). Numerous 

studies have been conducted about uninorms on 

bounded lattices (Çaylı 2019, 2020, 2021, He and Wang 

2021, Hua and Ji 2022, Sun and Liu 2022, Zhao and Wu 

2021). 

Ouyang and Zhang (2020) suggested two ways to build 

uninorms that possess the identity  𝑖 ∈ 𝑇 ∖ {0,1} through 

interior and closure operators on a bounded lattice 𝑇.  

Their techniques generated by only one of the t-conorm 

𝛹 on [𝑖, 1]2 and the t-norm 𝛷 on [0, 𝑖]2 can be seen as 

expansions of the findings from (Karaçal and Mesiar 

2015). We describe two new techniques in this study that 

present uninorms possessing an identity 𝑖, provided that 

certain necessary and sufficient requirements are 

fulfilled. When examining the closure and interior 

operators 𝛿, 𝜎: 𝑇 → 𝑇, we identify two forms of the 

uninorms 𝑁(𝛿) and 𝑁(𝜎) by means of a t-conorm 𝛹 on 

[𝑖, 1]2 or a t-norm 𝛷 on [0, 𝑖]2, respectively. As an 

efficient result, two forms of idempotent uninorms are 

presented on bounded lattices. We explore the 

correspondence between the uninorms developed by our 

techniques and those outlined in (Çaylı 2019, 2021, Zhao 

and Wu 2021). Specifically, when we permit the interior 

operator 𝜎 on 𝑇 to be 𝜎 (𝑙)  =  𝑙 for all 𝑙 ∈  𝑇, the 

uninorm 𝑁(𝜎) matches up to the uninorms found in (Çaylı 

2021) with the infimum t-norm on [0, 𝑖]2. Furthermore, if 

we take account of the closure operator 𝛿 on 𝑇 defined 

by 𝛿 (𝑙)  =  𝑙 for all 𝑙 ∈  𝑇, the uninorm 𝑁(𝛿) matches up 

to the uninorms in (Çaylı 2021) on the basis of supremum 

t-conorm on [𝑖, 1]2. To further demonstrate that our 

methods do not need to match up to the established ones 

in (Çaylı 2019, 2021, Zhao and Wu 2021), we also provide 

a few illustrated cases. Interior and closure operators on 

bounded lattices are important tools for generating new 

forms of uninorms. Thereupon, from a mathematical 

standpoint, such forms of uninorms are highly fascinating 

analyses on bounded lattices. 

This article is drawn up as follows for the remainder: Main 

characteristics and definition of uninorms on bounded 

lattices are given in Part 2. Part 3 indicates two innovative 

techniques for providing uninorms on a bounded lattice 

𝑇, considering an additional criteria on the element 𝑖 ∈

𝑇 ∖ {0,1} that serves as an identity. These techniques 

utilize a t-conorm 𝛹 on [𝑖, 1]2 and an interior operator on 

𝑇, or a t-norm 𝛷 on [0, 𝑖]2 and a closure operator on 𝑇. 

Two forms of idempotent uninorms are acquired on 

bounded lattices instantaneously. Moreover, we discuss 

on how our approaches relate to the established ones in 

literature. To highlight the distinctions between our tools 

and the structures suggested in (Çaylı 2019, 2021, Zhao 

and Wu 2021), we correspondingly offer a few instances. 

The findings drawn from our discussion are reviewed in 

the concluding part. 

2. Preliminaries 

The basic ideas and findings of bounded lattices (for 

further detail, see, for example, (Birkhoff 1967)) and 

uninorms on them are reviewed in this part.A binary 

relation ≤ is an order relation if it is reflexive, 

antisymmetric and transitive. A nonempty set 𝑇 with an 

order relation ≤ is said to be a poset that is written as 

(𝑇, ≤). For the elements 𝑓, 𝑙 ∈ 𝑇, if 𝑓 ≤ 𝑙 and 𝑓 ≠ 𝑙, then 

the notation 𝑓 < 𝑙 is used. If 𝑓 and 𝑙 are incomparable 

(that is neither 𝑓 ≤ 𝑙 nor 𝑙 < 𝑓), the notation 𝑓 ∥  𝑙 is 

used. The set of all elements incomparable to 𝑓 is 

denoted as 𝐻𝑓  (that is 𝐻𝑓 = {𝑢 ∈ 𝑇 ∶ 𝑓 ∥ 𝑢 }). For a subset 

𝐴 of 𝑇, the element 𝑘 ∈ 𝐴 is said to be a gratest (resp. 

smallest) element of A when 𝑢 ≤ 𝑘 (resp. 𝑢 ≤ 𝑘) for all 

𝑢 ∈ 𝐴. If a poset (𝑇, ≤) has smallest (also known as 

bottom) and greatest (also known as top) elements, then 

it is said to be a bounded poset. 

A poset (𝑇, ≤) is said to be a lattice if, for any two 

elements 𝑓, 𝑙 ∈ 𝑇, they have a smallest upper bound 

(called join or supremum), written as 𝑓 ∨ 𝑙, and a greatest 

lower bound (called meet or infimum), written as 𝑓 ∧ 𝑙. 

Unless otherwise indicated in this article, 𝑇 represents a 

bounded lattice (𝑇, ≤ ,0,1) that possesses the bottom 

and the top elements, which are represented by 0 and 1, 

respectively. 

Given the elements 𝑓, 𝑙 ∈ 𝑇 satisfying that 𝑓 ≤ 𝑙, the 

subinterval [𝑓, 𝑙] of 𝑇 is stated by [𝑓, 𝑙] = {𝑢 ∈ 𝑇 ∶  𝑓 ≤

𝑢 ≤ 𝑙}. 

Similarly, we can give the subintervals [𝑓, 𝑙[, ]𝑓, 𝑙], and 

]𝑓, 𝑙[ of 𝑇. Notice that ([𝑓, 𝑙], ≤) is a bounded lattice that 

possesses the top and bottom elements, represented by 

𝑙 and 𝑓, respectively.  

Definition 2.1. (Çaylı et al. 2019, Karaçal and Mesiar 2015) 

A binary operation 𝑁: 𝑇2 → 𝑇 is called a uninorm if, for 

any 𝑓, 𝑙, 𝑘 ∈ 𝑇, the requirements listed below are met: 

(i) 𝑁(𝑙, 𝑓) = 𝑁(𝑓, 𝑙) (commutativity); 

(ii) If 𝑙 ≤ 𝑓, then 𝑁(𝑙, 𝑘) ≤ 𝑁(𝑓, 𝑘) (increasingness); 

(iii) 𝑁(𝑙, 𝑁(𝑓, 𝑘)) = 𝑁(𝑁(𝑙, 𝑓), 𝑘) (associativity); 

(iv) An element 𝑖 ∈ 𝑇 exists, called an identity, satisfying 

that 𝑁(𝑙, 𝑖) = 𝑙 (identity). 

In especial, a uninorm 𝑁 becomes a t-conorm 𝛹 when 𝑖 =

0 and a t-norm 𝛷 when 𝑖 = 1. 

Example 2.1. (i) The greatest t-norm 𝛷∧: [𝑓, 𝑙]2 → [𝑓, 𝑙] is 

delineated by 𝛷∧(𝑢, 𝑘) = 𝑢 ∧ 𝑘 for all 𝑢, 𝑘 ∈ [𝑓, 𝑙]. The 

fact remains that the smallest t-norm 𝛷𝑊: [𝑓, 𝑙]2 → [𝑓, 𝑙] 
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gets the value of 𝑢 ∧ 𝑘 if 𝑙 ∈ {𝑢, 𝑘} and 𝑓 otherwise. 

Accordingly, for any t-norm 𝛷 on [𝑓, 𝑙]2, the inequality 

𝛷𝑊 ≤ 𝛷 ≤ 𝛷∧ is obtained. 

(ii) The smallest t-conorm Ψ∨: [𝑓, 𝑙]2 → [𝑓, 𝑙] is 

delineated by Ψ∨(𝑢, 𝑘)  =  𝑢 ∨ 𝑘 for all 𝑢, 𝑘 ∈ [𝑓, 𝑙]. The 

fact remains that the greatest t-conorm Ψ𝑊: [𝑓, 𝑙]2 →

[𝑓, 𝑙] gets the value of 𝑢 ∨ 𝑘 if 𝑓 ∈ {𝑢, 𝑘} and 𝑙 otherwise. 

Accordingly, for any t-conorm 𝛹 on [𝑓, 𝑙]2, the inequality 

Ψ∨ ≤ 𝛹 ≤ Ψ𝑊 is obtained. 

Definition 2.2. (Drossos 1999, Drossos and Navara 1996, 

Everett 1994) A operation 𝛿: 𝑇 → 𝑇 is called a closure 

operator if, for any elements 𝑓, 𝑙 ∈ 𝑇, the requirements 

listed below are met: 

(i) 𝑙 ≤ 𝛿(𝑙) (expansion); 

(ii) 𝛿(𝑙 ∨ 𝑓) = 𝛿(𝑙) ∨ 𝛿(𝑓) (preservation  of  join); 

(iii) 𝛿(𝛿(𝑙)) = 𝛿(𝑙) (idempotence). 

Definition 2.3. (Drossos 1999, Drossos and Navara 1996, 

Everett 1994) A operation 𝜎: 𝑇 → 𝑇 is called an interior 

operator if, for any elements 𝑓, 𝑙 ∈ 𝑇, the requirements 

listed below are met: 

(i) 𝜎(𝑙) ≤ 𝑙 (contraction); 

(ii) 𝜎(𝑓 ∧ 𝑙) = 𝜎(𝑓) ∧ 𝜎(𝑙) (preservation of meet); 

(iii) 𝜎(𝜎(𝑙)) = 𝜎(𝑙) (idempotence). 
 

3. Construction techniques for uninorms 

This part presents a novel technique for creating the 

uninorm 𝑁(𝛿) on a bounded lattice 𝑇 that possesses an 

identity 𝑖, as shown in Theorem 3.1. Notably, it makes use 

of both a closure operator 𝛿: 𝑇 → 𝑇 and a t-norm 

𝛷: [0, 𝑖]2 → [0, 𝑖]. Additionally, we suggest an alternative 

approach in Theorem 3.10 for building uninorm 𝑁(𝜎) on a 

bounded lattice 𝑇 that possesses an identity 𝑖. This 

approach uses the presences of an interior operator 

𝜎: 𝑇 → 𝑇 and a t-conorm Ψ: [𝑖, 1]2 → [𝑖, 1]. 

Theorem 3.1. Assume that 𝑖 ∈ 𝑇 ∖ {0,1} and 𝛷: [0, 𝑖]2 →

[0, 𝑖] is a t-norm. The undermentioned operation 

𝑁(𝛿): 𝑇
2 → 𝑇 is a uninorm that possesses an identity 𝑖 for 

every closure operator 𝛿: 𝑇 → 𝑇 iff 𝑎 > 𝑏 and 𝑑 ∨ 𝑎 ∈

𝐻𝑖 ∪ {1} for all 𝑑, 𝑎 ∈ 𝐻𝑖  and 𝑏 ∈ [0, 𝑖[. 

𝑁(𝛿)(𝑓, 𝑙) =

{
 
 
 

 
 
 
𝛷(𝑓, 𝑙)  if (𝑓, 𝑙) ∈ [0, 𝑖]2,

𝑓 ∧ 𝑙
if (𝑓, 𝑙) ∈ [0, 𝑖[ × 𝐻𝑖 ∪ 𝐻𝑖 × [0, 𝑖[

      ∪ [0, 𝑖[ × [𝑖, 1] ∪ [𝑖, 1] × [0, 𝑖[,

𝑓  if (𝑓, 𝑙) ∈ (𝐻𝑖 ∪ [𝑖, 1]) × {𝑖},

𝑙  if (𝑓, 𝑙) ∈ {𝑖} × (𝐻𝑖 ∪ [𝑖, 1]),

𝑓 ∨ 𝑙  if (𝑓, 𝑙) ∈ 𝐻𝑖 × 𝐻𝑖 ,
𝛿(𝑓) ∨ 𝛿(𝑙)  otherwise.

        (1) 

Proof: Necessity: Presume that the operation 𝑁(𝛿) is a 

uninorm on 𝑇 that possesses an identity i. We describe 

that 𝑎 > 𝑏 for all 𝑎 ∈ 𝐻𝑖, 𝑏 ∈ [0, 𝑖[ . Letting that there are 

some elements 𝑎 ∈ 𝐻𝑖 , 𝑏 ∈ ]0, 𝑖[ with 𝑎 ∥ 𝑏, we receive 

that 

𝑁(𝛿)(𝑏, 𝑁(𝛿)(𝑎, 1)) = 𝑁(𝛿)(𝑏, 𝛿 (𝑎) ∨ 𝛿 (1)) 

⬚ = 𝑁(𝛿)(𝑏, 1)

⬚ = 𝑏 ∧ 1 = 𝑏,

              (2) 

and 

𝑁(𝛿)(𝑁(𝛿)(𝑏, 𝑎), 1) = 𝑁(𝛿)(𝑏 ∧  𝑎, 1) 

⬚ =  𝑏 ∧ 𝑎 ∧ 1 = 𝑏 ∧ 𝑎.
                     (3) 

Since 𝑎 ∥ 𝑏, the associativity feature of 𝑁(𝛿) is 

contradicted. Therefore, 𝑎 > 𝑏 for all 𝑎 ∈ 𝐻𝑖, 𝑏 ∈ ]0, 𝑖[ . 

Now, we demonstrate 𝑑 ∨ 𝑎 ∈ 𝐻𝑖 ∪ {1} for all 𝑑, 𝑎 ∈ 𝐻𝑖. 

Presume that there are some elements 𝑑, 𝑎 ∈ 𝐻𝑖  with 𝑖 <

𝑑 ∨ 𝑎 < 1. In this case, for the closure operator 𝛿: 𝑇 → 𝑇 

presented by 𝛿 (𝑙) = 1 for all 𝑙 ∈ 𝑇, we get that 

𝑁(𝛿)(𝑑, 𝑁(𝛿)(𝑎, 𝑎)) = 𝑁(𝛿)(𝑑, 𝑎 ∨  𝑎) 

⬚ = 𝑁(𝛿)(𝑑, 𝑎) = 𝑑 ∨ 𝑎,
                    (4) 

and 

𝑁(𝛿)(𝑁(𝛿)(𝑑, 𝑎), 𝑎) = 𝑁(𝛿)(𝑑 ∨  𝑎, 𝑎) 

⬚ = 𝛿(𝑑 ∨ 𝑎) ∨ 𝛿(𝑎)

⬚ = 𝛿(𝑑 ∨ 𝑎) = 1.

                         (5) 

Then the associativity feature of 𝑁(𝛿) is contradicted. 

Therefore, 𝑑 ∨ 𝑎 ∈ 𝐻𝑖 ∪ {1} for all 𝑑, 𝑎 ∈ 𝐻𝑖. 

Sufficiency: Presume that 𝑎 > 𝑏 and 𝑑 ∨ 𝑎 ∈ 𝐻𝑖 ∪ {1} for 

all 𝑑, 𝑎 ∈ 𝐻𝑖  and 𝑏 ∈ [0, 𝑖[. We bring out that the 

operation 𝑁(𝛿) is a uninorm on 𝑇 that possesses an 

identity 𝑖. Clearly, 𝑁(𝛿) is commutative and the element 𝑖 

is an identity of 𝑁(𝛿). Hence, it remains to verify that 𝑁(𝛿) 

is associative and increasing.  

(i) Increasingness: We prove that, for all 𝑓, 𝑙, 𝑘 ∈ 𝑇, 

𝑁(𝛿)(𝑓, 𝑘) ≤ 𝑁(𝛿)(𝑙, 𝑘) if 𝑓 ≤ 𝑙. If 𝑘 = 𝑖, then 

𝑁(𝛿)(𝑓, 𝑘) = 𝑁(𝛿)(𝑓, 𝑖)  =  𝑓 

⬚ ≤  𝑙 = 𝑁(𝛿)(𝑙, 𝑖) =  𝑁(𝛿)(𝑙, 𝑘).
                    (6) 

If (𝑓, 𝑙) ∈ [0, 𝑖[2∪ {𝑖}2 ∪]𝑖, 1]2 ∪ 𝐻𝑖
2, the increasingness 

is obtained. Thence, we deal with all remaining possible 

cases. 

(i-1) Let 𝑓 ∈ [0, 𝑖[. 

• 𝑙 = 𝑖 and 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑘) = 𝛷(𝑓, 𝑘) ≤ 𝑘 = 𝑁(𝛿)(𝑖, 𝑘) = 𝑁(𝛿)(𝑙, 𝑘).     (7) 

• 𝑙 = 𝑖 and 𝑘 ∈]𝑖, 1] ∪ 𝐻𝑖 , 

𝑁(𝛿)(𝑓, 𝑘) = 𝑓 ∧ 𝑘 ≤ 𝑘 = 𝑁(𝛿)(𝑖, 𝑘) = 𝑁(𝛿)(𝑙, 𝑘).         (8) 

• 𝑙 ∈]𝑖, 1] ∪ 𝐻𝑖  and 𝑘 ∈ [0, 𝑖[ , 

𝑁(𝛿)(𝑓, 𝑘) = 𝛷(𝑓, 𝑘) ≤ 𝑙 ∧ 𝑘 = 𝑁(𝛿)(𝑙, 𝑘).                     (9) 

• (𝑙 ∈ ]𝑖, 1] ∪ 𝐻𝑖  and 𝑘 ∈]𝑖, 1]) or (𝑙 ∈]𝑖, 1] and    𝑘 ∈

𝐻𝑖), 

𝑁(𝛿)(𝑓, 𝑘) = 𝑓 ∧ 𝑘 ≤ 𝛿(𝑙) ∨ 𝛿(𝑘) = 𝑁(𝛿)(𝑙, 𝑘).           (10) 
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• 𝑙, 𝑘 ∈ 𝐻𝑖, 

𝑁(𝛿)(𝑓, 𝑘) = 𝑓 ∧ 𝑘 ≤ 𝑙 ∨ 𝑘 = 𝑁(𝛿)(𝑙, 𝑘).                       (11) 

(i-2) Let 𝑓 = 𝑖 and 𝑙 ∈]𝑖, 1]. 

• 𝑘 ∈ [0, 𝑖[ , 

𝑁(𝛿)(𝑓, 𝑘) = 𝑁(𝛿)(𝑖, 𝑘) = 𝑘 = 𝑙 ∧ 𝑘 = 𝑁(𝛿)(𝑙, 𝑘).        (12) 

• 𝑘 ∈]𝑖, 1] ∪ 𝐻𝑖 , 

𝑁(𝛿)(𝑓, 𝑘) = 𝑘 ≤ 𝛿(𝑙) ∨ 𝛿(𝑘) = 𝑁(𝛿)(𝑙, 𝑘).                (13) 

(i-3) Let 𝑓 ∈ 𝐻𝑖  and 𝑙 ∈]𝑖, 1] . 

• 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑘) = 𝑓 ∧ 𝑘 ≤ 𝑙 ∧ 𝑘 = 𝑁(𝛿)(𝑙, 𝑘).                       (14) 

• 𝑘 ∈]𝑖, 1], 

𝑁(𝛿)(𝑓, 𝑘) = 𝛿(𝑓) ∨ 𝛿(𝑘) ≤ 𝛿(𝑙) ∨ 𝛿(𝑘) = 𝑁(𝛿)(𝑙, 𝑘).              

                       (15)         

• 𝑘 ∈ 𝐻𝑖, 

𝑁(𝛿)(𝑓, 𝑘) = 𝑓 ∨ 𝑘 ≤ 𝛿(𝑙) ∨ 𝛿(𝑘) = 𝑁(𝛿)(𝑙, 𝑘).           (16) 

(ii) Associativity: We prove that for all 𝑓, 𝑙, 𝑘 ∈ 𝑇, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘). 

The associativity holds if 𝑖 ∈ {𝑓, 𝑙, 𝑘}. Thence, we deal 

with all remaining possible cases. 

(ii-1) Let 𝑓 ∈ [0, 𝑖[ . 

• 𝑙, 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝛷(𝑙, 𝑘)) 

⬚ = 𝛷(𝑓, 𝛷(𝑙, 𝑘))

⬚ = 𝑁(𝛿)(𝛷(𝑓, 𝑙), 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

                    (17) 

• 𝑙 ∈ [0, 𝑖[ and 𝑘 ∈]𝑖, 1] ∪ 𝐻𝑖 , 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝑙 ∧ 𝑘) = 𝑁(𝛿)(𝑓, 𝑙)

⬚ = 𝛷(𝑓, 𝑙) = 𝛷(𝑓, 𝑙) ∧ 𝑘

⬚ = 𝑁(𝛿)(𝛷(𝑓, 𝑙), 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

       (18) 

• 𝑙 ∈]𝑖, 1] ∪ 𝐻𝑖  and 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝑙 ∧ 𝑘) = 𝑁(𝛿)(𝑓, 𝑘)

⬚ = 𝑁(𝛿)(𝑓 ∧ 𝑙, 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

      (19) 

• (𝑙 ∈ ]𝑖, 1] ∪ 𝐻𝑖  and 𝑘 ∈]𝑖, 1]) or (𝑙 ∈]𝑖, 1] and    𝑘 ∈

𝐻𝑖), 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝛿(𝑙) ∨ 𝛿(𝑘))

⬚ = 𝑓 ∧ (𝛿(𝑙) ∨ 𝛿(𝑘)) = 𝑓

⬚ = 𝑁(𝛿)(𝑓, 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

             (20) 

• 𝑙, 𝑘 ∈ 𝐻𝑖, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝑙 ∨ 𝑘) = 𝑓 ∧ (𝑙 ∨ 𝑘) 

⬚ = 𝑓 = 𝑁(𝛿)(𝑓, 𝑘) 

⬚ = 𝑁(𝛿)(𝑓 ∧ 𝑙, 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

   (21) 

(ii-2) Let 𝑓 ∈]𝑖, 1] ∪ 𝐻𝑖 . 

• 𝑙, 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝛷(𝑙, 𝑘)) 

⬚ = 𝑓 ∧ 𝛷(𝑙, 𝑘) = 𝛷(𝑙, 𝑘)

⬚ = 𝑁(𝛿)(𝑙, 𝑘) = 𝑁(𝛿)(𝑓 ∧ 𝑙, 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

       (22) 

• 𝑙 ∈ [0, 𝑖[ and 𝑘 ∈ ]𝑖, 1] ∪ 𝐻𝑖 , 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝑙 ∧ 𝑘) 

⬚ = 𝑁(𝛿)(𝑓, 𝑙) = 𝑙 

⬚ = 𝑁(𝛿)(𝑙, 𝑘) = 𝑁(𝛿)(𝑓 ∧ 𝑙, 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

       (23) 

(ii-3) Let 𝑓 ∈ 𝐻𝑖  and 𝑙 ∈ ]𝑖, 1]. 

• 𝑘 ∈ [0, 𝑖[, 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝑙 ∧ 𝑘)

⬚ = 𝑁(𝛿)(𝑓, 𝑘) = 𝑘

⬚ = 𝑁(𝛿)(𝛿(𝑓) ∨ 𝛿(𝑙), 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

                 (24) 

• 𝑘 ∈ ]𝑖, 1] ∪ 𝐻𝑖 , 

𝑁(𝛿)(𝑓, 𝑁(𝛿)(𝑙, 𝑘)) = 𝑁(𝛿)(𝑓, 𝛿 (𝑙) ∨ 𝛿(𝑘))

⬚ = 𝛿(𝑓) ∨ 𝛿(𝑙) ∨ 𝛿(𝑘)

⬚ = 𝑁(𝛿)(𝛿 (𝑓) ∨ 𝛿 (𝑙), 𝑘)

⬚ = 𝑁(𝛿)(𝑁(𝛿)(𝑓, 𝑙), 𝑘).

               (25) 

Similarly, for the cases 𝑓 ∈]𝑖, 1] or 𝑓, 𝑙 ∈ 𝐻𝑖, the 

associativity hold. 

Thence, 𝑁(𝛿) is a commutative, associative, and increasing 

operation on 𝑇 that possesses an identity 𝑖. 

Consequently, 𝑁(𝛿) is a uninorm on 𝑇. 

If we delimitate the closure operator 𝛿: 𝑇 → 𝑇 by 𝛿(𝑙) =

𝑙 for all 𝑙 ∈ 𝑇, the structure that corresponds to the 

uninorm in Theorem 3.1 is as follows: 

Corollary 3.2. Assume that 𝑖 ∈ 𝑇 ∖ {0,1} and 𝛷: [0, 𝑖]2 →

[0, 𝑖] is a t-norm. The undermentioned operation 

𝑁(𝛷): 𝑇
2 → 𝑇 is a uninorm that possesses an identity 𝑖 iff 

𝑎 > 𝑏 for all 𝑎 ∈ 𝐻𝑖  and 𝑏 ∈ [0, 𝑖[. 
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𝑁(𝛷)(𝑓, 𝑙) =

{
  
 

  
 
𝛷(𝑓, 𝑙)  if (𝑓, 𝑙) ∈ [0, 𝑖]2,

𝑓 ∧ 𝑙
if (𝑓, 𝑙) ∈ [0, 𝑖[ × 𝐻𝑖 ∪ 𝐻𝑖 × [0, 𝑖[

      ∪ [0, 𝑖[ × [𝑖, 1] ∪ [𝑖, 1] × [0, 𝑖[,

𝑓  if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙  if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,
𝑓 ∨ 𝑙  otherwise.

              (26) 

Take a note that the uninorm 𝑁(𝛷): 𝑇
2 → 𝑇 in Corollary 

3.2 is equivalent to the one introduced in Theorem 6 by 

Çaylı (2019). Hence, the uninorm 𝑁(𝛿): 𝑇
2 → 𝑇 in 

Theorem 3.1 encompasses, as a specific case, the 

uninorm constructed in Theorem 6 by Çaylı (2019). 

Moreover, when taking in Corollary 3.2 the t-norm 

𝛷: [0, 𝑖]2 → [0, 𝑖] determined by 𝛷 = 𝛷∧, we get 

Corollary 3.3 that presents the appearance of an 

idempotent uninorm on bounded lattices. 

Corollary 3.3. Assume that 𝑖 ∈ 𝑇 ∖ {0,1}. The 

undermentioned operation 𝑁(∧): 𝑇
2 → 𝑇 is an 

idempotent uninorm that possesses an identity i iff 𝑎 > 𝑏 

for all 𝑎 ∈ 𝐻𝑖  and 𝑏 ∈ [0, 𝑖[. 

𝑁(∧)(𝑓, 𝑙) =

{
 
 

 
 𝑓 ∨ 𝑙

if (𝑓, 𝑙) ∈ [𝑖, 1]2 ∪ 𝐻𝑖 × 𝐻𝑖
    ∪ ]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 × ]𝑖, 1],

𝑓   if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙   if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,
𝑓 ∧ 𝑙   otherwise.

      (27) 

If we admit being an atom of the element 𝑖 ∈ 𝑇 ∖ {0,1}, 

the structure that corresponds to the uninorm in 

Corollary 3.2 is as follows: 

Corollary 3.4 Assume that 𝑖 ∈ 𝑇 ∖ {0,1} is an atom. The 

undermentioned operation 𝑁(𝑖,∧): 𝑇
2 → 𝑇 is an 

idempotent uninorm that possesses an identity i. 

𝑁(𝑖,∧)(𝑓, 𝑙) =

{
 
 

 
 𝑓 ∨ 𝑙

if (𝑓, 𝑙) ∈ [𝑖, 1]2 ∪ 𝐻𝑖 × 𝐻𝑖
    ∪ ]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 × ]𝑖, 1],

𝑓   if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙   if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,
0   otherwise.

    (28) 

Remark 3.5. Assume that 𝑖 ∈ 𝑇 ∖ {0,1}, Ψ: [𝑖, 1]2 →

[𝑖, 1] is a t-conorm and 𝛿: 𝑇 → 𝑇 is a closure operator. 

We develop in Theorem 3.1 an innovative generation for 

uninorms on bounded lattices. Specifically, 

(i) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝛿)(𝑓, 𝑙) the output 𝑓 ∨ 𝑙 while the one described in 

Theorem 8 by Çaylı (2019) puts for 𝑁(𝑓, 𝑙) the output 

𝛹(𝑓 ∨ 𝑖, 𝑙 ∨ 𝑖). If (𝑓, 𝑙) ∈ ]𝑖, 1]2 ∪ ]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 × ]𝑖, 1], 

in our technique 𝑁(𝛿)(𝑓, 𝑙) = 𝛿(𝑓) ∨ 𝛿(𝑙) while in 

Theorem 8 determined by Çaylı (2019) 𝑁(𝑓, 𝑙) = 𝛹(𝑓 ∨

𝑖, 𝑙 ∨ 𝑖). On the other hand, both techniques equal in the 

remainder domains; 

(ii) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝛿)(𝑓, 𝑙) the output 𝑓 ∨ 𝑙 while the one presented in 

Theorem 3.1 by Çaylı (2021) puts for 𝑁(𝑓, 𝑙) the output 

𝛿(𝑓) ∨ 𝛿(𝑙). On the other hand, both techniques equal in 

the remainder domains; 

(iii) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝛿)(𝑓, 𝑙) the output 𝑓 ∨ 𝑙 while the one presented in 

Theorem 3.4 by Çaylı (2021) puts for 𝑁(𝑓, 𝑙) the output 

𝛿(𝑓) ∨ 𝛿(𝑙). If (𝑓, 𝑙) ∈ ]𝑖, 1]2 ∪ ]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 × ]𝑖, 1], 

in our technique 𝑁(𝛿)(𝑓, 𝑙) = 𝛿(𝑓) ∨ 𝛿(𝑙) while in 

Theorem 3.4 stated by Çaylı (2021) 𝑁(𝑓, 𝑙) = 𝛹(𝑓, 𝑙) for 

(𝑓, 𝑙) ∈ ]𝑖, 1]2 and 𝑁(𝑓, 𝑙) = 𝑓 ∨ 𝑙 for (𝑓, 𝑙) ∈  ]𝑖, 1] ×

𝐻𝑖 ∪ 𝐻𝑖 × ]𝑖, 1]. On the other hand, both techniques 

equal in the remainder domains; 

(iv) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝛿)(𝑓, 𝑙) the output 𝑓 ∨ 𝑙 while the one proposed in 

Proposition 3.5 by Zhao and Wu (2021) puts for 𝑁(𝑓, 𝑙) 

the output 𝛿(𝑓) ∨ 𝛿(𝑙). If (𝑓, 𝑙) ∈ ]𝑖, 1]2 ∪ ]𝑖, 1] × 𝐻𝑖 ∪

𝐻𝑖 × ]𝑖, 1], in our technique 𝑁(𝛿)(𝑓, 𝑙) = 𝛿(𝑓) ∨ 𝛿(𝑙) 

while in Proposition 3.5 represented by Zhao and Wu 

(2021) 𝑁(𝑓, 𝑙) = 1. On the other hand, both techniques 

equal in the remainder domains. 

Remark 3.6. Assume that 𝑖 ∈ 𝑇 ∖ {0,1}. If we specify the 

closure operator 𝛿: 𝑇 → 𝑇 by 𝛿(𝑙) = 𝑙 for all 𝑙 ∈ 𝑇, then 

the below-mentioned statements are obtained: 

(i) 𝑁(𝛿) fits the definition of the uninorm described in 

Theorem 3.1 by Çaylı (2021); 

(ii) 𝑁(𝛿) fits the definition of the uninorm presented in 

Theorem 3.4 by Çaylı (2021) if defining the t- conorm 

Ψ: [𝑖, 1]2 → [𝑖, 1] such that 𝛹 = 𝛹∨; 

(iii) 𝑁(𝛿) fits the definition of the uninorm proposed in 

Proposition 3.6 by Zhao and Wu (2021) if 𝑙1 ∥ 𝑙2 for all 𝑙1 ∈

[𝑖, 1[ , 𝑙2 ∈ 𝐻𝑖  and the t-conorm Ψ: [𝑖, 1]2 → [𝑖, 1] is 

defined by 𝛹 = 𝛹∨. 

Observably, the uninorm depicted by the structure in 

Theorem 3.1 does not have to match those that are 

delineated in (Çaylı 2019, 2021, Zhao and Wu 2021). We 

show this assertion in the below-mentioned examples. 

Example 3.7. Take into consideration the lattice 𝑇1 

described by Hasse diagram in Figure 1 and the t-norm 

𝛷: [0, 𝑖]2 → [0, 𝑖] represented by 𝛷 = 𝛷∧. Identify the 

closure operator 𝛿: 𝑇1 → 𝑇1 by 𝛿(0) = 0, 𝛿(𝑖) = 𝑖, 

𝛿(𝑠) = 𝛿(𝑢) = 𝑢, 𝛿(𝑡) = 𝑡, 𝛿(𝑛) = 𝛿(𝑚) = 𝑚, 𝛿(𝑝) =

𝛿(𝑞) = 𝑞 and 𝛿(1) = 1. The uninorm 𝑁(𝛿)
1 : 𝑇1 × 𝑇1 → 𝑇1 

is presented in Table 1 with the help of the framework 
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established in Theorem 3.1. In that case, we obtain the 

statements listed below: 

(i) 𝑁(𝛿)
1  fulfills that 𝑁(𝛿)

1 (𝑛,𝑚) = 𝑚 and 𝑁(𝛿)
1 (𝑛, 𝑛) = 𝑛;  

(ii) the uninorm 𝑁1: 𝑇1 × 𝑇1 → 𝑇1 obtained by the 

generation mean in Theorem 8 in (Çaylı 2019) fulfills that 

𝑁1(𝑛,𝑚) = 1; 

(iii) the uninorms 𝑁2, 𝑁3: 𝑇1 × 𝑇1 → 𝑇1, respectively, built 

by techniques in Proposition 3.6 in (Zhao and Wu 2021) 

and Theorem 3.4 in (Çaylı 2021) fulfill that 𝑁2(𝑛, 𝑛) =

𝑁3(𝑛, 𝑛) = 𝑚. 

Hence, 𝑁(𝛿)
1  differs from the uninorms 𝑁1, 𝑁2 and 𝑁3 on 

𝑇1. 

 
Figure 1. The lattice 𝑇1 

Table 1. Uninorm 𝑁(𝛿)
1  on 𝑇1 

𝑵(𝜹)
𝟏  𝟎 𝒔 𝒖 𝒊 𝒕 𝒏 𝒎 𝒑 𝒒 𝟏 

𝟎 0 0 0 0 0 0 0 0 0 0 
𝒔 0 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 𝑠 
𝒖 0 𝑠 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 𝑢 
𝒊 0 𝑠 𝑢 𝑖 𝑡 𝑛 𝑚 𝑝 𝑞 1 
𝒕 0 𝑠 𝑢 𝑡 𝑡 1 1 1 1 1 
𝒏 0 𝑠 𝑢 𝑛 1 𝑛 𝑚 1 1 1 
𝒎 0 𝑠 𝑢 𝑚 1 𝑚 𝑚 1 1 1 
𝒑 0 𝑠 𝑢 𝑝 1 1 1 𝑞 𝑞 1 
𝒒 0 𝑠 𝑢 𝑞 1 1 1 𝑞 𝑞 1 
𝟏 0 𝑠 𝑢 1 1 1 1 1 1 1 

Example 3.8. Take into consideration the lattice 𝑇2 

depicted by Hasse diagram in Figure 2. Determine the 

closure operator 𝛿: 𝑇2 → 𝑇2 by 𝛿(0) = 0, 𝛿(𝑖) = 𝛿(𝑚) =

𝛿(𝑛) =  𝑛, 𝛿(𝑝) = 𝛿(𝑞) = 𝛿(𝑠) = 𝑠 and 𝛿(1)  =  1. The 

uninorm 𝑁(𝛿)
2 : 𝑇2 × 𝑇2 → 𝑇2 is presented in Table 2 with 

the help of the framework established in Theorem 3.1. In 

that case, we obtain the statements listed below: 

 (i) 𝑁(𝛿)
2  fulfills that 𝑁(𝛿)

2 (𝑝, 𝑞) = 𝑞;  

(ii) the uninorms 𝑁4, 𝑁5: 𝑇2 × 𝑇2 → 𝑇2, respectively, built 

by techniques in Theorem 3.4 in (Çaylı 2021)  and 

Proposition 3.5 in (Zhao and Wu 2021) fulfill that 

𝑁4(𝑝, 𝑞) = 𝑁5(𝑝, 𝑞) = 𝑠. 

Hence, 𝑁(𝛿)
2  differs from the uninorms, 𝑁4 and 𝑁5 on 𝑇2. 

 
Figure 2. The lattice 𝑇2 

 

Table 2. Uninorm 𝑁(𝛿)
2  on 𝑇2 

𝑵(𝜹)
𝟐  𝟎 𝒊 𝒑 𝒒 𝒔 𝒎 𝒏 𝟏 

𝟎 0 0 0 0 0 0 0 0 
𝒊 0 𝑖 𝑝 𝑞 𝑠 𝑚 𝑛 1 
𝒑 0 𝑝 𝑝 𝑞 𝑠 𝑛 𝑛 1 
𝒒 0 𝑞 𝑞 𝑞 𝑠 𝑛 𝑛 1 
𝒔 0 𝑠 𝑠 𝑠 𝑠 𝑛 𝑛 1 
𝒎 0 𝑚 𝑛 𝑛 𝑛 𝑛 𝑛 1 
𝒏 0 𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 1 
𝟏 0 1 1 1 1 1 1 1 

 

Remark 3.9. The uninorm 𝑁(𝛿) in Theorem 3.1 matches up 

to the t-conorm 𝛹′ on [𝑖, 1]2 stated by  

𝛹′ (𝑓, 𝑙) = {
𝛿(𝑓) ∨ 𝛿(𝑙)  if (𝑓, 𝑙) ∈ ]𝑖, 1]2,

𝑓 ∨ 𝑙  otherwise.
                (29) 

Nevertheless, 𝑁(𝛿) does not need to match up with any 

other t-conorm except 𝛹′ on [𝑖, 1]2. To indicate this 

assertion, assume that the closure operator 𝛿 on the 

lattice 𝑇2 in Figure 2 has the definition shown in Example 

3.8 and the uninorm 𝑁(𝛿)|[𝑖, 1]
2 is the t-conorm 

𝛹′′: [𝑖, 1]2 → [𝑖, 1] given in Table 3. 

Table 3. T-conorm 𝛹′′ on [𝑖, 1]2 

𝜳′′ 𝒊 𝒎 𝒏 𝟏 
𝒊 𝑖 𝑚 𝑛 1 
𝒎 𝑚 𝑚 1 1 
𝒏 𝑛 1 1 1 
𝟏 1 1 1 1 

Utilizing the structure manner described in Theorem 3.1, 

then we conclude that 

𝑁(𝛿) ((𝑁(𝛿)(𝑚,𝑚)), 𝑞) = 𝑁(𝛿)(𝛹′′(𝑚,𝑚), 𝑞)

⬚ = 𝑁(𝛿)(𝑚, 𝑞)

⬚ = 𝛿(𝑚) ∨ 𝛿(𝑞) = 𝑛 ∨ 𝑠 = 𝑛,

 

(30) 

and 
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𝑁(𝛿) (𝑚, (𝑁(𝛿)(𝑚, 𝑞))) = 𝑁(𝛿)(𝑚, 𝛿(𝑚) ∨ 𝛿(𝑞))

⬚ = 𝑁(𝛿)(𝑚, 𝑛)

⬚ = 𝛹′′(𝑚, 𝑛) = 1.

 

      (31) 

It contradicts the associativity property of 𝑁(𝛿). 

Consequently, 𝑁(𝛿) does not need to match up with any t-

conorm excluding 𝛹′ on [𝑖, 1]2. 

We develop in the below-mentioned Theorem 3.10 a dual 

generation process of uninorms on bounded lattices. 

Accordingly, we delineate the form of uninorm 𝑁(𝜎) that 

possesses an identity 𝑖 on 𝑇, exploiting a t-conorm 

Ψ: [𝑖, 1]2 → [𝑖, 1]  and an interior operator 𝜎 on 𝑇. 

Theorem 3.10. Assume that 𝑖 ∈ 𝑇 ∖ {0,1} and 𝛹: [𝑖, 1]2 →

[𝑖, 1] is a t-conorm. The undermentioned operation 

𝑁(𝜎): 𝑇
2 → 𝑇 is a uninorm that possesses an identity 𝑖 for 

every interior operator 𝜎: 𝑇 → 𝑇 iff 𝑎 < 𝑐 and 𝑑 ∧ 𝑎 ∈

𝐻𝑖 ∪ {0} for all 𝑑, 𝑎 ∈ 𝐻𝑖 , 𝑐 ∈]𝑖, 1]. 

𝑁(𝜎)(𝑓, 𝑙) =

{
 
 
 

 
 
 
𝛹(𝑓, 𝑙)  if (𝑓, 𝑙) ∈ [𝑖, 1]2,

𝑓 ∨ 𝑙
if (𝑓, 𝑙) ∈]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 ×]𝑖, 1]

      ∪]𝑖, 1] × [0, 𝑖] ∪ [0, 𝑖] ×]𝑖, 1],

𝑓  if (𝑓, 𝑙) ∈ (𝐻𝑖 ∪ [0, 𝑖]) × {𝑖},

𝑙  if (𝑓, 𝑙) ∈ {𝑖} × (𝐻𝑖 ∪ [0, 𝑖]),

𝑓 ∧ 𝑙  if (𝑓, 𝑙) ∈ 𝐻𝑖 × 𝐻𝑖 ,
𝜎(𝑓) ∧ 𝜎(𝑙)  otherwise.

       (32) 

Proof: It is proved using similar circumstances in that of 

Theorem 3.1. 

If we delimitate in Theorem 3.10 the interior operator 

𝜎: 𝑇 → 𝑇 by 𝜎(𝑙) = 𝑙 for all 𝑙 ∈ 𝑇, the structure that 

corresponds to the uninorm in Theorem 3.10 is as follows: 

Corollary 3.11. Assume that 𝑖 ∈ 𝑇 ∖ {0,1} and 𝛹: [𝑖, 1]2 →

[𝑖, 1] is a t-conorm. The undermentioned operation 

𝑁(𝛹): 𝑇
2 → 𝑇 is a uninorm that possesses an identity 𝑖 iff 

𝑎 < 𝑐 for all 𝑎 ∈ 𝐻𝑖 , 𝑐 ∈]𝑖, 1]. 

𝑁(𝛹)(𝑓, 𝑙) =

{
  
 

  
 
𝛹(𝑓, 𝑙)  if (𝑓, 𝑙) ∈ [𝑖, 1]2,

𝑓 ∨ 𝑙
 if (𝑓, 𝑙) ∈]𝑖, 1] × 𝐻𝑖 ∪ 𝐻𝑖 ×]𝑖, 1]

      ∪]𝑖, 1] × [0, 𝑖] ∪ [0, 𝑖] ×]𝑖, 1],

𝑓   if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙   if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,

𝑓 ∧ 𝑙   otherwise.

 

(33) 

Take a note that the uninorm 𝑁(𝛹): 𝑇
2 → 𝑇 in Corollary 

3.11 is equivalent to the one introduced in Theorem 9 by 

Çaylı (2019). Hence, the uninorm 𝑁(𝜎): 𝑇
2 → 𝑇 in 

Theorem 3.10 encompasses, as a special case, the 

uninorm constructed in Theorem 9 by Çaylı (2019) 

Furthermore, when taking in Corollary 3.11 the t-conorm 

𝛹: [𝑖, 1]2 → [𝑖, 1] stated by 𝛹 = 𝛹∨, we get Corollary 

3.12 that presents the appearance of an idempotent 

uninorm on bounded lattices. 

Corollary 3.12. Assume that 𝑖 ∈ 𝑇 ∖ {0,1}. The 

undermentioned operation 𝑁(∨): 𝑇
2 → 𝑇 is an 

idempotent uninorm that possesses an identity i iff 𝑎 < 𝑐 

for all 𝑎 ∈ 𝐻𝑖 , 𝑐 ∈]𝑖, 1]. 

𝑁(∨)(𝑓, 𝑙) =

{
 
 

 
 𝑓 ∧ 𝑙

if (𝑓, 𝑙) ∈ [0, 𝑖]2 ∪ 𝐻𝑖 × 𝐻𝑖
      ∪ 𝐻𝑖 × [0, 𝑖[ ∪ [0, 𝑖[ × 𝐻𝑖 ,

𝑓   if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙   if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,
𝑓 ∨ 𝑙   otherwise.

    (34) 

If we admit being a coatom of the element 𝑖 ∈ 𝑇 ∖ {0,1}, 

the structure that corresponds to the uninorm in 

Corollary 3.12 is as follows: 

Corollary 3.13. Assume that 𝑖 ∈ 𝑇 ∖ {0,1} is a coatom. The 

undermentioned operation 𝑁(𝑖,∨): 𝑇
2 → 𝑇 is an 

idempotent uninorm that possesses an identity 𝑖. 

𝑁(𝑖,∨)(𝑓, 𝑙) =

{
 
 

 
 𝑓 ∧ 𝑙

if (𝑓, 𝑙) ∈ [0, 𝑖]2 ∪ 𝐻𝑖 × 𝐻𝑖
      ∪ 𝐻𝑖 × [0, 𝑖[ ∪ [0, 𝑖[ × 𝐻𝑖 ,

𝑓   if (𝑓, 𝑙) ∈ 𝐻𝑖 × {𝑖},

𝑙   if (𝑓, 𝑙) ∈ {𝑖} × 𝐻𝑖 ,
1   otherwise.

  (35) 

Remark 3.14. Assume that 𝑖 ∈ 𝑇 ∖ {0,1}, 𝛷: [0, 𝑖]2 →

[0, 𝑖] is a t-norm and 𝜎: 𝑇 → 𝑇 is an interior operator. For 

uninorms on bounded lattices, we formulate a novel 

generation procedure in Theorem. 3.10. Specifically, 

(i) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝜎)(𝑓, 𝑙) the output 𝑓 ∧ 𝑙 while the one described in 

Theorem 11 by Çaylı (2019) puts for 𝑁(𝑓, 𝑙) the output 

𝛷(𝑓 ∧ 𝑖, 𝑙 ∧ 𝑖). If (𝑓, 𝑙) ∈ [0, 𝑖[2∪ [0, 𝑖[× 𝐻𝑖 ∪ 𝐻𝑖 × [0, 𝑖[, 

in our technique 𝑁(𝜎)(𝑓, 𝑙) = 𝜎(𝑓) ∧ 𝜎(𝑙) while in 

Theorem 11 provided by Çaylı (2019) 𝑁(𝑓, 𝑙) = 𝛷(𝑓 ∧

𝑖, 𝑙 ∧ 𝑖). On the other hand, both techniques match up in 

the remainder domains; 

(ii) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝜎)(𝑓, 𝑙) the output 𝑓 ∧ 𝑙 while the one proposed in 

Theorem 3.10 by Çaylı (2021) puts for 𝑁(𝑓, 𝑙) the output 

𝜎(𝑓) ∧ 𝜎(𝑙). On the other hand, both techniques equal in 

the remainder domains; 

(iii) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝜎)(𝑓, 𝑙) the output 𝑓 ∧ 𝑙 while the one in Theorem 

3.12 by Çaylı (2021) puts for 𝑁(𝑓, 𝑙) the output 𝜎(𝑓) ∧

𝜎(𝑙) . If (𝑓, 𝑙) ∈ [0, 𝑖[2∪ [0, 𝑖[× 𝐻𝑖 ∪ 𝐻𝑖 × [0, 𝑖[, in our 
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technique 𝑁(𝜎)(𝑓, 𝑙) = 𝜎(𝑓) ∧ 𝜎(𝑙) while in Theorem 

3.12 presented by Çaylı (2021) 𝑁(𝑓, 𝑙) = 𝛷 (𝑓, 𝑙) for 

(𝑓, 𝑙) ∈ [0, 𝑖[2, and 𝑁(𝑓, 𝑙) = 𝑓 ∧ 𝑙 for (𝑓, 𝑙) ∈ [0, 𝑖[×

𝐻𝑖 ∪ 𝐻𝑖 × [0, 𝑖[. On the other hand, both techniques 

match up in the remainder domains; 

(iv) if we choose 𝑓 and 𝑙 from 𝐻𝑖 , then our technique puts 

for 𝑁(𝜎)(𝑓, 𝑙) the output 𝑓 ∧ 𝑙 while the one in Corollary 

4.2 introduced by Zhao and Wu (2021) puts for 𝑁(𝑓, 𝑙) the 

output 𝜎(𝑓) ∧ 𝜎(𝑙). If (𝑓, 𝑙) ∈ [0, 𝑖[2∪ [0, 𝑖[× 𝐻𝑖 ∪ 𝐻𝑖 ×

[0, 𝑖[, in our technique 𝑁(𝜎)(𝑓, 𝑙) = 𝜎(𝑓) ∧ 𝜎(𝑙) while in 

Corollary 4.2 introduced by Zhao and Wu (2021) 𝑁(𝑓, 𝑙) =

0. On the other hand, both techniques equal in the 

remainder domains. 

Remark 3.15. Let 𝑖 ∈ 𝑇 ∖ {0,1}. If we specify the interior 

operator 𝜎: 𝑇 → 𝑇 by 𝜎(𝑙) = 𝑙 for all 𝑙 ∈ 𝑇, we obtain the 

statements listed below: 

(i) the uninorm 𝑁(𝜎) in Theorem 3.10 matches up to the 

uninorm presented in Theorem 3.10 by Çaylı (2021); 

(ii) the uninorm 𝑁(𝜎) in Theorem 3.10 matches up to the 

uninorm provided in Theorem 3.12 by Çaylı (2021) when 

defining the t-norm 𝛷: [0, 𝑖]2 → [0, 𝑖] such that 𝛷 = 𝛷∧; 

(iii) the uninorm 𝑁(𝜎) in Theorem 3.10 matches up to the 

uninorm stated in Corollary 4.4 by Zhao and Wu (2021) if 

𝑓1 ∥ 𝑓2 for all 𝑓1 ∈]0, 𝑖] , 𝑓2 ∈ 𝐻𝑖  and the t-norm 

𝛷: [0, 𝑖]2 → [0, 𝑖] is defined by 𝛷 = 𝛷∧. 

Analogously to Examples 3.7 and 3.8, we can illustrate 

that the uninorm established by Theorem 3.10 does not 

need to match up to those that are described in (Çaylı 

2019, 2021, Zhao and Wu 2021). 

 

4. Conclusions 

Uninorms have been thoroughly explored on bounded 

lattices similar to the way their investigations on the unit 

interval. Constructing uninorms has emerged on bounded 

lattices as a fascinating field of research recently. In this 

article, a novel method was presented to create uninorms 

possessing an identity 𝑖 ∈ 𝑇 ∖ {0,1} on a bounded lattice 

T that benefit from both a closure operator 𝛿 and a t-

norm 𝛷 on 𝑇. Subsequently, we developed a dual 

construction mean for uninorms on 𝑇 with the underlying 

not only the interior operator 𝜎 but also the t-conorm 𝛹 

on 𝑇. We acquired on bounded lattices two forms of 

idempotent uninorms as a consequence of these 

techniques. For a better comprehension of the newly 

developed uninorms, some illustrated examples were 

also presented. Moreover, we examined the relative 

advantages of our tools against various techniques 

previously outlined in (Çaylı 2019, 2021, Zhao and Wu 

2021). We came to the conclusion that the approaches in 

this article do not have to match up to those found in the 

literature. 
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