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ABSTRACT

The purpose of this paper is to generalize definitions of Bertrand and Mannheim curves to non-
null framed curves and to non-flat three-dimensional (Riemannian or Lorentzian) space forms.
Denote by Mn

q (c) the n-dimensional space form of index q = 0, 1 and constant curvature c ̸= 0.
We introduce two types of framed Bertrand curves and framed Mannheim curves in M3

q(c) by
using two different moving frames: the general moving frame and the Frenet-type frame. We
investigate geometric properties of these framed Bertrand and framed Mannheim curves in M3

q(c)
that may have singularities. We then give characterizations for a non-null framed curve to be a
framed Bertrand curve or to be a framed Mannheim curve. We show that in special cases these
characterizations reduce to the well-known classical formulas: λκ+ µτ = 1 for Bertrand curves and
λ(κ2 + τ2) = κ for Mannheim curves. We provide several examples to support our results, and we
visualize these examples by using the Hopf map, the hyperbolic Hopf map, and the spherical
projection.
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1. Introduction

One of the popular curves that have been widely studied by geometers is the so-called Bertrand curve.
These curves were introduced based on the question proposed by Saint-Venant [38]. The original proplem
is to prove the existence of a curve γ̄ on a ruled surface generated by principal normals of another curve γ
such that γ and γ̄ have the same principal normal vectors in the Euclidean 3-space. This problem was not
answered until 1850, and eventually Bertrand [4] showed that such a curve indeed exits if the original curve is
planar, or if the curvatures κ and τ of the original curve γ satisfy the linear relation: λκ+ µτ = 1 for constants
λ ̸= 0 and µ. These curves have been widely studied [1, 2, 9, 11, 12, 21, 30, 31, 35, 37, 44]. There are also different
approaches by generalizing the original definition of Bertrand curves [5,28,36]. Another kind of popular curve
which is defined as very similar to the Bertrand curve is the so-called Mannheim curve, where the normal
vectors of γ are parallel to the binormal vectors of another curve γ̂ at corresponding points. There are several
generalizations of Mannheim curves in the literature [11, 13, 15, 16, 23, 29, 43, 45, 48].

Many of the studies on Bertrand and Mannheim curves or on other similar curve pairs assumes that the
original curve is regular. However, motivated by [14], recently the local differential geometry of certain families
of singular curves has been studied. These curves have been investigated for many special curves (see for
example [41]) and generalized to other ambient spaces and to higher dimensions [8, 17, 18, 24–27, 40, 42, 47].
Even though Bertrand and Mannheim curves of regular curves in the Riemannian or Lorentzian space forms
have been extensively investigated, there are only a few papers investigating Bertrand and Mannheim curves of
smooth curves that may have singularities: [19] for Bertrand and Mannheim curves with respect to the general
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moving frame in the Euclidean 3-space, [22] for Bertrand and Mannheim curves with respect to the Frenet-type
frame in the Riemannian 3-space forms, [39] for Bertrand and Mannheim curves with respect to the general
moving frame in the three-sphere, and [20] for Bertrand and Mannheim curves with respect to the general
moving frame in the Euclidean 4-space. In this paper, we shall generalize the definitions of Bertrand and
Mannheim curves to non-null framed curves in non-flat three-dimensional Riemannian or Lorentzian space
forms, and then we investigate geometric and singularity properties of these curves. Hence the importance
of this work is that it provides the most general characterizations for Bertrand and Mannheim curves of a
certain family of smooth curves in non-flat Riemannian or Lorentzian 3-space forms. Besides we investigate
two different types of framed Bertrand and Mannheim curves according to two different moving frames along
the curve. Clearly the results of this paper will reduce to those of [22] and [39].

This paper is organized as follows. In Section 2 we briefly review the pseudo-Euclidean space Rn+1
v and

introduce non-flat 3-dimensional space forms M3
q(c) in Rn+1

v . We then define framed curves in M3
q(c) along

with two orthonormal moving frames associated with these curves. We also remind three well-known maps,
the Hopf map in the three sphere, the hyperbolic Hopf map in the anti-de Sitter 3-space, and the spherical
projection in the hyperbolic 3-space. In Section 3, we go on to introduce Bertrand curves of non-null framed
curves in M3

q(c) with respect to the general moving frame and investigate geometric properties of these curves.
We obtain a characterization for these curves. We then define Bertrand curves of non-null framed curves in
M3

q(c) with respect to the Frenet-type frame and study geometric properties of these curves. In Section 4,
similar to Bertrand curves, we introduce two types of Mannheim curves of non-null framed curves in M3

q(c)
and investigate geometric properties of these curves. We finally give several examples of framed Bertrand and
framed Mannheim curves and visualize them using the Hopf map, the hyperbolic Hopf map, and the spherical
projection.

2. Preliminaries

Denote by Rn+1
v the (n+ 1)-dimensional pseudo-Euclidean space of index v ≥ 0 endowed with a pseudo-

scalar product defined by

⟨u,w⟩ = −
v∑

i=1

uiwi +

n+1∑
j=v+1

ujwj

where u = (u1, . . . , un+1), w = (w1, . . . , wn+1) ∈ Rn+1. Let Sn
q (c) denote the pseudo-Euclidean hyper-sphere

with index q ≥ 0 and constant curvature c > 0 given by

Sn
q = {u ∈ Rn+1

q | ⟨u, u⟩ = 1/c2},

and let Hn
q (c) denote the pseudo-Euclidean hyperbolic space with index q ≥ 0 and constant curvature c < 0

given by
Hn

q = {u ∈ Rn+1
q+1 | ⟨u, u⟩ = −1/c2}.

Without loss of generality we consider the unit pseudo-Euclidean hypersphere and the unit pseudo-Euclidean
hyperbolic space, that is, we shall assume that c = ±1. For simplicity we will denote by Mn

q (c) these n-
dimensional space forms of index q ≥ 0 and constant curvature c = ±1, and we take Mn

q (1) = Sn
q (1) and

Mn
q (−1) = Hn

q (−1). Note that for c = 1, Mn
q (1) lives in Rn+1

q , and for c = −1, Mn
q (−1) lives in Rn+1

q+1 .
Clearly for v = 0, Rn+1

v reduces to the (n+ 1)-dimensional Euclidean space Rn+1. For v ̸= 0 vectors are
classified with respect to the pseudo-scalar product defined above. Take a vector u = (u1, . . . , un+1) ∈ Rn+1

v .
The vector u is called spacelike if ⟨u, u⟩ > 0 or u = 0, timelike if ⟨u, u⟩ < 0, or lightlike (null) if ⟨u, u⟩ = 0 and
u ̸= 0. The pseudo-norm of the vector u is defined by ∥u∥ =

√
|⟨u, u⟩|. A curve γ : I → Rn+1

v is called spacelike,
timelike, or lightlike (null) if the tangent vector of γ is always spacelike, timelike, or lightlike (null), respectively.

For n arbitrary vectors u1, . . . , un in Rn+1
v , the vector product u1 × · · · × un is defined as the unique vector in

Rn+1
v satisfying the following relation for every w ∈ Rn+1

v

⟨u1 × · · · × un, w⟩ = det(u1, . . . , un, w).

It is also possible to define a vector product ∧ induced by × in Rn+1
v for vectors in the tangent space

TpMn
q (c) at any point p ∈ Mn

q (c). Consider n− 1 vectors u1, . . . , un−1 in TpMn
q (c) ⊂ Rn+1

v . The vector product
u1 ∧ · · · ∧ un−1 ∈ TpMn

q (c) of these vectors is defined by

u1 ∧ · · · ∧ un−1 = p× u1 × · · · × un−1.
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Denote respectively by ∇̄ and ∇0 the Levi-Civita connections on Mn
q (c) and Rn+1

v . For two vector fields U
and V tangent to Mn

q (c), the Gauss formula reads

∇0
UV = ∇̄UV − c⟨U, V ⟩ϕ, (2.1)

where ϕ : Mn
q (c) → Rn+1

v denotes the position vector.
Since we are interested in non-flat three-dimensional space forms, from now on we shall take n = 3.
Consider a regular non-null curve γ = γ(s) : I ⊂ R → M3

q(c) that is not a geodesic, and suppose that γ is a
unit-speed curve, i.e., ∥γ′(s)∥ = 1 for all s ∈ I . Then we can easily define the Frenet frame {T,N,B} along the
curve γ such that

∇0
TT = −ϵ1cγ + ϵ2κN, ∇0

TN = −ϵ1κT + ϵ3τB, ∇0
TB = ϵ2τN, (2.2)

where κ and τ stand for the curvature and the torsion of γ, and ϵ1, ϵ2, ϵ3 are the causal characters of the Frenet
vectors T,N,B.

Obviously if the curve γ has singularities, then the Frenet frame defined above is not well-defined. Therefore,
by generalizing regular curves, we introduce the concept of framed curves in Mn

q (c) and give well-defined
frames along these curves. Let γ = γ(s) : I ⊂ R → M3

q(c) be a smooth immersed curve. Then (γ, v1, v2) : I →
M3

q(c)×∆ is called a framed curve if ⟨γ(s), vi(s)⟩ = 0 = ⟨γ′(s), vi(s)⟩ (i = 1, 2) for all s ∈ I , where

∆ = {(u,w) | ⟨u,w⟩ = 0}.

We have the following cases for ∆:

1. For M3
q(c) = S3

0 ⊂ R4, we have ∆ ⊂ S3
0 × S3

0.

2. For M3
q(c) = S3

1 ⊂ R4
1, we have the following cases:

(a) ∆ ⊂ S3
1 ×H3

0 or ∆ ⊂ H3
0 × S3

1. In this case γ is called a spacelike framed curve in S3
1.

(b) ∆ ⊂ S3
1 × S3

1. In this case γ is called a timelike framed curve in S3
1.

3. For M3
q(c) = H3

0 ⊂ R4
1, we have ∆ ⊂ S3

1 × S3
1. In this case γ is called a spacelike framed curve in H3

0.

4. For M3
q(c) = H3

1 ⊂ R4
2, we have the following cases:

(a) ∆ ⊂ H3
1 × S3

2 or ∆ ⊂ S3
2 ×H3

1. In this case γ is called a spacelike framed curve in H3
1.

(b) ∆ ⊂ S3
2 × S3

2. In this case γ is called a timelike framed curve in H3
1.

5. For M3
q(c) = S3

2 ⊂ R4
2, we have the following cases:

(a) ∆ ⊂ H3
1 ×H3

1. In this case γ is called a spacelike framed curve in S3
2.

(b) ∆ ⊂ H3
1 × S3

2 or ∆ ⊂ S3
2 ×H3

1. In this case γ is called a timelike framed curve in S3
2.

For a framed curve (γ, v1, v2) in M3
q(c)×∆, set µ(s) = γ(s)× v1(s)× v2(s). Then there exists a smooth function

α : I → R such that γ′(s) = α(s)µ(s). Hence {v1, v2, µ} forms an orthonormal frame along γ in M3
q . Considering

the Levi-Civita connection ∇0 of R4
v, we have the following derivative formulas of this frame

∇0
γ′v1 = ϵ2ℓ1v2 + ϵ3ℓ2µ,

∇0
γ′v2 = −ϵ1ℓ1v1 + ϵ3ℓ3µ, (2.3)

∇0
γ′µ = −ϵ3cαγ − ϵ1ℓ2v1 − ϵ2ℓ3v2,

where ϵi = ⟨vi, vi⟩ (i = 1, 2), ϵ3 = ⟨µ, µ⟩, α = ϵ3⟨γ′, µ⟩, ℓ1 = ⟨v′1, v2⟩, ℓ2 = ⟨v′1, µ⟩, and ℓ3 = ⟨v′2, µ⟩. Note that for
simplicity we shall also use the notation x′ to represent the derivative ∇0

γ′x. The mapping (α, ℓ1, ℓ2, ℓ3) : I → R4

is said to be the curvature of (γ, v1, v2). It is easy to see that γ is singular at s0 ∈ I if and only if α(s0) = 0.
Note that these framed curves satisfy the existence and uniqueness. More specifically, for a smooth mapping

(α, ℓ1, ℓ2, ℓ3) : I → R4, there exists a unique framed curve (γ, v1, v2) : I → M3
q(c) up to rigid motion such that α,

ℓ1, ℓ2, and ℓ3 are the curvatures of γ. This fact has been proved for different ambient spaces [14, 17, 40] and can
be similarly proved for our cases.

We are also be able to form a Frenet-type frame along a framed curve. This frame is indeed like a moving
frame defined above but the last component ℓ3(s) of its curvature vanishes for all s. Therefore, we can construct
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this frame by keeping µ and by applying a suitable pseudo-Euclidean rotation of {v1, v2} about µ. Denote this
Frenet-type frame by {µ, ω1, ω2}. Hence we have(

ω1(s)
ω2(s)

)
=

(
f(σ(s)) −ϵ1ϵ2g(σ(s))
g(σ(s)) f(σ(s))

)(
v1(s)
v2(s)

)
,

where (f(u), g(u)) = (cosu, sinu) if ϵ1ϵ2 = 1, (f(u), g(u)) = (coshu, sinhu) if ϵ1ϵ2 = −1. Differentiating ω1 and ω2

and using (2.3) we have

ω′
1(s) = ϵ2(−ϵ1σ

′(s) + ℓ1(s))ω2 + ϵ3(ℓ2(s)f(σ(s))− ϵ1ϵ2ℓ3(s)g(σ(s)))µ(s),

ω′
2(s) = −ϵ1(−ϵ1σ

′(s) + ℓ1(s))ω1 + ϵ3(ℓ2(s)g(σ(s)) + ℓ3(s)f(σ(s)))µ(s).

Let σ be a smooth function such that ℓ2(s)g(σ(s)) + ℓ3(s)f(σ(s)) = 0. Assume that ℓ2(s) = p2(s)f(σ(s)) and
ℓ3(s) = −p2(s)g(σ(s)). Then we have

µ′(s) = −ϵ3cα(s)γ(s)− ϵ1p2(s)ω1(s).

Then defining p1(s) := −ϵ1σ
′(s) + ℓ1(s) we get the Frenet-Serret type formulas as follows

∇0
γ′ω1 = ε2p1ω2 + ε3p2µ,

∇0
γ′ω2 = −ε1p1ω1, (2.4)

∇0
γ′µ = −ε3cαγ − ε1p2ω1,

where εi = ⟨ωi, ωi⟩ (i = 1, 2), ε3 = ⟨µ, µ⟩, α = ε3⟨γ′, µ⟩. We call the mapping (α, p1, p2) : I → R3 the Frenet-type
curvature of (γ, ω1, ω2).

Next we introduce a geodesic curve in M3
q(c) ⊂ Rn+1

v as follows: let γ(s) be a point of γ in M3
q(c), and let X(s)

a point in M3
r(d) ⊂ Rn+1

v . Then for t ∈ R

δγ,Xs (t) = expγ(tX) = f(t)γ(s) + g(t)X(s) (2.5)

is a geodesic curve in M3
q(c), where f and g are functions given by f(t) = cos t and g(t) = sin t if dc = 1, by

f(t) = cosh t and g(t) = sinh t if dc = −1. We shall consider two particular types of such geodesic curves. For
a framed curve (γ, v1, v2) : I → M3

q(c)∆, δγ,v1
s (t) is called the generalized principal-normal geodesic starting at

γ(s), and δγ,v2
s (t) is called the generalized binormal geodesic starting at γ(s).

We recall the Hopf map given by [34]

π :M3
0(1) → S2(1/2)

(u1, u2, u3, u4) 7→
(
u1u3 + u2u4, u2u3 − u1u4,

u2
1 + u2

2 − u2
3 − u2

4

2

)
, (2.6)

where S2(1/2) = {(y1, y2, y3) ∈ R3 | y21 + y22 + y23 = 1/4} is the 2-sphere that is the surface of constant curvature
1/4 in the three-dimensional Euclidean space R3.

We now recall the hyperbolic Hopf map given by [3]

h :M3
1(−1) → H2(1/2)

(u1, u2, u3, u4) 7→
(
u1u3 + u2u4, u1u4 − u2u3,

u2
1 + u2

2 + u2
3 + u2

4

2

)
, (2.7)

where H2(1/2) = {(y1, y2, y3) ∈ R3
1 | y21 + y22 − y23 = −1/4 and y3 > 0} is the hyperbolic 2-space that is the surface

of constant curvature −1/4 in the three-dimensional Minkowski space R3
1. By using this map we will get

projections on H2(1/2) of curves in the anti-de Sitter 3-space M3
1(−1) and visualize them.

We close this section by defining the spherical projection of a curve in M3
0(−1) ⊂ R4

1 [7]. Let γ ∈ M3
0(−1) be

a curve defined by expp(ρ(s)V (s)), where p ∈ M3
0(−1), ρ(s) ̸= 0 is an arbitrary function, and V (s) is a curve in

M2
0(1) = S2(1) ∈ TpM3

0(−1). In this case, V is said to be the spherical projection of γ.

3. Non-null framed Bertrand curves in M3
q(c)

We, in this section, shall introduce two-types of Bertrand curves of non-null framed curves in M3
q(c) with

respect to two different frames: the general moving frame {v1, v2, µ} and the Frenet-type frame {ω1, ω2, µ}.
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3.1. Framed Bertrand curves in M3
q(c) with respect to the general moving frame {v1, v2, µ}

Definition 3.1. Suppose that (γ, v1, v2) : I → M3
q(c)×∆ is a non-null framed curve. Then (γ, v1, v2) is called a

Bertrand curve if there exists another non-null framed curve (γ̄, v̄1, v̄2) : I → M3
q(c)×∆ such that both curves

(γ, v1, v2) and (γ̄, v̄1, v̄2) have common generalized principal normal geodesics at corresponding points. In this
case, (γ̄, v̄1, v̄2) is said to be a framed Bertrand mate (or conjugate) of (γ, v1, v2), and as well (γ, v1, v2) and (γ̄, v̄1, v̄2)
are called a pair of framed Bertrand curves.

By this definition, we immediately see that for a pair of framed Bertrand curves (γ, v1, v2) and (γ̄, v̄1, v̄2), there
exists a differentiable function φ(s) such that

γ̄(s) = f(φ(s))γ(s) + g(φ(s))v1(s). (3.1)

Since γ̄ ∈ M3
q(c), we have f2(φ(s)) + ϵ1cg

2(φ(s)) = 1. Note that from now on, we will simply say γ is a framed
Bertrand curve instead of saying (γ, v1, v2) is a framed Bertrand curve. Furthermore, throughout the paper we
will assume that g(φ(s)) ̸≡ 0 that is γ̄ ̸= ±γ.

Proposition 3.1. Let γ be a framed Bertrand curve, and let γ̄ be a Bertrand mate of this curve given by (3.1). Then the
function φ(s) is constant.

Proof. From Definition 3.1, γ and γ̄ have common generalized principal normal geodesics at corresponding
points. Thus we have

d

dt

∣∣∣∣
t=φ(s)

δγ,v1s (t) = v̄1(s).

Since f ′(t) = −ϵ1cg(t) and g′(t) = f(t), we find that

v̄1(s) = −ϵ1cg(φ(s))γ(s) + f(φ(s))v1(s).

Differentiating (3.1) and using (2.3) yields

γ̄′(s) = ᾱ(s)µ̄(s) =− ϵ1c φ
′(s)g(φ(s))γ(s) + (f(φ(s))α(s) + ϵ3g(φ(s))ℓ2(s))µ(s)

+ φ′(s)f(φ(s))v1(s) + ϵ2g(φ(s))ℓ1(s)v2(s).

Then we get
0 = ⟨γ̄′(s), v̄1(s)⟩ = φ′(s)(cg2(φ(s)) + ϵ1f

2(φ(s))) = ϵ1φ
′(s),

which directly yields φ′(s) ≡ 0.

Proposition 3.2. Let (γ, v1, v2) : I → M3
q(c)×∆ be a non-null Bertrand curve with curvature (α, ℓ1, ℓ2, ℓ3). A Bertrand

mate (γ̄, v̄1, v̄2) : I → M3
q(c)×∆ of (γ, v1, v2) is also a non-null framed curve with curvature (ᾱ, ℓ̄1, ℓ̄2, ℓ̄3), where

v̄1(s) = −ϵ1cg(φ)γ(s) + f(φ)v1(s),

v̄2(s) = ξ(θ(s))v2(s) + η(θ(s))µ(s),

µ̄(s) = ϵ2η(θ(s))v2(s)− ϵ3ξ(θ(s))µ(s),

ᾱ(s) = ϵ̄3ϵ2g(φ)η(θ(s))ℓ1(s)− ϵ̄3 (f(φ)α(s) + ϵ3g(φ)ℓ2(s)) ξ(θ(s)),

ℓ̄1(s) = f(φ)ξ(θ(s))ℓ1(s) + (−ϵ1ϵ3cg(φ)α(s) + f(φ)ℓ2(s)) η(θ(s)),

ℓ̄2(s) = ϵ2f(φ)η(θ(s))ℓ1(s) + (ϵ1cg(φ)α(s)− ϵ3f(φ)ℓ2(s)) ξ(θ(s)),

ℓ̄3(s) = −ϵ̄3(ϵ3θ
′(s) + ℓ3(s)),

where ϵ̄1, ϵ̄2, ϵ̄3 are the causal characters of v̄1, v̄2, and µ̄, and θ : I → R is a smooth function. Moreover, the functions ξ
and η are given by (ξ(u), η(u)) = (cosu, sinu) if ϵ̄2 = ϵ2 = ϵ3, by (ξ(u), η(u)) = (coshu, sinhu) if ϵ̄2 = ϵ2 = −ϵ3, and
by (ξ(u), η(u)) = (sinhu, coshu) if ϵ̄2 = −ϵ2 = ϵ3. Thus, these two functions satisfy the relation ϵ̄2 = ϵ2ξ

2 + ϵ3η
2.

Proof. Since (γ̄, v̄1, v̄2) is a Bertrand mate of (γ, v1, v2), by (3.1) and Proposition 3.1 we directly have

γ̄(s) = f(φ)γ(s) + g(φ)v1(s),

v̄1(s) = −ϵ1cg(φ)γ(s) + f(φ)v1(s).
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Notice that ϵ̄1 = ⟨v̄1, v̄1⟩ = ϵ1. The derivative of γ̄(s) with respect to s is given by

γ̄′(s) = ᾱ(s)µ̄(s) = (f(φ)α(s) + ϵ3g(φ)ℓ2(s))µ(s) + ϵ2g(φ)ℓ1(s)v2(s).

Therefore there exists a smooth function θ : I → R such that

v̄2(s) = ξ(θ(s))v2(s) + η(θ(s))µ(s),

where ξ and η are functions so that ϵ̄2 = ⟨v̄2, v̄2⟩ = ϵ2ξ
2 + ϵ3η

2. Therefore, based on the causal characters ϵ̄2, ϵ2,
and ϵ3, the pair (ξ(u), η(u)) can be chosen as one of the following pairs of functions; (cosu, sinu), (coshu, sinhu),
or (sinhu, coshu). Notice that ξ′(u) = −ϵ2ϵ3η(u) and η′(u) = ξ(u). Then we find that ⟨γ̄, v̄1⟩ = ⟨γ̄, v̄2⟩ = 0 and
⟨γ̄′, v̄1⟩ = ⟨γ̄′, v̄2⟩ = 0, and thus (γ̄, v̄1, v̄2) is a non-null framed curve in M3

q(c)×∆. It is easy to find that
µ̄(s) = ϵ2η(θ(s))v2(s)− ϵ3ξ(θ(s))µ(s).

To find the curvature of this framed curve, we shall need the following derivatives:

v̄′1(s) = ϵ2f(φ)ℓ1(s)v2(s) +
(
ϵ3f(φ)ℓ2(s)− ϵ1cg(φ)α(s)

)
µ(s),

v̄′2(s) = −ϵ3cα(s)η(θ(s))γ(s)− ϵ1(ℓ1(s)ξ(θ(s)) + ℓ2(s)η(θ(s)))v1(s)

− ϵ2(ϵ3θ
′(s) + ℓ3(s))η(θ(s))v2(s) + (θ′(s) + ϵ3ℓ3(s))ξ(θ(s))µ(s).

We know that ᾱ(s) = ϵ̄3⟨γ̄′(s), µ̄(s)⟩, ℓ̄1(s) = ⟨v̄′1(s), v̄2(s)⟩, ℓ̄2(s) = ⟨v̄′1(s), µ̄(s)⟩, and ℓ̄3(s) = ⟨v̄′2(s), µ̄(s)⟩. The rest
of the proof follows straightforwardly from the equations given above.

Notice that if γ has a singularity at s0, that is, α(s0) = 0. Then its framed Bertrand conjugate γ̄ has a singularity
at s0 if and only if

ϵ2η(θ(s0))ℓ1(s0) = ϵ3ξ(θ(s0))ℓ2(s0). (3.2)

Proposition 3.3. Let γ and γ̄ be a pair of non-null framed Bertrand curves in M3
q(c). Then there exist a constant φ and

a smooth function θ : I → R such that

(a) (f(φ)α(s) + ϵ3g(φ)ℓ2(s)) η(θ(s)) = −ϵ3g(φ)ξ(θ(s))ℓ1(s),

(b) ϵ2
(
f(φ)ᾱ(s)− ϵ̄3g(φ)ℓ̄2(s)

)
η(θ(s)) = ϵ̄2g(φ)ξ(θ(s))ℓ̄1(s),

(c) (f(s)α(s) + ϵ3g(φ)ℓ2(s))
(
f(s)ᾱ(s)− ϵ̄3g(φ)ℓ̄2(s)

)
= ϵ3ϵ̄3α(s)ᾱ(s)ξ

2(θ(s)),

(d) −ϵ3α(s)ᾱ(s)η
2(θ(s)) = ℓ1(s)ℓ̄1(s)g

2(φ).

Proof. (a) Bearing in mind that φ is a constant, we get the derivative of (3.1)

γ̄′(s) = (f(φ)α(s) + ϵ3g(φ)ℓ2(s))µ(s) + ϵ2g(φ)ℓ1(s)v2(s).

We also know that γ̄′(s) = ᾱ(s)µ̄(s). Now introducing µ̄(s) given in Proposition 3.2 into this equation
gives us the following relation:

γ̄′(s) = ᾱ(s) (ϵ2η(θ(s))v2(s)− ϵ3ξ(θ(s))µ(s)) .

From the last two equations, we find that

ᾱ(s)η(θ(s)) = g(φ)ℓ1(s), (3.3)
−ϵ3ᾱ(s)ξ(θ(s)) = f(φ)α(s) + ϵ3g(φ)ℓ2(s). (3.4)

Claim (a) follows directly from these equations.

(b) To prove this statement we need to write the moving frame {γ, v1, v2, µ} in terms of {γ̄, v̄1, v̄2, µ̄}. This is
simple from the equations given in Proposition 3.2:

γ(s) = f(φ)γ̄(s)− g(φ)v̄1(s),

v1(s) = ϵ1cg(φ)γ̄(s) + f(φ)v̄1(s), (3.5)
v2(s) = ϵ̄3(ϵ3ξ(θ(s))v̄2(s) + η(θ(s))µ̄(s)),

µ(s) = ϵ̄3(ϵ2η(θ(s))v̄2(s)− ξ(θ(s))µ̄(s)).

Following similar steps to those in (a), we obtain

ϵ2ϵ̄3α(s)η(θ(s)) = −ϵ̄2g(φ)ℓ̄1(s), (3.6)
−ϵ̄3α(s)ξ(θ(s)) = f(φ)ᾱ(s)− ϵ̄3g(φ)ℓ̄2(s). (3.7)

From these equations we get (b).
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(c) The proof directly follows from (3.4) and (3.7).

(d) The proof directly follows from (3.3) and (3.6).

Suppose that γ has a singularity. In this case, the framed Bertrand mate γ̄ of γ might be a regular curve
or might have singularities. Let α(s0) = 0. Then from (3.6) and (3.7) we immediately have ℓ̄1(s0) = 0 and
f(φ)ᾱ(s0) = ϵ̄3g(φ)ℓ̄2(s0). Now suppose that γ̄ has singularity at s0, that is, ᾱ(s0) = 0. Then from (3.3) and (3.4)
we directly get ℓ1(s0) = 0 and f(φ)α(s0) = −ϵ3g(φ)ℓ2(s0). Therefore, if both γ and γ̄ has singularity at s0, then
we find that ℓ1(s0) = 0, ℓ2(s0) = 0, ℓ̄1(s0) = 0, ℓ̄2(s0) = 0. The converse of this proposition does not have to be
true.

Proposition 3.4. Let γ and γ̄ be a pair of non-null framed Bertrand curves in M3
q(c). Then there exist a constant φ and

a smooth function θ : I → R such that

(a) ℓ1(s)f(φ) = ϵ2ϵ̄2ℓ̄1(s)ξ(θ(s)) + ϵ̄3ℓ̄2(s)η(θ(s)) and ℓ̄1(s)f(φ) = ℓ1(s)ξ(θ(s)) + ℓ2(s)η(θ(s)),

(b) −ϵ1cα(s)g(φ) + ϵ3ℓ2(s)f(φ) = ϵ̄2ℓ̄1(s)η(θ(s))− ϵ3ϵ̄3ℓ̄2(s)ξ(θ(s)) and
ϵ2ℓ1(s)η(θ(s))− ϵ3ℓ2(s)ξ(θ(s)) = ϵ1ϵ̄3cᾱ(s)g(φ) + ℓ̄2(s)f(φ).

Proof. From (2.3) and Proposition 3.2 we have

v̄′1(s) =ϵ̄2ℓ̄1(s)v̄2(s) + ϵ̄3ℓ̄2(s)µ̄(s)

=
(
ϵ̄2ℓ̄1(s)ξ(θ(s)) + ϵ2ϵ̄3ℓ̄2(s)η(θ(s))

)
v2(s)

+
(
ϵ̄2ℓ̄1(s)η(θ(s))− ϵ3ϵ̄3ℓ̄2(s)ξ(θ(s))

)
µ(s).

On the other hand, differentiating v̄1(s) given in Proposition 3.2 yields

v̄′1(s) = ϵ2ℓ1(s)f(φ)v2(s) + (−ϵ1cα(s)g(φ) + ϵ3ℓ2(s)f(φ))µ(s).

Using the last two equations we prove the first relations in (a) and (b).
For the proof of the second relations, a similar procedure is followed by using relations in (3.5).

Notice that if γ has singularity at s0, then from the second equality of Proposition 3.4(a) we have
ξ(θ(s0))ℓ1(s0) + η(θ(s0))ℓ2(s0) = 0 and from the first equality of Proposition 3.4(b) we have ℓ2(s0)f(φ) =
−ϵ̄3ℓ̄2(s0)ξ(θ(s0)) since ℓ̄1(s0) = 0.

In the following proposition, we shall consider a special case where ℓ1(s) = 0 for all s ∈ I .

Proposition 3.5. (i) A non-null framed curve (γ, v1, v2) : I → M3
q(c)×∆ with curvature (α, 0, ℓ2, ℓ3) is a framed

Bertrand curve, and this curve has infinite Bertrand conjugates γ̄ such that ℓ̄1(s) = 0 for all s ∈ I .

(ii) Let γ and γ̄ be a pair of non-null framed Bertrand curves with curvatures (α, ℓ1, ℓ2, ℓ3) and (ᾱ, ℓ̄1, ℓ̄2, ℓ̄3). If
ℓ̄1(s) = 0 for all s ∈ I , then ℓ1(s) = 0 for all s ∈ I .

Proof. (i) Let γ be a non-null framed curve such that ℓ1(s) = 0 for all s ∈ I . For each real number φ ∈ (−ε, ε),
consider the curve in M3

q(c) defined by

γ̄φ(s) = f(φ)γ(s) + g(φ)v1(s). (3.8)

We will show that for all φ ∈ (−ε, ε), γ̄φ is a framed Bertrand conjugate of γ. Differentiating (3.8) and
using (2.3), we may take

µ̄φ(s) = µ(s), (3.9)
ᾱφ(s) = f(φ)α(s) + ϵ3g(φ)ℓ2(s). (3.10)

Therefore we get
v̄1φ(s) = −ϵ1cg(φ)γ(s) + f(φ)v1(s). (3.11)

Then the generalized principal normal geodesic starting at γ̄φ(s0) is given by

δ(t) = f(t)γ̄φ(s0) + g(t)v̄1φ(s0) = f(t+ φ)γ(s0) + g(t+ φ)v1(s0).

Clearly this is just a reparametrization of the generalized principal normal geodesic starting at γ(s0).
Therefore γ̄φ is a non-null framed Bertrand conjugate of γ.
Differentiating (3.11) and using (3.8), (3.9), and (3.10) yields

v̄2φ(s) = v2(s), ℓ̄1φ(s) = 0, ℓ̄2φ(s) = ϵ2cg(φ)α(s) + f(φ)ℓ2(s), ℓ̄3φ(s) = ℓ3(s). (3.12)
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(ii) Assume that ℓ̄1(s) = 0 for all s ∈ I . From Proposition 3.3(d) we find that η(θ(s)) = 0 for all s ∈ I . Now
introducing these relations into Proposition 3.3(a), we get g(φ)ℓ1(s) = 0 for all s ∈ I . Then we have two
cases: (1) if g(φ) = 0, then f2(φ) = 1 and so γ = ±γ̄. Hence ℓ̄1(s) = ℓ1(s) = 0 for all s ∈ I . (2) if ℓ1(s) = 0 for
all s ∈ I , there is nothing to prove.

We next give the main theorem of this section that characterizes framed Bertrand curves in M3
q(c). But before

this theorem, we recall the following conditions from the above discussion:

C1. f and g are smooth functions such that f2 + ϵ1cg
2 = 1, f ′ = −ϵ1cg, and g′ = f .

C2. ξ(u) and η(u) are smooth functions such that

(ξ, η) ∈ {(cosu, sinu), (coshu, sinhu), (sinhu, coshu)}.

Theorem 3.1. Suppose that (γ, v1, v2) : I → M3
q(c)×∆ is a non-null framed curve with curvature (α, ℓ1, ℓ2, ℓ3), where

ℓ1(s) ̸= 0 for all s ∈ I . Then γ is a framed Bertrand curve if and only if there exist a constant φ such that g(φ) ̸= 0 and a
smooth function θ : I → R such that for all s ∈ I

ϵ3g(φ)ξ(θ(s))ℓ1(s) + (f(φ)α(s) + ϵ3g(φ)ℓ2(s)) η(θ(s)) = 0, (3.13)

where the functions f and g satisfy condition C1, and the functions ξ and η satisfy condition C2.

Proof. The sufficiency part is clear from Proposition 3.3(a).
Now suppose that (3.13) is satisfied for a certain function θ(s) and a constant φ. Consider the curve

γ̄(s) = f(φ)γ(s) + g(φ)v1(s). (3.14)

We will show that this curve is a framed Bertrand conjugate of γ. Then using (3.13) it is easy to show that
(γ̄, v̄1, v̄2) : I → M3

q(c)×∆ is a non-null framed curve with

v̄1(s) = −ϵ1cg(φ)γ(s) + f(φ)v1(s), (3.15)
v̄2(s) = ξ(θ(s))v2(s) + η(θ(s))µ(s). (3.16)

Using (3.14) and (3.15), we see that the generalized principal normal geodesic starting at a point γ̄(s0) is

δ(t) = f(t)γ̄(s0) + g(t)v̄1(s0)

= f(t+ φ)γ(s0) + g(t+ φ)v1(s0).

This gives a reparametrization of the generalized principal normal geodesic at γ(s0). Therefore γ̄ is a framed
Bertrand conjugate of γ.

Remark 3.1. Equation (3.13) characterizes framed Bertrand curves with ℓ1(s) ̸= 0 in M3
q(c). But this

characterization looks different from its counterparts for regular Bertrand curves. Let λ = g/f , and assuming
η(θ(s)) ̸= 0 for all s ∈ I , define ρ(s) = λξ(θ(s))/η(θ(s)). Hence (3.13) becomes

λℓ2(s) + ρ(s)ℓ1(s) = −ϵ3α(s). (3.17)

This is quite familiar since we know that regular non-null Bertrand curves in M3
q(c) are characterized by the

formula: λκ+ µτ = 1, where λ ̸= 0 and µ are constants, and κ and τ stand for the curvature and torsion of the
curve. Equation (3.17) is clearly a generalization of this classical formula.

3.2. Framed Bertrand curves in M3
q(c) with respect to the Frenet-type frame

Definition 3.2. Suppose that (γ, ω1, ω2) : I → M3
q(c)×∆ is a non-null framed curve with the Frenet-type frame.

Then (γ, ω1, ω2) is called a Bertrand curve with respect to the Frenet-type frame if there exists another non-
null framed curve (γ̄, ω̄1, ω̄2) : I → M3

q(c)×∆ such that both curves (γ, ω1, ω2) and (γ̄, ω̄1, ω̄2) have common
generalized principal normal geodesics with respect to the Frenet-type frame at corresponding points. In
this case, (γ̄, ω̄1, ω̄2) is said to be a framed Bertrand mate (or conjugate) of (γ, ω1, ω2), and as well (γ, ω1, ω2) and
(γ̄, ω̄1, ω̄2) are called a pair of framed Bertrand curves.
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For a pair of framed Bertrand curves (γ, ω1, ω2) and (γ̄, ω̄1, ω̄2), we can write

γ̄(s) = f(φ)γ(s) + g(φ)ω1(s), (3.18)

where f2(φ) + ε1cg
2(φ) = 1, and φ is a constant such that g(φ) ̸= 0.

We will not give all of the results of Section 3.1 again for the Frenet-type frame along γ. But nevertheless we
discuss some properties of these framed Bertrand curves. Actually a trick for carrying the results of Section 3.1
to this section is simply letting ϵi = εi (i = 1, 2), ℓ1 = p1, ℓ2 = p2, ℓ3 = 0, ℓ̄1 = p̄1, ℓ̄2 = p̄2, ℓ̄3 = 0 in all equations of
Section 3.1. Note that what is meant here is not that the Frenet-type frame is a special case of the general moving
frame for ℓ3(s) = 0. But using this trick will save us making many calculations. Therefore letting ℓ3 = ℓ̄3 = 0 in
the equalities in Proposition 3.2 we have θ′(s) = 0 and so θ(s) = θ is a constant function. Thus we have

ω̄1(s) = −ε1cg(φ)γ(s) + f(φ)ω1(s),

ω̄2(s) = ξ(θ)ω2(s) + η(θ)µ(s),

µ̄(s) = ε2η(θ)ω2(s)− ε3ξ(θ)µ(s),

ᾱ(s) = ε̄3ε2g(φ)η(θ)p1(s)− ε̄3 (f(φ)α(s) + ε3g(φ)p2(s)) ξ(θ), (3.19)
p̄1(s) = f(φ)ξ(θ)p1(s) + (−ε1ε3cg(φ)α(s) + f(φ)p2(s)) η(θ),

p̄2(s) = ε2f(φ)η(θ)p1(s) + (ε1cg(φ)α(s)− ε3f(φ)p2(s)) ξ(θ),

where ε̄1, ε̄2, ε̄3 are the causal characters of ω̄1, ω̄2, and µ̄, and θ is a constant. Moreover, the functions ξ and η
are given by (ξ(u), η(u)) = (cosu, sinu) if ε̄2 = ε2 = ε3, by (ξ(u), η(u)) = (coshu, sinhu) if ε̄2 = ε2 = −ε3, and by
(ξ(u), η(u)) = (sinhu, coshu) if ε̄2 = −ε2 = ε3. Thus, these two functions satisfy the relation ε̄2 = ε2ξ

2 + ε3η
2.

Propositions 3.3, 3.4, and 3.5 can also be obtained in a similar way. Similar to Theorem 3.1 we can derive
the equation that characterizes framed Bertrand curves with respect to the Frenet-type frame. Suppose that
(γ, ω1, ω2) : I → M3

q(c)×∆ is a non-null framed curve with the Frenet-type curvature (α, p1, p2), where p1(s) ̸= 0
for all s ∈ I . Then γ is a framed Bertrand curve with respect to the Frenet-type frame if and only if there exist
two constants φ and θ with g(φ) ̸= 0 such that for all s ∈ I

ε3g(φ)ξ(θ)p1(s) + (f(φ)α(s) + ϵ3g(φ)p2(s)) η(θ) = 0. (3.20)

Letting λ = g/f and ρ = λξ(θ)/η(θ) with η(θ) ̸= 0, this equation will directly lead to the following theorem.

Theorem 3.2. (γ, ω1, ω2) is a framed Bertrand curve with respect to the Frenet-type frame if and only if there exist two
constants λ ̸= 0 and ρ such that

λp2(s) + ρp1(s) = −ε3α(s). (3.21)

4. Non-null framed Mannheim curves in M3
q(c)

Similar to the previous section, we, in this section, define two-types of Mannheim curves of non-null framed
curves in M3

q(c) with respect to two different frames: the general moving frame {v1, v2, µ} and the Frenet-type
frame {ω1, ω2, µ}.

4.1. Framed Mannheim curves in M3
q(c) with respect to the general moving frame {v1, v2, µ}

Definition 4.1. Let (γ, v1, v2) : I → M3
q(c)×∆ be a non-null framed curve. Then (γ, v1, v2) is called a Mannheim

curve if there exists another non-null framed curve (γ̂, v̂1, v̂2) : I → M3
q(c)×∆ such that generalized principal

normal geodesics of (γ, v1, v2) and generalized binormal geodesics of (γ̂, v̂1, v̂2) at corresponding points are
coincident. In this case, (γ̂, v̂1, v̂2) is called a Mannheim mate of (γ, v1, v2), and (γ, v1, v2) and (γ̂, v̂1, v̂2) are called
a pair of framed Mannheim curves.

For a pair of framed Mannheim curves (γ, v1, v2) and (γ̂, v̂1, v̂2), there exists a differentiable function ϕ(s)
such that

γ̂(s) = f(ϕ(s))γ(s) + g(ϕ(s))v1(s). (4.1)

Since γ̂ ∈ M3
q(c), we have f2(ϕ(s)) + ϵ1cg

2(ϕ(s)) = 1. We will assume that g(ϕ(s)) ̸≡ 0 that is γ̂ ̸= ±γ. Definition
4.1 states that principal normal geodesics of γ coincide with binormal geodesics of γ̂ at corresponding points.
Then

d

dt

∣∣∣∣
t=ϕ(s)

δγ,v1s (t) = v̂2(s).
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We know that f ′(t) = −ϵ1cg(t) and g′(t) = f(t). Then we get

v̂2(s) = −ϵ1cg(ϕ(s))γ(s) + f(ϕ(s))v1(s).

Similar to Proposition 3.1, the proof of the following proposition follows from this equation.

Proposition 4.1. Let γ be a framed Mannheim curve, and let γ̂ be a Mannheim mate of this curve given by (4.1). The
function ϕ(s) is constant.

Proposition 4.2. Let (γ, v1, v2) : I → M3
q(c)×∆ be a non-null Mannheim curve with curvature (α, ℓ1, ℓ2, ℓ3). Then a

Mannheim mate (γ̂, v̂1, v̂2) : I → M3
q(c)×∆ of (γ, v1, v2) is also a non-null framed curve with curvature (α̂, ℓ̂1, ℓ̂2, ℓ̂3),

where

v̂1(s) = ξ(β(s))v2(s) + η(β(s))µ(s),

v̂2(s) = −ϵ1cg(ϕ)γ(s) + f(ϕ)v1(s),

µ̂(s) = −ϵ2η(β(s))v2(s) + ϵ3ξ(β(s))µ(s),

α̂(s) = −ϵ̂3ϵ2g(ϕ)η(β(s))ℓ1(s) + ϵ̂3 (f(ϕ)α(s) + ϵ3g(ϕ)ℓ2(s)) ξ(β(s)),

ℓ̂1(s) = −f(ϕ)ξ(β(s))ℓ1(s) + (ϵ1ϵ3cg(ϕ)α(s)− f(ϕ)ℓ2(s)) η(β(s)),

ℓ̂2(s) = ϵ3ϵ̂3β
′(s) + ϵ̂3ℓ3(s),

ℓ̂3(s) = −ϵ2f(ϕ)η(β(s))ℓ1(s)− (ϵ1cg(ϕ)α(s)− ϵ3f(ϕ)ℓ2(s)) ξ(β(s)),

where ϵ̂1, ϵ̂2, ϵ̂3 are the causal characters of v̂1, v̂2, and µ̂, and β : I → R is a smooth function. Moreover, the functions ξ
and η are given by (ξ(u), η(u)) = (cosu, sinu) if ϵ̂1 = ϵ2 = ϵ3, by (ξ(u), η(u)) = (coshu, sinhu) if ϵ̂1 = ϵ2 = −ϵ3, and
by (ξ(u), η(u)) = (sinhu, coshu) if ϵ̂1 = −ϵ2 = ϵ3. Thus, these two functions satisfy the relation ϵ̂1 = ϵ2ξ

2 + ϵ3η
2.

From (4.1) and the equations given in Proposition 4.2, it is easy to show that

γ(s) = f(ϕ)γ̂(s)− g(ϕ)v̂2(s),

v1(s) = ϵ1cg(ϕ)γ̂(s) + f(ϕ)v̂2(s),

v2(s) = ϵ̂3(ϵ3ξ(β(s))v̂1(s)− η(β(s))µ̂(s)),

µ(s) = ϵ̂3(ϵ2η(β(s))v̂1(s) + ξ(β(s))µ̂(s)).

We will not provide proofs for the following results since they follow similar to the results given in Section 3.

Proposition 4.3. Let γ and γ̂ be a pair of non-null framed Mannheim curves in M3
q(c). Then there exist a constant ϕ

and a smooth function β : I → R such that

(a) (f(ϕ)α(s) + ϵ3g(ϕ)ℓ2(s)) η(β(s)) = −ϵ3g(ϕ)ξ(β(s))ℓ1(s),

(b) ϵ2

(
f(ϕ)α̂(s)− ϵ̂3g(ϕ)ℓ̂3(s)

)
η(β(s)) = ϵ̂1g(ϕ)ξ(β(s))ℓ̂1(s),

(c) (f(s)α(s) + ϵ3g(ϕ)ℓ2(s))
(
f(s)α̂(s)− ϵ̂3g(ϕ)ℓ̂3(s)

)
= ϵ3ϵ̂3α(s)α̂(s)ξ

2(β(s)),

(d) −ϵ3α(s)α̂(s)η
2(β(s)) = ℓ1(s)ℓ̂1(s)g

2(ϕ).

Proposition 4.4. Let γ and γ̂ be a pair of non-null framed Mannheim curves in M3
q(c). Then there exist a constant ϕ

and a smooth function β : I → R such that

(a) ℓ1(s)f(ϕ) = −ϵ2ϵ̂1ℓ̂1(s)ξ(β(s))− ϵ̂3ℓ̂3(s)η(β(s)) and ℓ̂1(s)f(ϕ) = −ℓ1(s)ξ(β(s))− ℓ2(s)η(β(s)),

(b) −ϵ1cα(s)g(ϕ) + ϵ3ℓ2(s)f(ϕ) = −ϵ̂1ℓ̂1(s)η(β(s)) + ϵ3ϵ̂3ℓ̂3(s)ξ(β(s)) and
−ϵ2ℓ1(s)η(β(s)) + ϵ3ℓ2(s)ξ(β(s)) = ϵ1ϵ̂3cα̂(s)g(ϕ) + ℓ̂3(s)f(ϕ),

Proof. The proofs of the first relations in (a) and (b) directly follow from the equality of the left-hand sides of
the following relations:

v̂′2(s) =− ϵ̂1ℓ̂1(s)v̂1(s) + ϵ̂3ℓ̂3(s)µ̂(s)

=
(
−ϵ̂1ℓ̂1(s)ξ(β(s))− ϵ2ϵ̂3ℓ̂3(s)η(β(s))

)
v2(s)

+
(
−ϵ̂1ℓ̂1(s)η(β(s)) + ϵ3ϵ̂3ℓ̂3(s)ξ(β(s))

)
µ(s),
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and
v̂′2(s) = ϵ2ℓ1(s)f(ϕ)v2(s) + (−ϵ1cα(s)g(ϕ) + ϵ3ℓ2(s)f(ϕ))µ(s).

On the other hand, the proofs of the second relations in (a) and (b) follow from the equality of the left-hand
sides of the following relations:

v′1(s) =ϵ2ℓ1(s)v2(s) + ϵ3ℓ2(s)µ(s)

=ϵ̂1 (ℓ1(s)ξ(β(s)) + ℓ2(s)η(β(s))) v̂1(s)

+ ϵ̂3

(
−ϵ2ℓ1(s)η(β(s)) + ϵ3ℓ̂2(s)ξ(β(s))

)
µ̂(s),

and
v′1(s) = −ϵ̂1ℓ̂1(s)f(ϕ)v̂1(s) +

(
ϵ1cα̂(s)g(ϕ) + ϵ̂3ℓ̂3(s)f(ϕ)

)
µ̂(s).

Proposition 4.5. (i) A non-null framed curve (γ, v1, v2) : I → M3
q(c)×∆ with curvature (α, 0, ℓ2, ℓ3) is a framed

Mannheim curve, and this curve has infinite Mannheim conjugates γ̂ such that ℓ̂1(s) = 0 for all s ∈ I .

(ii) Let γ and γ̂ be a pair of non-null framed Mannheim curves with curvatures (α, ℓ1, ℓ2, ℓ3) and (α̂, ℓ̂1, ℓ̂2, ℓ̂3). If
ℓ̂1(s) = 0 for all s ∈ I , then ℓ1(s) = 0 for all s ∈ I .

The main theorem of this section that characterizes framed Mannheim curves is given below.

Theorem 4.1. Suppose that (γ, v1, v2) : I → M3
q(c)×∆ is a non-null framed curve with curvature (α, ℓ1, ℓ2, ℓ3), where

ℓ1(s) ̸= 0 for all s ∈ I . Then γ is a framed Mannheim curve if and only if for a real constant ϕ such that g(ϕ) ̸= 0, for a
smooth function β : I → R, and for all s ∈ I

g(ϕ)ξ(β(s))ℓ1(s) + ϵ3 (f(ϕ)α(s) + ϵ3g(ϕ)ℓ2(s)) η(β(s)) = 0, (4.2)

where f and g satisfy condition C1, and ξ and η satisfy condition C2 given in Section 3.

Next we give a theorem that relates framed Bertrand curves and framed Mannheim curves. The proof of this
theorem is clear from Theorem 3.1 and Theorem 4.1.

Theorem 4.2. Let (γ, v1, v2) : I → M3
q(c)×∆ be a non-null framed curve. Then (γ, v1, v2) is a framed Bertrand curve

if and only if (γ, v1, v2) is a framed Mannheim curve.

Remark 4.1. The previous theorem may seem the reader a bit odd since this theorem clearly states that every
framed Bertrand curve is a framed Mannheim curve and vice versa. However, we may see this fact with the
following reasoning. Consider a framed Bertrand curve (γ, v1, v2) and its framed Bertrand mate (γ̄, v̄1, v̄2). Then
the generalized principal normal geodesics of these two framed curves are coincident. We can easily show that
for ṽ1 = v̄2 and ṽ2 = v̄1, (γ̄, ṽ1, ṽ2) is also a framed curve. But in this case (γ̄, ṽ1, ṽ2) is a framed Mannheim mate
of (γ, v1, v2) since the generalized principal normal geodesics of (γ, v1, v2) are coincident with the generalized
binormal geodesics of (γ̄, ṽ1, ṽ2). The converse of this statement can similarly be proved.

4.2. Framed Mannheim curves in M3
q(c) with respect to the Frenet-type frame

Definition 4.2. Let (γ, ω1, ω2) : I → M3
q(c)×∆ be a non-null framed curve with the Frenet-type frame. Then

(γ, ω1, ω2) is called a Mannheim curve with respect to the Frenet-type frame if there exists another non-null
framed curve (γ̂, ω̂1, ω̂2) : I → M3

q(c)×∆ such that generalized principal normal geodesics with respect to the
Frenet-type frame of (γ, ω1, vω2) and generalized binormal geodesics with respect to the Frenet-type frame of
(γ̂, ω̂1, ω̂2) at corresponding points are coincident. In this case, (γ̂, ω̂1, ω̂2) is called a Mannheim mate of (γ, ω1, ω2),
and (γ, ω1, ω2) and (γ̂, ω̂1, ω̂2) are called a pair of framed Mannheim curves.

For a pair of framed Mannheim curves (γ, ω1, ω2) and (γ̂, ω̂1, ω̂2), we have

γ̂(s) = f(ϕ)γ(s) + g(ϕ)ω1(s), (4.3)

where f2(ϕ) + ε1cg
2(ϕ) = 1, and ϕ is a constant such that g(ϕ) ̸= 0.

A similar trick to that in Section 3.2 can be also considered for this section. That is, setting ϵi = εi (i = 1, 2),
ℓ1 = p1, ℓ2 = p2, ℓ3 = 0, ℓ̄1 = p̄1, ℓ̄2 = p̄2, ℓ̄3 = 0 in all equations of Section 4.1, we can obtain similar results to
those given in Section 4.1. However, we still want to discuss some of these results in detail.
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Let (γ, ω1, ω2) : I → M3
q(c)×∆ be a non-null Mannheim curve with the Frenet-type curvature (α, p1, p2). Then

a framed Mannheim mate (γ̂, ω̂1, ω̂2) : I → M3
q(c)×∆ of (γ, ω1, ω2) is also a non-null framed curve with the

following Frenet-type frame and Frenet-type curvature

ω̂1(s) = ξ(β(s))ω2(s) + η(β(s))µ(s),

ω̂2(s) = −ε1cg(ϕ)γ(s) + f(ϕ)ω1(s),

µ̂(s) = −ε2η(β(s))ω2(s) + ε3ξ(β(s))µ(s),

α̂(s) = −ε̂3ε2g(ϕ)η(β(s))p1(s) + ε̂3 (f(ϕ)α(s) + ε3g(ϕ)p2(s)) ξ(β(s)),

p̂1(s) = −f(ϕ)ξ(β(s))p1(s) + (ε1ε3cg(ϕ)α(s)− f(ϕ)p2(s)) η(β(s)),

p̂2(s) = ε3ε̂3β
′(s).

We also have the relation

−ε2f(ϕ)η(β(s))p1(s)− (ε1cg(ϕ)α(s)− ε3f(ϕ)p2(s)) ξ(β(s)) = 0. (4.4)

We consider the following two cases.

1. f(ϕ) ̸= 0. We know that

α̂(s) = ε̂3g(ϕ)(−ε2η(β(s))p1(s) + ε3ξ(β(s))p2(s)) + ε̂3f(ϕ)α(s)ξ(β(s)).

Introducing (4.4) into this equation yields

α̂(s) = ε̂3α(s)ξ(β(s))/f(ϕ). (4.5)

Similarly considering (4.4) in p̂1(s) given above yields

p̂1(s) = ε3α(s)η(β(s))/g(ϕ), (4.6)

because we already assumed that g(ϕ) ̸= 0. Notice that from (4.5) and (4.6), if γ has a singularity at s0, then
its framed Mannheim mate with respect to the Frenet-type frame too is singular at s0, and also p̂1(s0) = 0.
Conversely if the framed Mannheim mate γ̂ of γ has a singularity at s0, then γ has a singularity at s0 or
ξ(β(s0)) = 0.

2. f(ϕ) = 0. In this case we may assume that g(ϕ) = 1. From (4.4) we have ξ(β(s)) = 0 for all s, and therefore
we may assume that η(β(s)) = 1. Then after some computation we find that p2(s) = 0,

γ̂(s) = ω1(s), ω̂1(s) = µ(s), ω̂2(s) = γ(s), µ̂(s) = −ε2ω2(s),

α̂(s) = −p1(s), p̂1(s) = −ε3α(s), p̂2(s) = 0.

Propositions 4.3, 4.4, and 4.5 can also be obtained in a similar way. Similar to Theorem 4.1 we can derive
the equation that characterizes framed Mannheim curves with respect to the Frenet-type frame. Suppose that
(γ, ω1, ω2) : I → M3

q(c)×∆ is a non-null framed curve with the Frenet-type curvature (α, p1, p2), where p1(s) ̸= 0
for all s ∈ I . Similar to (4.2) we also have

g(ϕ)ξ(β(s))p1(s) + ε3 (f(ϕ)α(s) + ε3g(ϕ)p2(s)) η(β(s)) = 0. (4.7)

Using (4.4) and (4.7), and letting λ = f(ϕ)g(ϕ)/(ε1cg
2(ϕ)− f2(ϕ)), we get the following theorem.

Theorem 4.3. (γ, ω1, ω2) is a framed Mannheim curve with respect to the Frenet-type frame if and only if either (i)
ε1cg

2(ϕ)− f2(ϕ) ̸= 0 and there exists a constant λ such that

λ(ε2p
2
1(s) + ε3p

2
2(s)− ε1ε3cα

2(s)) = α(s)p2(s),

or (ii) ε1cg2(ϕ)− f2(ϕ) = 0 and ε2p
2
1(s) + ε3p

2
2(s) = ε1ε3cα

2(s).

Proof. The sufficiency part is easy enough. So we will do only the necessity part of the proof.
(i) Assume that ε1cg2(ϕ)− f2(ϕ) ̸= 0 and there exists a constant λ such that

λ(ε2p
2
1(s) + ε3p

2
2(s)− ε1ε3cα

2(s)) = α(s)p2(s). (4.8)
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We need to find a Frenet-type framed curve (γ̂, ω̂1, ω̂2) such that γ and γ̂ give a pair of framed Mannheim curves
relative to the Frenet-type frame. Define

γ̂(s) = f(ϕ)γ(s) + g(ϕ)ω1(s), (4.9)

and let λ = f(ϕ)g(ϕ)
ε1cg2(ϕ)−f2(ϕ) . Differentiating (4.9) twice yields

α̂(s)µ̂(s) = ε2g(ϕ)ω2(s) + (f(ϕ)α(s) + ε3g(ϕ)p2(s))µ(s), (4.10)

α̂′(s)µ̂(s)− ε̂3cα̂
2(s)γ̂(s)− ε̂1α̂p̂2(s)ω̂1(s) = ε2g(ϕ)p

′
1(s)ω2(s) (4.11)

+ (f(ϕ)α(s) + εg(ϕ)p2(s))
′µ(s)− ε3cα(s)(f(ϕ)α(s) + ε3g(ϕ)p2(s))γ(s)

− ε1
(
g(ϕ)

(
ε2p

2
1(s) + ε3p

2
2(s)

)
+ f(ϕ)α(s)p2(s)

)
ω1(s).

From the vector product of (4.9), (4.10), and (4.11), we find that

− ε̂1α̂
2p̂2ω̂2 = ε1ε2ε3g

(
p1(fα+ ε3gp2)

′ − p′1(fα+ ε3gp2)
)
(−ε1cgγ + fω1)

+ ε1ε2
[
fg
(
− (ε2p

2
1 + ε3p

2
2) + ε1ε3cα

2
)
+ αp2(ε1cg

2 − f2)
] (

ε3(fα+ ε3gp2)ω2 − gp1µ
)
,

where for simplicity we omitted the parameter s and the constant ϕ. Now introducing (4.8) in the last equation,
we see that the coefficients of ω2 and µ on the right-hand side of this equation vanish. Then we find that

ω̂2 = −ε1cgγ + fω1. (4.12)

Using (4.9) and (4.12), we find that the generalized principal normal geodesic starting at a point γ̂(s0) is

δ(t) = f(t)γ̂(s0) + g(t)ω̂1(s0) = f(t+ φ)γ(s0) + g(t+ φ)ω1(s0),

which is just a reparametrization of the generalized binormal geodesic at γ(s0). Therefore γ̂ is a framed
Mannheim conjugate of γ with respect to the Frenet-type frame.

(ii) The proof of this case follows quite similar to the proof of (i).

Remark 4.2. Notice that the formula in Theorem 4.3 looks quite familiar, and indeed it provides a generalization
of the classical formulas: λ(κ2(s) + τ2(s)) = κ(s) that characterizes Mannheim curves in the Euclidean 3-space
[29] and λ(ε1κ

2(s) + ε3τ
2(s)− ε1ε2c) = λκ(s) that characterizes Mannheim curves in non-flat 3-dimensional

space forms [48].

5. Examples

Example 5.1. Take the smooth curve γ : I → M3
1(−1) = H3

1 ⊂ R4
2 defined by

γ(s) =
2√
3

(
s sin s+ cos s,−s cos s+ sin s, s sin(2s) +

1

2
cos(2s),− cos(2s) +

1

2
sin(2s)

)
.

The derivative of this equation is

γ′(s) =
2s√
3
(cos s, sin s, 2 cos(2s), 2 sin(2s)) .

Then γ has a singularity at s = 0. Let v1 : I → H3
1 and v2 : I → S3

2

v1(s) =
1√

3(5 + 4s2)

(
4(sin s− s cos s),−4(cos s+ s sin s),−2s cos(2s) + sin(2s),

− cos(2s)− 2s sin(2s)
)
,

v2(s) =
1√

3(5 + 4s2)

(
− sin s− 4s(cos s+ s sin s), cos s+ 4s(s cos s− sin s),

− 2s cos(2s)− 4(1 + s2) sin(2s), 4(1 + s2) cos(2s)− 2s sin(2s)
)
.
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We have ⟨v1, γ⟩ = 0, ⟨v2, γ⟩ = 0, ⟨v1, γ′⟩ = 0, and ⟨v2, γ′⟩ = 0. Hence, (γ, v1, v2) : I → H3
1 ×∆ is a timelike framed

curve in H3
1 . From γ × v1 × v2 we get

µ(s) = − 1√
3
(cos s, sin s, 2 cos(2s), 2 sin(2s)) ∈ S3

2 .

The curvature of (γ, v1, v2) is given by (α, ℓ1, ℓ2, ℓ3) so that

α(s) = −2s, ℓ1(s) =
−4s

5 + 4s2
, ℓ2(s) = 0, ℓ3(s) =

√
5 + 4s2.

Notice that if γ is a framed Bertrand curve, then any framed Bertrand conjugate of γ will be in the form
γ̄ = cosφγ + sinφv1 since ϵ1c = 1. Furthermore we will have v̄2 = cos(θ(s))v2 + sin(θ(s))µ. Thus, we see that
for the smooth function ρ(s) = −2s2 − 5/2 and for any λ ∈ R, (3.17) is satisfied. This means that γ is a framed
Bertrand curve having infinite framed Bertrand mates. From (3.2), all of these conjugate curves have singularity
at s = 0. Moreover, from Theorem 4.2 γ is also a Mannheim curve. Using the hyperbolic Hopf map (2.7), the
projections of the framed Bertrand conjugates of γ for φ = π/4 and for φ = π/3 on the hyperbolic space H2(1/2)
are visualized in Figure 1. Notice that these framed Bertrand mates have also singularity at s = 0.

Figure 1. Left: the projection of γ on H2(1/2). Right: the projections on H2(1/2) of γ (black) and its framed Bertrand conjugates for φ = π/4 (red) and for
φ = π/3 (blue).

Example 5.2. Consider the smooth curve γ : [0, 2π) → M3
0(−1) = H3

0 ⊂ R4
1 defined by

γ(s) =

(√
17 + 7 cos(4s)

2
√
2

, cos3 s, sin3 s, cos(2s)

)
.

Differentiating this curve

γ′(s) = sin s cos s

(
− 28 cos(2s)√

34 + 14 cos(4s)
,−3 cos s, 3 sin s,−4

)
.

Then γ has singularities at s = 0, π/2, π, 3π/2. Define v1 : I → S3
1 and v2 : I → S3

1 by

v1(s) =
40
√
2√

4143− 836 cos(4s) + 21 cos(8s)

(
cos(2s)

√
17 + 7 cos(4s)

10
√
2

, cos s,− sin s,

1

40
(−23 + 7 cos(4s))

)
,

v2(s) =

√
229− 21 cos(4s)√

4143− 836 cos(4s) + 21 cos(8s)

(
sin s cos s

√
34 + 14 cos(4s),

1

4
(18 sin s+ 3 sin(3s) + sin(5s)),

1

8
(18 cos s− 3 cos(3s) + cos(5s)), sin(4s)

)
.
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Then we have that ⟨v1, γ⟩ = 0, ⟨v2, γ⟩ = 0, ⟨v1, γ′⟩ = 0, and ⟨v2, γ′⟩ = 0. Hence, (γ, v1, v2) : [0, 2π) → H3
0 ×∆ is a

spacelike framed curve. From the triple vector product γ × v1 × v2

µ(s) =

√
17 + 7 cos(4s)√

229− 21 cos(4s)

(
− 28 cos(2s)√

34 + 14 cos(4s)
,−3 cos s, 3 sin s,−4

)
∈ S3

1 .

The curvature of (γ, v1, v2) is given by (α, ℓ1, ℓ2, ℓ3), where

α(s) =
sin(2s)

√
229− 21 cos(4s)

2
√

17 + 7 cos(4s)
,

ℓ1(s) =
−160

√
458− 42 cos(4s)

4143− 836 cos(4s) + 21 cos(8s)
,

ℓ2(s) =
280

√
2(8265 sin(4s)− 836 sin(8s) + 21 sin(12s))√

229− 21 cos(4s)
√

17 + 7 cos(4s)(4143− 836 cos(4s) + 21 cos(8s))3/2
,

ℓ3(s) =
(−229 + 21 cos(4s))(5230 + 14395 cos(4s)− 1214 cos(8s) + 21 cos(12s))

4
√

17 + 7 cos(4s)(4143− 836 cos(4s) + 21 cos(8s))3/2
.

We have ϵ1c = −1. Hence if γ is a framed Bertrand curve, then any framed Bertrand conjugate of γ will be in
the form γ̄ = coshφγ + sinhφv1. Then we see that (3.17) is satisfied for the constant λ = 3/5 and the smooth
function

ρ(s) =
(1344

√
2 cos(2s))(19 sin(2s)− sin(6s))

320
√

34 + 14 cos(4s)
√

4143− 836 cos(4s) + 21 cos(8s)

+
(229− 21 cos(4s))(19 sin(2s)− sin(6s))

320
√

34 + 14 cos(4s)
.

Therefore γ is a framed Bertrand curve and γ̄ = (5/4)γ + (3/4)v1. Notice that γ has singularities at s0 =
0, π/2, π, 3π/2, however γ̄ is not singular at these points. This can be easily seen: if γ̄ was singular at these points,
then (3.2), or equivalently, the equation λℓ1(s0) = ρ(s0)ℓ2(s0) would be satisfied. Eventhough ρ(s) vanishes at
all of these points, ℓ1(s) ̸= 0. Therefore γ̄ is regular at these points. Moreover, from Theorem 4.2 γ is also a
Mannheim curve. It is easy to show that we can rewrite the curve γ in the form γ(s) = expp(q(s)V (s)), where
p = (1, 0, 0, 0),

q(s) = arccosh

(√
17 + 7 cos(4s)

2
√
2

)
, V (s) =

1

sinh(q(s))

(
0, cos3 s, sin3(s), cos(2s)

)
.

Here sinh(q(s)) =
√

18 + 14 cos(4s)/4. The curve V (s) clearly lies on S2(1) ⊂ TpH3
0(−1) ⊂ R4

1. This is the
spherical projection of γ which is visualized in Figure 2(left). It is also possible to write γ̄(s) in the form
γ̄(s) = expp

(
q̄(s)V̄ (s)

)
, where p = (1, 0, 0, 0),

q̄(s) = arccosh

(√
17 + 7 cos(4s)

16

(
5
√
2 +

48 cos(2s)√
4143− 836 cos(4s) + 21 cos(8s)

))
,

V̄ (s) =
1

sinh(q̄(s))

(
0,

5 cos3(s)

4
+

30
√
2 cos(s)√

4143− 836 cos(4s) + 21 cos(8s)
,

5 sin3(s)

4
− 30

√
2 sin s√

4143− 836 cos(4s) + 21 cos(8s)
,

5 cos(2s)

4
− 3

√
2(23− 7 cos(4s))

4
√

4143− 836 cos(4s) + 21 cos(8s)

)
.

Notice that V̄ (s) is a curve lying on S2(1) ⊂ TpH3
0(−1) ⊂ R4

1. This is the spherical projection of γ̄ which is
visualized in Figure 2(right).
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Figure 2. Left: the spherical projection of γ on S2(1). Right: the spherical projection of the framed Bertrand curve γ̄ for φ = 3/5.

Example 5.3. We know that given the curvature (α, p1, p2), a framed curve with a Frenet-type frame can
be determined uniquely up to rigid motion. We will use this fact in this example to construct a framed
Mannheim curve with respect to the Frenet-type frame in the de Sitter 3-space. Suppose that a framed
curve (γ, ω1, ω2) : I → M3

1(1)×∆ such that ε1 = ε2 = 1 has the curvature (s, s sinh s, s cosh s). We can choose
f(t) = cos t, g(t) = sin t, and ϕ = π/4. Then it is easy to see that Theorem 4.3(ii) is satisfied. That is, γ is a framed
Mannheim curve with respect to the Frenet-type frame. The Mannheim mate γ̂ of γ is given by

γ̂(s) = (γ(s) + ω1(s))/
√
2.

Notice that equations (4.4) and (4.7) are satisfied for β(s) = −s/2, η(u) = sinhu, and ξ(u) = coshu. Hence
ϵ̂1 = −1. Using these relations, we find that

α̂(s) = −
√
2s sinh(s/2), p̂1(s) = −

√
2s cosh(s/2), p̂2(s) = 1/2.

From the uniqueness of a framed curve whose curvature is given, we can construct the framed Mannheim
curve γ and its Mannheim mate γ̂ by using numerical methods. We can get the projections of these curves
on the de Sitter 2-space by choosing p = (0, 0, 1, 0) and by following a similar procedure to Example 5.2. We
visualize these projections in Figure 3.

Figure 3. The projections on S2
1(1) of γ (black) and its framed Mannheim mate for ϕ = π/4 (blue).

Example 5.4. Suppose that a framed curve (γ, ω1, ω2) : I → M3
0(1)×∆ has the curvature (α(s), p1(s), p2(s)) =

(− sin s, cos s, sin s). Then we see that Theorem 3.2 is satisfied for λ = 1 and ρ = 0. Hence γ is a framed Bertrand
curve with respect to the Frenet-type frame. We have φ = π/4, f(t) = cos t, g(t) = sin t, θ = π/2, ξ(u) = cosu,
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and η(u) = sinu. The Bertrand mate γ̄ of γ is given by γ̄(s) = (γ(s) + ω1(s))/
√
2. From the relations in (3.19), we

find that
ᾱ(s) = (cos s)/

√
2, p̄1(s) =

√
2 sin s, p̄2(s) = (cos s)/

√
2.

Similar to Example 5.3 we can construct the framed Bertrand curve γ and its Bertrand mate γ̄ by using
numerical methods. We can get the projections of these curves on the 2-sphere S2(1/2) by using the Hopf
map given in (2.6). We visualize these projections in Figure 4.

Figure 4. The projections on S2(1) of γ (black) and its framed Bertrand mate for ϕ = π/4 (blue).

6. Conclusions

We investigated geometric properties of Bertrand and Mannheim curves of non-null framed curves with
respect to the general moving frame and the Frenet-type frame in non-flat three-dimensional Riemannian
and Lorentzian space forms. We showed that Bertrand and Mannheim curves of framed curves are also
framed curves, and we obtained their curvatures in terms of the curvatures of the original curve. Then we
provided some results involving the curvatures of a framed curve and its Bertrand or Mannheim mate.
We also mentioned singularities of these framed curves and presented some relations of the curvatures of
both the framed curve and its Bertrand or Mannheim mate at singular points. We gave characterizations
for a non-null framed curve to be a framed Bertrand curve or a framed Mannheim curve. We concluded
that framed Bertrand curves and framed Mannheim curves with respect to the general moving frame in
non-flat three-dimensional space forms are equivalent. We provided important characterizations for framed
Bertrand curves and framed Mannheim curves with respect to the Frenet-type frame, and we showed that these
characterizations are generalizations of the classical characterizations for regular Bertrand and Mannheim
curves. Finally we provided several examples of these curves and visualized them by using the Hopf map,
the hyperbolic Hopf map, and the spherical projection.

There are several fruitful research directions we could pursue in the future. One possible direction is to
consider a similar problem for another kind of well-known curves, rectifying curves. A rectifying curve is
defined by the property that its position vector lies always in the rectifying plane of the curve with respect to the
Frenet frame [6]. These regular rectifying curves have been generalized to rectifying curves with singularities
[46]. Regular rectifying curves have also been considered in the 3-sphere [32] and the hyperbolic 3-space [33],
but in these papers the rectifying curves are assumed to be regular. This suggests that we could also generalize
these rectifying curves to rectifying curves with singularities. Therefore next we aim to investigate framed
rectifying curves in non-flat three-dimensional space forms.
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[28] Li, Y., Uçum, A., İlarslan, K., Camcı, Ç.: A New Class of Bertrand Curves in Euclidean 4-Space. Symmetry 14 (6), 1191, (2022).
[29] Liu, H., Wang, F.: Mannheim partner curves in 3-space. J. Geom. 88, 120-126 (2008).
[30] Lucas, P., Ortega-Yagües, J.A.: Bertrand curves in the three-dimensional sphere. J. Geom. Phys. 62, 1903-1914 (2012).
[31] Lucas, P., Ortega-Yagües, J. A.: Bertrand curves in non-flat 3-dimensional (Riemannian or Lorentzian) space forms. Bull. Korean Math. Soc. 50,

1109-1126 (2013).
[32] Lucas, P., Ortega-Yagües, J. A.: Rectifying curves in the three-dimensional sphere. J. Math. Anal. Appl. 421 (2), 1855-1868 (2015).
[33] Lucas, P., Ortega-Yagües, J. A.: Rectifying Curves in the Three-Dimensional Hyperbolic Space. Mediterr. J. Math. 13, 2199-2214 (2016).
[34] Lyons, D. W.: An elementary introduction to the Hopf fibration. Math. Mag. 76 (2), 87-98 (2003).
[35] Matsuda, H., Yorozu, S.: Notes on Bertrand curves. Yokohama Math. J. 50 (1-2), 41-58 (2003).
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[42] Tuncer, O. O., Gök, İ: Hyperbolic caustics of light rays reflected by hyperbolic front mirrors. Eur. Phys. J. Plus 138:266 (2023).
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