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Abstract
We extend the notion of a p-permutation equivalence to an equivalence between direct
products of block algebras. We prove that a p-permutation equivalence between direct
products of blocks gives a bijection between the factors and induces a p-permutation
equivalence between corresponding blocks.
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1. Introduction
One of the main themes in representation theory of finite groups is to study equivalences

between block algebras. Various authors have defined different notions of equivalences,
such as Puig equivalence [6], splendid Rickard equivalence [5], derived equivalence, isotypy,
perfect isometry [4], p-permutation equivalence [2],[1], and functorial equivalence [3]. Our
aim in this paper is to extend the notion of a p-permutation equivalence to an equivalence
between direct products of blocks.

Let G and H be finite groups. Let p > 0 be a prime and let (K,O, k) denote a p-modular
system where O is a complete discrete valuation ring with residue field k of characteristic p
and field of fractions K of characteristic 0. Suppose that O contains a root of unity whose
order is equal to the exponent of G × H.

Let A be a sum of blocks of OG and B a sum of blocks of OH. Let T ∆(A, B) denote the
Grothendieck group with respect to split short exact sequences of p-permutation (A, B)-
bimodules whose indecomposable summands have twisted diagonal vertices when regarded
as O[G × H]-modules. In [1], Boltje and Perepelitsky define a p-permutation equivalence
between A and B as an element γ ∈ T ∆(A, B) such that

γ ·H γ◦ = [A] ∈ T ∆(A, A) and γ◦ ·G γ = [B] ∈ T ∆(B, B)
where γ◦ is the O-dual of γ and where ·H is tensor product over OH. Among many other
interesting and important properties of p-permutation equivalences, they proved that if
γ is a p-permutation equivalence between A and B, then there is a bijection between
the block summands of A and B and γ induces a p-permutation equivalence between the
corresponding blocks, see [1, Theorem 10.10]. We show that a similar phenomenon holds
for p-permutation equivalences between direct products of blocks.
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Definition 1.1. Let A1 × · · · × An, B1 × · · · × Bm and C1 × · · · × Cl be direct products
of block algebras of finite groups. Let γ = (γij) and γ′ = (γ′

jk) be matrices with entries
γij ∈ T ∆(Ai, Bj) and γ′

jk = T ∆(Bj , Ck). We denote by γ ◦ γ′ the product of the matrices
γ and γ′. More precisely,

(γ ◦ γ′)i,k =
m∑

j=1
γij ·Hj γ′

jk ∈ T ∆(Ai, Ck) .

Definition 1.2. Let G1, · · · , Gn and H1, · · · , Hm be finite groups. Let Ai ∈ Bl(OGi) and
Bj ∈ Bl(OHj) be block algebras for i = 1, · · · , n and j = 1, · · · , m. A p-permutation
equivalence between the direct product algebras A1 × · · · × An and B1 × · · · × Bm is a
matrix γ = (γij) where γij ∈ T ∆(Ai, Bj) such that

γ ◦ γ◦ =


[A1] 0 · · · 0

0 [A2] 0 · · · 0
...

... . . . ...
0 · · · 0 · · · [An]

 and γ◦ ◦ γ =


[B1] 0 · · · 0

0 [B2] 0 · · · 0
...

... . . . ...
0 · · · 0 · · · [Bm]


where γ◦ = ((γ◦

i,j)ij)t.

Our main result is the following.

Theorem 1.3. Let G1, · · · , Gn and H1, · · · , Hm be finite groups. Let Ai ∈ Bl(OGi) and
Bj ∈ Bl(OHj) be block algebras for i = 1, · · · , n and j = 1, · · · , m. Assume that O contains
a root of unity of order the exponent of Gi and Hj for each i and j. Let γ = (γij) be a
p-permutation equivalence between the direct products A1 × · · · × An and B1 × · · · × Bm

of block algebras. Then n = m and in each row and in each column of γ, there exists
precisely one non-zero element. Moreover, if γij is the non-zero element in the i-th row
and j-th coloumn, then γij is a p-permutation equivalence between Ai and Bj.

2. The proof of the main theorem
Throughout G, G1, · · · , Gn, H, H1, · · · , Hm denote finite groups. Also, (K,O, k) denotes

a p-modular system where O is a complete discrete valuation ring with residue field k of
characteristic p and field of fractions K of characteristic 0. We suppose that O contains a
root of unity of order the exponent of G, Gi, H and Hj for all i and j. We follow the proof
of [1, Theorem 10.10] closely.
2.1. We denote by R(KG) and R(kG) the Grothendieck groups with respect to short
exact sequences of KG-modules and kG-modules, respectively, and by T (OG) and T (kG)
the Grothendieck groups with respect to split short exact sequences of p-permutation
OG-modules and p-permutation kG-modules, respectively.

We denote by −∗ the anti-involution g 7→ g−1 of any group algebra of a group G. If A
is a block of OG and B is a block of OH, then we can regard any (A, B)-bimodule M as
an A ⊗ B∗-module via the isomorphism O(G × H) ∼= OG ⊗O OH. We set R(KG,KH) :=
R(K[G × H]) and similarly define R(A, B), T (A, B) etc.

Let P ≤ G and Q ≤ H be subgroups and ϕ : Q → P a group isomorphism. The
subgroup ∆(P, ϕ, Q) := {(ϕ(q), q) | q ∈ Q} ≤ G × H is called twisted diagonal. We
denote by T ∆(A, B) the Grothendieck group with respect to split short exact sequences of
p-permutation (A, B)-bimodules whose indecomposable summands have twisted diagonal
vertices when regarded as O[G × H]-modules.
2.2. Let ∆(P, ϕ, Q) ≤ G × H be a p-subgroup. Following the notation in [1, 10.1], for an
element γ ∈ T ∆(OG,OH), we write γ(P, ϕ, Q) for the Brauer construction γ(∆(P, ϕ, Q)) ∈
T (kNG×H(∆(P, ϕ, Q)). Set N := NG×H(∆(P, ϕ, Q)). The corresponding elements in the
commutative diagram (see [1, 9.1(c)])



p-permutation equivalences between direct products of blocks 3

T (ON) R(KN)

T (kN) R(kN)

∼=

κN

dN

ηN

will be denoted by
γ(P, ϕ, Q) µ(P, ϕ, Q)

γ(P, ϕ, Q) ν(P, ϕ, Q)
where κN is induced by the scalar extension K ⊗O −, dN is the decomposition map and
ηN is induced by the map [M ] 7→ [M ].

2.3. Let A be a block of kG and B a block of kH. Let (P, e) be an A-Brauer pair.
We denote by ΛH the set of pairs (ϕ, (Q, f)) where (Q, f) is a kH-Brauer pair and ϕ :
Q → P is an isomorphism. The group NG(P, e) × H acts on ΛH via (g, h) · (ϕ, (Q, f)) =
(cgϕc−1

h , h(Q, f)).
We also set ΛB ⊆ ΛH to be the subset consisting of the pairs (ϕ, (Q, f)) where (Q, f)

is a B-Brauer pair. Note that ΛB is still an NG(P, e) × H-set via the above action. We
denote by Λ̃H a set of representatives of the H-orbits of ΛH and set Λ̃B := Λ̃H ∩ ΛB.

The crucial point in the proof of Theorem 1.3 is to observe that Lemma 10.3 in [1] can
be generalized as follows.

Proposition 2.1. Let A ∈ Bl(OG) be a block algebra and let B = B1 × · · · × Bm be
a direct product of block algebras where Bj ∈ Bl(OHj). For each j ∈ {1, · · · , m}, let
γj ∈ T ∆(A, Bj) be such that

γ1 ·H1 γ◦
1 + · · · + γm ·Hm γ◦

m = [A] ∈ T ∆(A, A) . (2.1)

Let also (P, e) be an A-Brauer pair. Consider the set of pairs ΛBj ⊆ ΛHj as in 2.3. Then
there exists a unique j ∈ {1, · · · , m} and a unique Hj-orbit of pairs (ϕj , (Qj , fj)) ∈ ΛBj

such that

eµj(P, ϕj , Qj)fj 6= 0 in R(KCG(P )e,KCHj (Qj)fj) .

Moreover, eµj(P, ϕj , Qj)fj is a perfect isometry between KCG(P )e and KCHj (Qj)fj and
eνj(P, ϕ, Qj)fj 6= 0 in R(kCG(P )e, kCHj (Qj)fj).

Proof. The proof of this lemma is similar to the proof of [1, Lemma 10.3]. The key point
is to observe that Corollary 8.8 in [1] is still applicable in this case. We add a sketch of
the proof for the convenience of the reader.

Apply the Brauer construction with respect to ∆(P ) to Equation (2.1). The equality

[kCG(P )e] = [eA (∆(P )) e] = e

 m∑
j=1

(
γj ·Hj γ◦

j

)
(∆(P ))

 e

=
m∑

j=1

∑
(ϕj ,(Qj ,fj))∈Λ̃Hj

eγj (P, ϕj , Qj) fj ·CHj
(Qj) fjγ◦(Qj , ϕ−1

j , P )e

holds in T ∆ (kCG(P )e, kCG(P )e). Lifting this equation from k to O and extending the
scalars to K, we get

[KCG(P )e] =
m∑

j=1

∑
(ϕj ,(Qj ,fj))∈Λ̃Hj

eµj (P, ϕj , Qj) fj ·CHj
(Qj) (eµj (P, ϕj , Qj) fj)◦
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in R (KCG(P )e,KCG(P )e). The statement follows now from Corollary 8.8 and Lemma
8.11 in [1]. □

Now we can prove a weaker version of Theorem 1.3.

Corollary 2.2. Let A = A1 × · · · × An and B = B1 × · · · × Bm be direct products of block
algebras where Ai ∈ Bl(OGi) and Bj ∈ Bl(OHj) with ai and bj their respective identity
elements. Assume that there exists a p-permutation equivalence γ = (γij) between A and
B. Then for each i ∈ {1, · · · , n} there exists a unique j ∈ {1, · · · , m} such that

µij 6= 0 in R(KGiai,KHjbj) .

This defines a bijection between the sets {1, · · · , n} and {1, · · · , m}. In particular, we have
n = m and if Ai and Bj are corresponding blocks via the bijection above, then µij is a
perfect isometry between KGiai and KHjbj.

Proof. Let i ∈ {1, · · · , n}. Since γ is a p-permutation equivalence between A and B, we
have

γi1 ·H1 γ◦
i1 + · · · + γim ·Hm γ◦

im = [Ai] ∈ T ∆(Ai, Ai) .

Proposition 2.1 applied to the Ai-Brauer pair ({1}, ai) implies that there exists a unique
j ∈ {1, · · · , m} such that

µij 6= 0 in R(KGiai,KHjbj) .

Since by symmetry, a similar statement holds for every element j ∈ {1, · · · , m} it follows
that γ is a square matrix and in each row and in each column of γ there exists a unique
entry with a nonzero image in the corresponding character ring. The last statement also
follows from Proposition 2.1. □

The following is essentially Lemma 10.4 in [1]. One can easily follow the proof of
Lemma 10.4 in [1] and make the necessary changes as we did in the proof of Proposition 2.1
to prove it.

Proposition 2.3. Let A ∈ Bl(OG) be a block algebra and let B = B1 × · · · × Bm be
a direct product of block algebras where Bj ∈ Bl(OHj). For each j ∈ {1, · · · , m}, let
γj ∈ T ∆(A, Bj) be such that

γ1 ·H1 γ◦
1 + · · · + γm ·Hm γ◦

m = [A] ∈ T ∆(A, A) . (2.2)

Let (P, e) be an A-Brauer pair and set I = NG(P, e) and X = NI×I (∆(P )). For each
j ∈ {1, · · · , m} consider the set ΛBj together with its I × Hj-action from 2.3. For λj =
(ϕj , (Qj , fj)) ∈ ΛBj we set

J(λj) := NHj
(Qj , fj) , I(λj) := N(I,ϕj ,J(λj)) ≤ I, and X(λj) := NI×J(λj)(∆(P, ϕj , Qj)) .

Then, X ∗ X(λj) = X(λj), and for each χ ∈ Irr(KX(e ⊗ e∗)), there exists a unique
j ∈ {1, · · · , m} and a unique I × Hj-orbit of pairs λj = (ϕj , (Qj , fj)) ∈ ΛBj such that

χ ·X,X(λj)
G eµj(P, ϕj , Qj)fj 6= 0 in R(K[X(λj)](e ⊗ f∗

j ) .

Moreover, for each λj = (ϕj , (Qj , fj)) ∈ ΛBj satisfying this condition, one has

χ ·X,X(λj)
G eµj(P, ϕj , Qj)fj ∈ ±Irr(K[X(λj)](e ⊗ f∗

j ) .

Remark 2.4. Suppose that we have

γ1 ·H1 γ◦
1 + · · · + γm ·Hm γ◦

m = [A] ∈ T ∆(A, A) (2.3)

as in Proposition 2.1. Since by Proposition 2.3, the results of Lemma 10.4 in [1] hold, it
follows that Corollaries 10.5 and 10.6 in [1] are still valid in this case as well.
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Corollary 2.5. Let A ∈ Bl(OG) be a block algebra with identity element a and let B =
B1 × · · · × Bm be a direct product of block algebras where Bj ∈ Bl(OHj) with identity
element bj. For each j ∈ {1, · · · , m}, let γj ∈ T ∆(A, Bj) be such that

γ1 ·H1 γ◦
1 + · · · + γm ·Hm γ◦

m = [A] ∈ T ∆(A, A) .

Then there exists a unique j ∈ {1, · · · , m} such that γj 6= 0 in T ∆(A, Bj).

Proof. By Corollary 2.2, there exists a unique j ∈ {1, · · · , m} such that
µj 6= 0 in R(KGa,KHjbj) .

This means that for any j′ ∈ {1, · · · , m} with j′ 6= j, one has µj′ = 0 in R(KGa,KHj′bj′).
For every A ⊗ B∗

j′-Brauer pair (∆(P, ϕ, Q), (e ⊗ f∗)), since
(
{1}, (a ⊗ bj′)

)
≤ (∆(P, ϕ, Q),

(e ⊗ f∗)) holds, [1, Corollary 10.6] implies that
eµj′(P, ϕ, Q)f = 0 in R(K[CG(P )]e,K[CHj (Q)]f) .

Therefore, by [1, Corollary 10.5] one has
eµj′(P, ϕ, Q)f = 0 in R(K[NG×Hj (∆(P, ϕj , Qj))](e ⊗ f∗) .

This shows that the element γj′ is in the kernel of the injective map in [1, Proposi-
tion 9.2(b)] and hence equals to zero. □

Proof of Theorem 1.3: The fact that n = m follows from Corollary 2.2. For each
i ∈ {1, · · · , n}, by Corollary 2.5, there exists a unique j ∈ {1, · · · , m} such that γij 6= 0 in
T ∆(Ai, Bj). This proves the theorem. □
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