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Abstract 

This study presents a multiband microstrip antenna designed and analyzed for wireless communication applications.  The proposed 

antenna (Prop-Ant) is designed on a FR-4 substrate material. The Prop-Ant has dimensions of 37.5 × 46 × 1.6 mm3. 3D 

electromagnetic simulation software was used to design and analyze the antenna.  The simulation results indicate that the antenna, 

with the specified dimensions, achieves a reflection coefficient of less than 10dB in the targeted frequency ranges. In the simulation, 

the Prop-Ant operates at resonant frequencies of 2.45GHz, 4.78GHz and 7.6GHz with bandwidths of approximately 46.12 % (2.09 

GHz - 3.22 GHz), 45.18 % (3.75 GHz - 5.91 GHz) and 25.92 % (6.51 GHz - 8.48 GHz), respectively.  The simulation results show 

that the Prop-Ant has peak gains of 2.27dBi, 3.63dBi and 4.28dBi at resonant frequencies of 2.45GHz, 4.78GHz and 7.6GHz, 

respectively. The Prop-Ant exhibits high gain, good efficiency and multiband performance, indicating that it can be used in wireless 

communication systems. 
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1. Introduction 

 

The rapid development of wireless communication technology in recent years has led to an improved demand for multiband wireless 

mobile terminals. Hence, it is important to design multiband antennas that are compact, low-profile and low-cost. Several antenna types 

have been proposed to perform these functions (Goswami et al., 2018; Ran et al., 2020; Verma & Kumar, 2014). Wireless 

communication technologies such as radio frequency identification (RFID), worldwide interoperability for microwave access 

(WiMAX) and wireless local area network (WLAN) are widely used. RFID operations are typically allocated to the 0.92/2.45/5.8 GHz 

bands. WiMAX operates in the 2.5/3.5/5.5 GHz bands and WLAN operates in the 2.4/5.2/5.8 GHz bands (Li et al., 2014). Furthermore, 

according to (Radar Systems Panel, 2019), C-band covers frequencies between 4GHz - 8GHz, while X-band covers frequencies 

between 8GHz - 12GHz.  

 

Using a separate antenna for each application increase the size and space requirements of the system (Mahendran et al., 2021). 

Therefore, modern wireless communication requires a single device that can support multiple technologies. Multiband antennas are 

used to meet this requirement (Sura et al., 2022). The techniques used to achieve multiband designs are diverse (Wang et al., 2021). 

These include loading different types of slots (Baytore et al., 2019; Bekasiewicz & Koziel, 2018), adding multiple resonant arms (Chen 

et al., 2017; Karthikeyan et al., 2020), applying novel feeding techniques (Abdalla et al., 2017; Kumar Sahu et al., 2017), and using 

metamaterial structures (Ali et al., 2018; Gao et al., 2017). 

 

In many wireless applications, the multiband microstrip patch antenna is a preferred choice due to its light weight, cost, low profile, 

and multiband advantages (Benkhadda et al., 2020; He et al., 2015). They also replace the use of multiple antennas for different resonant 

frequencies (Bakariya et al., 2015). In microstrip patch antennas, multiband capability can be achieved by using different slot, stub, 

and feed techniques (Kumar Naik & Amala Vijaya Sri, 2018). This approach leads to a reduction in antenna size and improved 

performance in the desired frequency bands (Sri & Ketavath, 2023). In recent years, many researchers in the literature worked on dual-

band (Joshi & Gond, 2019; Singh et al., 2019) and multiband (Ali et al., 2018; Brar et al., 2018; Mahendran et al., 2021; Mark et al., 

2018; Sura et al., 2022; Wang et al., 2021; Yalduz & Çizmeci, 2023) antennas operating in different communication bands (WLAN, 

WiMAX, etc.) for wireless communication applications.  

 

In this study, a multiband microstrip antenna for wireless communication applications is designed and analyzed. Commercial three-

dimensional electromagnetic (EM) simulation software (CST) is used to design and analyze the antenna. Simulation results such as 

reflection coefficients, radiation patterns, and antenna gain in the specified operating frequency bands are compared. This paper consists 

of four sections. Section 2 contains the antenna design and geometrical structure. In Section 3, simulation results and discussions are 

included. Section 4 presents the conclusions of the study. 

2. Antenna Design 

This chapter presents the structural characteristics and design of a proposed multiband microstrip antenna for wireless communication 

applications. The antenna is designed on a 1.6mm-thin FR-4 substrate with copper on both sides. This substrate material has a loss 

tangent of 0.025 and a relative permittivity (εr) of 4.3. A 3.05 mm wide 50Ω microstrip line is used in the antenna design for good 

impedance matching in the desired operating bands. Figure 1 shows the geometrical configuration of the proposed antenna (Prop-Ant). 

Figure 1 (a) demonstrates the top side of the Prop-Ant structure and Figure 1 (b) displays the bottom side of the Prop-Ant structure. 

The parameters used in the design of the Prop-Ant are obtained by simulation with a computer with i7 processor and 16 GB RAM and 

these parameters are given in Table 1. 

 

 

 

 

 

 

 

(a)                                            (b) 

Figure 1. Configuration of the Prop-Ant structure 

The top side of the Prop-Ant structure is depicted in (a), while the bottom side is illustrated in (b). 
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Table 1.  The structural parameters of the Prop-Ant 

Parameters W L v1 u1 w1 w2 w3 l1 l2 lg 

Values (mm) 37.5 46 8 0.75 11.5 5.75 2.75 11.43 5.71 9.75 

Parameters v2 u2 ra rb sv su lf wf wg  

Values (mm) 1.89 2.5 2 7 0.6 1.7 11.7 3.05 33.5  

2.1. Antenna Design Steps 

The antenna design process for multiband operation for wireless communication applications is shown in Figure 2(a). As demonstrated 

in the figure, the first antenna step composed of a patch structure and a ground plane. Then, the second step is obtained by hollowing 

out the inside of the antenna patch structure. In the third step, circles were added to the left and right sides of the antenna patch structure 

as shown in the figure, and circular cavities were cut in the fourth step. Squared cavities were added to the right and left sides of the 

circles as shown in the fifth step. In the last step, the structures shown in the figure are added to the top and bottom of the antenna 

patch, and the Prop-Ant patch is obtained. The resonant frequencies (2.45GHz, 4.78GHz and 7.6GHz) were obtained by modifying the 

ground plane of the Prop-Ant. The simulation of the reflection coefficients of the Prop-Ant design steps versus frequency is compared 

and presented in Figure 2 (b).  

 

 

 

 

 

 

 

 

 

 

 
 

(a) 

 

(b) 

Figure 2. Design steps of the Prop-Ant (a) and simulation of reflection coefficients versus frequency (b) 

 

                                               I.                                                 II.                                                III.  

                                              IV.                                               V.                                               VI.  
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3. Simulation Results and Discussions 

This section presents the simulation and analysis of the antenna's reflection coefficient (S11), radiation pattern, surface current 

distributions, gain and radiation efficiency performance parameters. Figure 3 shows the reflection coefficient curve determined through 

simulation. The calculated S11 value illustrates that the antenna has three resonances at 2.45GHz, 4.78GHz and 7.6GHz according to 

the criterion of S11 ≤ - 10 dB. As can be obviously seen from Figure 3, the reflection coefficients (S11) at the resonant frequencies 

(2.45GHz, 4.78GHz and 7.6GHz) are -27.2 dB, -24.09 dB and -17.87 dB, respectively. The Prop-Ant operates in the frequency 

bandwidths of 46.12% (2.09-3.22) GHz, 45.18% (3.75-5.91) GHz and 25.92% (6.51-8.48) GHz, covering the RFID (2.45/5.8GHz), 

WiMAX (2.5/5.5GHz) and WLAN (2.4/5.2/5.8GHz) bands. The third resonant frequency operates in C-band at 7.6 GHz. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Simulation of reflection coefficient versus frequency 

 

The surface current distributions of the antenna are simulated at three different resonant frequencies (2.45GHz, 4.78GHz and 7.6GHz) 

to investigate and verify the operating principles of the antenna design. The simulation of the surface current distributions of the Prop-

Ant for three different operating frequencies is shown in Figure 4. The results show that the current distributions change for three 

different operating frequencies. It is observed that the surface currents are concentrated along the boundaries of the antenna geometry 

and at the junctions with the feed line. These results clearly show that the surface current distribution of the antenna meets the design 

objectives and performs well at the targeted frequencies. Figure 5 shows the simulated far-field directivity patterns of the antenna in 

polar coordinates at the resonant frequencies of 2.45GHz, 4.78GHz and 7.6GHz. In these figures, solid lines correspond to phi = 0 

degrees and dashed lines correspond to phi = 90 degrees. 

 

                           f=2.45GHz                                 f=4.78GHz                      f=7.6GHz 

Figure 4. Simulation of the Prop-Ant’s surface current distributions 

 for resonant frequencies of 2.45GHz, 4.78GHz and 7.6GHz 
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         f=2.45GHz                                                                                    f=4.78GHz  

 

 

 

f=7.6GHz 

Figure 5. Simulation of the Prop-Ant's far-field radiation patterns 

There are several key parameters that influence antenna performance. Accordingly, the effects of the basic parameters are simulated 

and shown in Figure 6. These basic parameters are ra, w2, u2, u2, v2, v2, v1, u1, su and sv and the simulated reflection coefficients 

(S11) varying with these parameters are shown in Figure 6 (a)-(h). From Figures 6 (a), (d) and (f), it can be seen that the changes in 

the parameters ra, v2 and u1 have almost no effect on the resonant frequencies of 2.45GHz and 4.78GHz and only affect the frequency 

of 7.6 GHz. Figures 6 (b) and (e) show the changes in the simulated reflection coefficients with the variation in the parameters w2 and 

v1. It can be seen that the parameters w2 and v1 have little effect on the frequencies of 2.45GHz and 4.78GHz compared to the frequency 

of 7.6 GHz. Figure 6 (c) and (h) show the variations of the simulated reflection coefficients with varying u2 and sv parameters. It can 

be seen from these figures that the variation of u2 and sv parameters has almost no effect on the resonant frequency of 2.45GHz, while 

it has an effect on the resonant frequencies of 4.78GHz and 7.6GHz. Figure 6 (g) shows the change in the simulated reflection 

coefficients with the variation in the parameter su. It can be seen that the variation in the parameter su has an effect on all three resonant 

frequencies. These results presented in Figures 6(a)-(h) show that the three resonant frequencies and the impedance bandwidth can be 

effectively controlled by adjusting the dimensions ra, w2, u2, v2, v2, v1, u1, su and sv. 

 

 



UMAGD, (2025) 17(1), 44-54, Kisioglu 

49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Simulated reflection coefficients of the Prop-Ant for parameters (a) ra, (b) w2, (c) u2, (d) v2, (e) v1, (f) u1, (g) su, (h) sv 
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The change of the simulated peak gain with frequency for the Prop-Ant is demonstrated in Figure 7. As can be seen from this figure, 

the maximum simulated peak gain of the antenna is 4.76dBi at 8GHz. Figure 8 illustrates the gain diagrams of the Prop-Ant at the 

resonant frequencies obtained by simulation. As can be seen from Figures 7 and 8, the peak gains at the resonant operating frequencies 

of 2.45GHz, 4.78GHz, and 7.6GHz are approximately 2.27 dBi, 3.63dBi, and 4.28dBi, respectively. Figure 9 shows the radiation 

efficiency simulation results of the Prop-Ant. At 2.45GHz, 4.78GHz, and 7.6GHz resonant frequencies, the radiation efficiencies are 

approximately 94.4%, 84.1%, and 76.3%, respectively. These values show that the Prop-Ant is very effective in terms of peak gain and 

radiation efficiency. 

 

Figure 7. Simulation of the Prop-Ant’s peak gain 

 

 

 

 

                           f=2.45GHz                          f=4.78GHz                           f=7.6GHz 

Figure 8. Gain diagrams of the Prop-Ant at resonant frequencies obtained by simulation 
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Figure 9. Simulation of the Prop-Ant's radiation efficiency 

 

The voltage standing wave ratio (VSWR) of the Prop-Ant at resonant frequencies is shown in Figure 10. Here, the VSWRs at the 

resonant frequencies of 2.45GHz, 4.78GHz, and 7.6GHz are 1.09, 1.13, and 1.29, respectively. As can be seen from this figure,  the 

VSWR is less than 2 in all three operating bands, which indicates that the impedance matching is verified in the given bands. As a 

result, it can be concluded that the Prop-Ant meets this requirement. 

 

Figure 10. Variation of voltage standing wave ratio with frequency 
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Table 2 shows a performance comparison between the Prop-Ant and the multiband antennas in the literature (Ali et al., 2018; Brar et 

al., 2018; Mark et al., 2018; Singh et al., 2019; Wang et al., 2021; Yalduz & Çizmeci, 2023) in terms of size, operating frequencies, 

bandwidth, and gain. It is observed that the gain of the Prop-Ant is higher than the gains of the antennas presented in the literature (Ali 

et al., 2018; Brar et al., 2018; Singh et al., 2019). It is clearly seen that the gains of the antennas given in the literature (Mark et al., 

2018; Wang et al., 2021; Yalduz & Çizmeci, 2023) are lower than the Prop-Ant in some frequency bands and close to the gain of the 

Prop-Ant in other frequency bands. It can be seen that the Prop-Ant design is quite advantageous in terms of size, number of operating 

frequency bands, impedance bandwidth, and gain compared to other reference antennas. 

 

Table 2. Comparison of the Prop-Ant with other multiband antennas 

References 

Dimensions of Antenna 

Structures (mm3) and 

Substrate material 

Operating 

Frequency 

(GHz) 

Bandwidth 

(GHz) 

Number 

of 

bands 

Peak Gain 

(dB/dBi) 
Applications 

(Wang et 

al., 2021) 

36 × 39 × 1.6 

FR-4 

2.45/3.55/ 

5.5 

2.37–2.51/ 

3.3–3.8/ 

5.3–5.9 

Three 

Bands 

1.14–1.69/ 

2.41–2.79/ 

2.68–4.02 (dBi) 

WLAN/WiMAX 

(Ali et al., 

2018) 

30 × 24.8 × 1.6 

FR-4 

3.1/5.52/ 

7.31/9.72 

3.04-3.15/ 

5.44-5.72/ 

6.76-7.72/ 

9.42-9.98 

Four 

Bands 

1.35/1/ 

1.07/1.75 

(dB) 

WiMAX/ 

Satellite TV/ 

X-Band 

(Singh et 

al., 2019) 

35 × 30 × 1.6 

FR-4 
2.48/3.16 

2.41-2.56/ 

3.12-3.18 

Double 

Band 

1.05/1.09 

(dB) 
WLAN/WiMAX 

(Brar et 

al., 2018) 

50 × 35.5 × 1.6 

FR-4 

1.59/ 2.02/ 

2.46/3.51 

1.43–1.6/ 1.94–

2.1/ 2.40–2.57/ 

3.45–3.6 

Four 

Bands 

1.08 (dBic)/ 

1.38/0.85/0.7 

(dBi) 

GPS/ GLONASS/ 

UMTS/ 

WLAN/WiMAX 

(Yalduz & 

Çizmeci, 

2023) 

36 × 25 × 1.6 

FR-4 

1.936/3.43/ 

5.9/7.8 

1.879-0.986/ 

3.100-3.87/ 

4.970-6.515/ 

7.260-8.60 

Four 

Bands 

-0.16-0.61/ 

1.76-2.16/ 

1.87-2.6/ 

2.50-3.3 (dBi) 

GSM/ 

DSRC/ 

WiMAX/ 

WLAN /X band 

(Mark et 

al., 2018) 

40 × 32 × 1.6 

FR-4 

1.7/2.4/ 

3.1/ 4.5 

1.88-1.69/ 

2.52-2.34/3.59-

3.07/6.26-4.17 

Four 

Bands 

1.6/2.15/ 

2.75/ 3.8 

(dBi) 

DCS1800/ 

WLAN/WiMAX 

This 

study 

37.5 × 46 × 1.6 

FR-4 

2.45/4.78/ 

7.6 

2.09-3.22/ 

3.75-5.91/ 

6.51-8.48 

Three 

Bands 

2.27/3.63/4.28 

(dBi) 

RFID/WLAN/ 

WiMAX/C-Band 

 

4. Conclusions 

This paper presents a multiband microstrip antenna for wireless communication applications. The antenna is designed on FR-4 substrate 

and has dimensions of 37.5 × 46 × 1.6mm3. The Prop-Ant is designed and analyzed using 3D-EM simulation software. The resonant 

frequencies of the Prop-Ant are 2.45GHz, 4.78GHz, and 7.6GHz, with bandwidths of (2.09-3.22 GHz), (3.75-5.91 GHz), and (6.51-

8.48 GHz). These bandwidths cover many applications such as RFID (2.45/5.8GHz), WiMAX (2.5/5.5GHz), and WLAN 

(2.4/5.2/5.8GHz), and a certain bandwidth of C band. The Prop-Ant has radiation efficiencies of 94.4 %, 84.1 %, and 76.3 % at resonant 

frequencies and peak gains of 2.27dBi, 3.63dBi, and 4.28dBi at resonant frequencies. In this study, the parameters of the Prop-Ant, 

such as reflection coefficient, directivity, and gain in the operating bands, are investigated. The results show that the Prop-Ant exhibits 

satisfactory performances such as high gain, good efficiency, and multiband and can be used in wireless communication systems. 
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