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Abstract 

  The influences of planar and corrugated free surfaces on bright solitary-like shear horizontal (SH) waves 

propagating on a nonlinear elastic layer over a rigid substratum are compared. The amplitude of irregularity of the  

free surface is considered as small compared to the average thickness of the layer. The layers consist of 

compressible, homogeneous and isotropic materials.  A generalized nonlinear Schrödinger (GNLS) equation for 

the nonlinear modulation of SH waves is obtained via an asymptotic perturbation method. A comparative study 

between the influences of regular and irregular layers on the bright solitary-like SH waves is presented graphically. 

Keywords: Corrugated free surface, irregular layer, Generalized nonlinear Schrödinger (GNLS) equation, Bright 

solitary-like SH waves 

 

Introduction 

Surface elastic waves propagating on various waveguides  such as layers, plates, crusted semi-spaces, etc., become 

dispersive because of the repeated reflection between the boundaries. SH waves propagating in the layer of the 

Earth have been searched by many researchers on account of their important applications in various disciplines, 

such as materials engineering, geophysics and petroleum engineering [1-4].  It is well known that the Earth’s 

crustal part is not always uniform, for example continental margins, mountain roots, ore deposits etc. There are 

important applications of SH waves on layered media with nonuniform boundaries in various disciplines, 

especially  seismology, as it provides a model for seismic wave propagation along continental borders and other 

Earth regions with variable crustal thickness.  Many researchers have investigated the effects of irregular boundary 

surfaces of the media on the linear surface elastic  wave propagation for some particular types of irregularities [5-

9]. 

The study of the effects of not only geometrical irregularity but also structural nonlinearity on surface SH waves 

is among the current studies due to the  above mentioned application areas [10]. In this article, we research the 

effect of the corrugated free surface of a nonlinear compressible layer over a rigid  substratum.  It is assumed that 

the free surface varies  sinusoidally in the direction of wave propagation. The amplitude of the sinusoidal change 

is taken to be small compared to the layer’s average thickness. A generalized nonlinear Schrödinger (GNLS) 

equation with variable coefficients that depend on sinusoidal function related to the irregular free surface as well 

as material parameters of the compressible layer is derived via the multiple scales  perturbation method. When the 

amplitude of the irregularity vanishes, the geometry of the problem is reduced to the one of  plane free surface 

studied in [11]. The effects of planar  and sinusoidal free surfaces on bright solitary-like SH waves are compared 

graphically. 

 

 

17

mailto:edeliktas@pirireis.edu.tr


Formulation 

Let (𝑥1, 𝑥2, 𝑥3) and (𝑋1, 𝑋2, 𝑋3) be the spatial and material coordinates of a point referred to the same rectangular 

Cartesian system of axes. We consider a nonlinear, elastic, irregular layer of nonuniform thickness occupying the 

region  0 < 𝑋2 < ℎ + 𝑓(𝑋1) where ℎ is the average thickness of the layer. 𝑓(𝑋1) ∈ 𝐶1 represents the  irregularity 

of the free surface. It is assumed that the free boundary 𝑋2 = ℎ + 𝑓(𝑋1) is free of traction and the displacement 

vanishes at the rigid boundary 𝑋2 = 0.  

SH deformation of a particle is  

                                            𝑥1 = 𝑋1,    𝑥2 = 𝑋2,    𝑥3 = 𝑋3 + 𝑢(𝑋1, 𝑋2, 𝑡)                                                         (1)                                            

where 𝑡 is the time and 𝑢 is  the  displacement  of a particle. The constituent material of the layer is taken to be 

compressible hyper-elastic, and thus, the strain potential function is of the form  

𝛴 = 𝛴(𝐼(1), 𝐼(2), 𝐼(3) ) where 𝐼(m), 𝑚 = 1,2,3 are the principal invariants of the Finger’s deformation tensor 

𝒄(−1) = [𝑥𝑘,𝐾  𝑥𝑙,𝐾] defined as follows 

 

𝐼(1)=tr 𝒄(−1),   𝐼(2)= ((tr 𝒄(−1))2 − tr 𝒄(−2))/2,   𝐼(3)=det 𝒄(−1).                                                                               (2) 

 

Let 𝑋 = 𝑋1, 𝑌 = 𝑋2,   𝑍 = 𝑋3.  Assuming that 𝛴 is an analytic function of 𝐼(1), 𝐼(2) and 𝐼(3),  we can obtain the 

following approximate governing equation  and boundary conditions 

 
𝜕2𝑢

𝜕𝑡2 − 𝑐1
2 (

𝜕2𝑢

𝜕𝑋2 +
𝜕2𝑢
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𝜕
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(

𝜕𝑢
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(
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𝒩(𝑢))},                                                                                  (3) 
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𝑢 = 0  on  𝑦 = 0                   (5) 

where 𝒩(𝑢) = (
𝜕𝑢

𝜕𝑋
)

2
+ (

𝜕𝑢

𝜕𝑌
)

2
, 𝑐1 is  linear shear velocity such that 𝑐1

2 = 𝜇/𝜌.  Here 𝜇 =
𝑑𝛴

𝑑𝐼(1) (3,3,1)  is  linear 

shear modulus, 𝜌 is density. Nonlinear material function of the layer is given as  𝑛 = (4
𝑑2𝛴

𝑑𝐼(1)2 (3,3,1) +

2
𝑑2𝛴

𝑑𝐼(1)𝐼(2) (3,3,1)) /𝜌 . 

 

 

 

Asymptotic analysis 

We analyse the effects of slowly varying free surface on the wave propagation by the method of multiple scales. 

It is assumed that the amplitude of irregularity of the free surface is small compared to the average layer thickness, 

and that the slow change in boundary surface is represented by the scale of a small parameter 𝜀2, i.e. 𝑓 = 𝑓(𝜀2𝑋). 

The new scales are introduced by  

ξ = 𝜀2𝑋,         𝜏 = 𝜀 (
1

𝜀2 ∫
1

𝑉𝑔(𝑋′)

ξ
𝑑𝑋′ − 𝑡) ,        𝑦 = 𝑌,                                             (6)    

where 𝜀 > 0 is a measure of the weakly nonlinearity and the amplitude of the geometrical variation.  (ξ, 𝜏) are the 

slow variables to specify the slow variations of the amplitude, 𝑉𝑔 is group velocity. We also define the phase 

variable θ satisfying θ𝑋 = 𝑘, θ𝑡 = −𝜔. 

Supposing that 𝑢 is function of (θ, ξ, 𝜏, 𝑦), we can write following asymptotic expansion: 

𝑢 = ∑ 𝜀𝑛𝑢𝑛(θ, ξ, 𝜏, 𝑦)                                                                                                        ∞
𝑛=1                                           (7) 
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Employing (6) and  (7) into (3) together with the boundary conditions (4-5), we obtain the hierarchy of equations.  

Up to 𝑂(𝜀3) problems are written as follows: 

𝑂(𝜀):       ℒ1(𝑢1) = 0                                                                                                                                            (8) 

∂𝑢1

∂𝑦
= 0 on   𝑦 = h + 𝑓(ξ), (9)  

𝑢1 = 0 on  𝑦 = 0. (10)  

𝑂(𝜀2):        ℒ1(𝑢2) = ℒ2(𝑢1) (11) 

∂𝑢2

∂𝑦
= 0  on  𝑦 = h + 𝑓(ξ), (12) 

𝑢2 = 0 on  𝑦 = 0. (13) 

𝑂(𝜀3):          ℒ1(𝑢3) = ℒ2(𝑢2) + ℒ3(𝑢1) + ℳ(𝑢1)                                                                                           (14) 

   
∂𝑢3

∂𝑦
− 𝑘

d𝑓

dξ

∂𝑢1

∂θ
= 0  on  𝑦 = h + 𝑓(ξ), (15) 

𝑢2 = 0 on  𝑦 = 0                                                                                                                                                  (16) 

where 
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∂2ѱ
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2 (

1
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2

∂2ѱ
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+ 2𝑘

∂2ѱ

∂θ ∂ξ
+
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dξ
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∂θ
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∂2ѱ

∂𝜏2
 

ℳ(ѱ) = 𝑛 (𝑘 
∂

∂θ
(𝑘 

∂ѱ

∂θ
K(ѱ)) +

∂

∂𝑦
(

∂ѱ

∂𝑦
K(ѱ)))  

 𝐾(ѱ) = (𝑘
𝜕ѱ

𝜕θ
)

2
+ (

𝜕ѱ

𝜕𝑦
)

2
.   

The solution of the equation in the problem of 𝑂(𝜀)  is 

𝑢1 = ∑ {𝐴1
(𝑙)

(ξ, 𝜏)𝑒𝑖𝑙𝑘𝑝𝑦 + 𝐵1
(𝑙)

(ξ, 𝜏)𝑒−𝑖𝑙𝑘𝑝𝑦}∞
𝑙=1 𝑒𝑖𝑙𝜃 + 𝑐. 𝑐.                                                                                     (17) 

Here 𝑝 = (𝜔2/(𝑘2𝑐1
2) − 1)

1
2 . 𝐴1

(𝑙)
,  𝐵1

(𝑙)
 are the first order amplitudes,  𝑘 and   𝜔  are the wave number and 

frequency, respectively,  ''c.c.'' stands for the complex conjugate. Substitution of  (17) in (9-10) yields 

𝑾𝑙𝑼1
(𝑙)

= 𝟎, such that 𝑼1
(𝑙)

= (𝐴1
(𝑙)

, 𝐵1
(𝑙)

)𝑇 , 𝑙 = 1,2, ..   (18) 

𝑾𝑙 , dispersion matrix,  is given by 

𝑾𝑙 = (𝑖𝑘𝑝𝑙𝑒𝑖𝑙𝑘𝑝(ℎ+𝑓) −𝑖𝑘𝑝𝑙𝑒−𝑖𝑙𝑘𝑝(ℎ+𝑓)

1 1
) 

For the nontrivial solutions of (18),  det 𝑾1 must be zero, it  gives the following dispersion relation 

𝑐𝑜𝑠[𝑘𝑝(ℎ + 𝑓)] = 0                                         (19) 

When 𝑓 = 0, (19) reduces to the dispersion relation for uniform layer deriven in [11]. 

The solution of (18) for 𝑙 = 1 is 𝑼1
(1)

= 𝐴1𝑹,  when  𝑙 ≠ 1    𝑼1
(𝑙)

= 𝟎  where the complex function of the slow 

variables 𝐴1 represents the first order slowly varying amplitude of the fundamental wave.  R satisfies 𝑾1𝑹 =

0 and its components are  

𝑅1 =1, 𝑅2 = 𝑒2𝑖𝑘𝑝(ℎ+𝑓).                                                                                                                                      (20) 
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Thus, the first order solution can be expressed by 

𝑢1 = 𝐴1(𝑅1𝑒𝑖𝑘𝑝𝑦 + 𝑅2𝑒−𝑖𝑘𝑝𝑦)𝑒𝑖𝜃 + 𝑐. 𝑐.,                                                                                          (21)

                                                  

To find the first order solution completely, 𝐴1  must be determined by analysing the higher-order perturbation 

problem. Substituting (21) in equation (11),  𝑢2 can be found by the method of undetermined coefficients, for 

comprehensive analysis see [10]. 

To obtain the third order solutions, 𝑢1 and 𝑢2 are introduced into the equation of 𝑂(𝜀3) given by (14). 𝑢3 is 

categorized into two groups 𝑢3 = 𝑢3̅̅ ̅ + 𝑢3̂.  Here 𝑢3̅̅ ̅  is the particular solution of the equation (14) that can be 

found by the method of undetermined coefficients. 𝑢3̂ represents the solution of the corresponding homogeneous 

equation and can be written in the form of the first order solution in (17) by replacing 𝑈1
(𝑙)

 by 𝑈3
(𝑙)

= (𝐴3
(𝑙)

, 𝐵3
(𝑙)

). 

Then Eqs. (15-16) give 

𝑾𝑙𝑼3
(𝑙)

=  𝒃3
(𝑙)

,                (22) 

where  𝒃3
(𝑙)

is zero vector for 𝑙 ≠ 1,3 and  

 𝒃3
(1)

= [𝑖
𝜕𝑾1

𝜕𝑘

𝜕𝐴1

𝜕𝜉
+

1

2
(

𝜕2𝑾1

𝜕𝜔2
+

2

𝑉𝑔

𝜕2𝑾1

𝜕𝑘𝜕𝜔
+

1

𝑉𝑔
2

𝜕2𝑾1

𝜕𝑘2
)

𝜕2𝐴1

𝜕𝜏2 ] 𝑹 

+ (
1

𝑉𝑔

𝜕𝑾1

𝜕𝑘
+

𝜕𝑾1

𝜕𝜔
) (

1

𝑉𝑔

𝜕𝑹

𝜕𝑘
+

𝜕𝑹

𝜕𝜔
)

𝜕2𝐴1

𝜕𝜏2 + 𝐅|𝐴1|2𝐴1 + 𝑖𝐆𝐴1.                                                                                      (23) 

Here 𝐅 = (𝐹1, 𝐹2)T, 𝐆 = (𝐺1, 𝐺2)T such that 

𝐹1 = −
𝑒𝑖(ℎ+𝑓)𝑘𝑝 𝑛(ℎ+𝑓)𝑘4(9+2𝑝2+9𝑝4)

𝑐2 , 𝐹2 = −
(𝑒−2𝑖(ℎ+𝑓)𝑘𝑝+𝑒4𝑖(ℎ+𝑓)𝑘𝑝)𝑛𝑘2(−3−2𝑝2+9𝑝4)

8𝑐2𝑝2 ,  

𝐺1 = 𝑒𝑖(ℎ+𝑓)𝑘𝑝𝑘(1 + 𝑝2)𝑓′,   𝐺2 = 0.  

Notice that 𝑑𝑒𝑡𝑾1 = 0 and  𝒃3
(1)

≠ 𝟎. For the solution of equations (22) to exist for 𝑼3
(1)

, the following 

compatibility condition must be satisfied 

𝑳. 𝒃𝟑
(1)

= 0.              (24) 

 Here, 𝑳 is a row vector satisfying 𝑳𝑾1 = 0. Its components  are  

𝐿1 = 1,   𝐿2 = −𝑖𝑘𝑝𝑒𝑖(ℎ+𝑓)𝑘𝑝  .             (25) 

(24) gives the following GNLS equation with nondimensional variables  𝐴 = 𝐴1/ℎ,   𝜉 = 𝜉/ℎ, 𝜏̃ = 𝜏𝜔. 

𝑖
𝜕𝐴

𝜕𝜉
+ Γ

𝜕2𝐴

𝜕𝜏2
+ Δ|𝐴|2𝐴 = 𝑖Λ A             (26) 

where tildes on variables are omitted. The dimensionless coefficients Γ, Δ and  Λ can be written as 

Γ(𝜉) =
𝜔2ℎ

2𝑉𝑔
3

𝑑2𝜔

𝑑𝑘2  , Δ(𝜉) = ℎ3(𝐋. 𝐅) (𝐋
𝜕𝑾1

𝜕𝑘
𝐑) ,⁄    Λ(𝜉) = −ℎ(𝐋. 𝐆) (𝐋

𝜕𝑾1

𝜕𝑘
𝐑) .⁄                      (27) 

Now, we seek the soliton-like solutions of the GNLS equation (26) through the following ansatz 

𝐴(𝜉, 𝜏) = 𝑔(𝜉, 𝜏)𝑒𝑖𝑟(𝜉).              (28) 

To obtain bright soliton-like solution, we define 𝑔(𝜉, 𝜏) as 𝑔(𝜉, 𝜏) = 𝑔1(𝜉) 𝑠𝑒𝑐ℎ(𝜏). Therefore substitution of (28) 

in the GNLS equation (26) gives  

 𝑔1(𝜉) = √
2Γ

  Δ
 ,  𝑟(𝜉) = ∫ Γ(𝑥̀)𝑑𝑥̀

𝜉
              (29) 
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with the following integrability condition  [12] 

Λ =
ΔΓ𝜉−ΓΔ𝜉

2ΓΔ
.                                                                                  (30) 

Hence, we obtain  following bright soliton-like solution [14] 

A(𝜉, 𝜏) = √
2Γ

Δ
 𝑠𝑒𝑐ℎ(𝜏)𝑒𝑖 ∫ Γ(𝑥̀)𝑑𝑥̀

𝜉

,  for ΓΔ > 0.           (31) 

Note that in cases where the integrability condition (30) is not satisfied by the variable coefficients of the GNLS 

equation, bright soliton-like solutions can be found numerically by means of the pseudo-spectral method [13]. 

 

 

Comparisons and Conclusion 

We compare the influences of planar and corrugated free surfaces on  bright solitary shear horizontal (SH) waves 

for the following two cases. In the numerical calculations, the dimensionless phase velocity 𝐶 = 𝑐/𝑐1 is fixed as  

𝐶 = 2. The dimensionless wave number 𝐾 = 𝑘ℎ depending on (𝐶, 𝜉)  is evaluated for the first branch of dispersion 

relation (19). We determine the variable coefficients of the NLS equation by symbolic computation in 

Mathematica. On the other hand, the Matlab codes of the pseudo spectral method given in [13] have been 

developed to obtain the bright soliton-like solutions of the GNLS equation with variable coefficients and the graphs 

have been plotted in Matlab. 

Case 1: Plane free surface of the layer with constant thickness  

When 𝑓 = 0, i.e. the layer has the plane free surface 𝑦 = 0, the GNLS equation (26) is reduced to the NLS equation 

with constant coefficients 

𝑖
𝜕𝐴

𝜕𝜉
+ Γ

𝜕2𝐴

𝜕𝜏2 + Δ|𝐴|2𝐴 = 0               (32) 

 which arises in the propagation of nonlinear Love waves on a layer of constant thickness overlying a rigid 

substratum (see e.g. [11]). Note that, Λ = 0 and the integrability condition (30) is satisfied for all constant 

coefficients Γ and ∆. In this case, the solution (31) represents bright soliton waves. The nonlinear evolution of the 

solitons, view from top and maximum amplitude of these soliton waves are shown in Figures 1(a), 2 (a), 3(a) 

respectively, for the nonlinear material parameter n = −2 and hence ΓΔ > 0.  

Case 2: Periodic free surface of the layer with variable thickness  

For this case, we consider sinusoidally varying free surface with the choice of  𝑓(𝜉) = 𝑢 sin (𝑘𝜉) where 𝑢 is 

amplitude, 𝑘 is wave number and 𝜉 is position parameter of the periodic free surface  𝑦 = h + 𝑓(ξ).  When 𝑓(𝜉) ≠

0, integrability condition (30) does not satisfied. Hence, the bright soliton-like solution is searched numerically 

via  pseudo-spectral method. The effect of corrugated free surface on the nonlinear evolution of the solitons, view 

from top and maximum amplitude as a function of ξ are observed in Figures 1(b) , 2(b), 3(b), respectively for  n =

−2 and hence ΓΔ > 0. In the calculations the dimensionless flatness parameter 𝑈 =
𝑢

ℎ
, and corrugation parameter 

𝑠 = 𝑘/ℎ are chosen as 𝑈 = 0.03 and 𝑠 = 1.5.  
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(a)                                                                                (b) 

Figure 1. a) Nonlinear evolution of the bright soliton for plane free surface (b) Nonlinear evolution of the bright 

soliton-like solution for sinusoidally varying free surface. 

  

(a)                                                                              (b) 

Figure 2.  View from top of  (a) the bright soliton for plane free surface (b) the bright soliton-like solution for 

sinusoidally varying free surface. 

  

(a)                                                                              (b) 
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Figure 2.  Maximum amplitude as a function of the propagation distance of (a) the bright soliton for plane free 

surface (b) the bright soliton-like solution for sinusoidally varying free surface. 

We confirm by means of Fig. 1(a) that the bright soliton-like solution (31) reduces to the bright soliton solution 

of the NLS equation with constant coefficients (32) in the case of the plane free surface of the layer of constant 

thickness overlying a rigid substratum. It is observed that bright solitons preserve their profile for  planar free 

surface, while the free surface varies sinusoidally, small variations on the free surface cause small oscillations on 

the bright soliton-like waves without distorting the wave profile. It is also seen that bright solitons preserve their 

maximum amplitude for  planar free surface, while sinusoidally varying free surface cause relatively small 

oscillations on the maximum amplitude of the bright soliton-like wave. 
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