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Abstract: Accurately modeling wind speed is important in estimating the wind 

energy potential of a specified region. Two- parameter Weibull distribution is the 

most widely used and accepted distribution in the energy literature. However, it does 

not model the all wind speed data encountered in nature. Therefore, in this study, 

different distributions are used for modeling wind energy, such as Gamma, 

lognormal, Generalized Rayleigh. The estimators of the unknown parameters of these 

distributions are found by using maximum likelihood estimators. 

 

 

Rüzgar Hızı Verilerinin Farklı Dağılımlara Göre İstatistiksel Analizi: Bitlis, Türkiye 
 

 

Anahtar Kelimeler 

Rüzgar hızı verileri,  

Weibull dağılımı,  

Gamma dağılımı,  

Log-normal dağılımı,  

Genelleştirilmiş Rayleigh 

dağılımı, 

En çok olabilirlik tahmini 

Öz: Rüzgâr hızının doğru bir şekilde modellenmesi, belirli bir bölgenin rüzgâr 

enerjisi potansiyelinin tahmin edilmesi açısından önemlidir. İki parametreli Weibull 

dağılımı enerji literatüründe en yaygın kullanılan ve kabul edilen dağılımdır. Ancak 

doğada karşılaşılan tüm rüzgâr hızı verilerini modellemez. Bu nedenle bu çalışmada 

rüzgâr enerjisinin modellenmesinde Gamma, log-normal, Genelleştirilmiş Rayleigh 

gibi farklı dağılımlar kullanılmıştır. Bu dağılımların bilinmeyen parametrelerinin 

tahmin edicileri, maksimum olabilirlik tahmin edicileri kullanılarak bulunur. 

 

1. INTRODUCTION 

 

Energy consumption is rising substantially as a result of 

both population growth and advancements in technology. 

One of the most crucial elements in the growth of a 

country is its energy needs [1,2]. These days, fossil fuels 

are used extensively in practically every aspect of daily 

life, such as production, logistics, and heating. However, 

continued consumption of fossil fuels endangers both 

people and the world in the long run due to carbon 

emissions, air pollution, and climate change [3]. To solve 

these problems, it is recommended to use environmentally 

friendly alternative energy sources including geothermal, 

solar, and wind power. Therefore, renewable energy 

sources have attracted attention in recent decades, 

particularly in developed countries [4, 5].  

 

A promising renewable energy source, wind power can be 

used for stand-alone, remote, and grid-connected 

applications in addition to direct energy delivery [6]. Over 

the past 20 years, wind power generation has grown 

amazingly rapidly, and it is now a mature, reliable, and 

efficient technology for producing electricity [3]. It has 

been used as an essential renewable energy source in 

electricity production in many developed countries. 

 

To effectively and economically obtain wind energy, 

there are two key components. The first of these is where 

the wind system will be built. The second is to decide on 

the statistical distributions to be used to determine wind 

speed characteristics. Accurately determining the wind 

speed distribution has an important impact on wind power 

calculations [7]. Because small errors in the modeling of 

the wind speed data lead to significantly larger errors in 

the energy outcome computation [8]. The Weibull 

distribution is frequently used in literature to model wind 

speed data. However, it is not suitable for all wind regimes 

[9-10]. Therefore, different distributions including 
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Gamma, inverse Weibull, Inverted Kumaraswamy, 

lognormal, and inverse Gaussian are used for modelling 

the wind speed, see [8,11-15]. Considering all these 

points, Weibull, Gamma, log-normal, and Generalized 

Rayleigh distributions are used in modeling wind energy 

in this study. The estimators of the unknown parameters 

of these distributions are found by using maximum 

likelihood estimators (MLEs). The originality of this 

study comes from the fact that it considers different 

statistical distributions to model wind speed data. 

 

The rest of the study is organized as follows. In section 2, 

the distributions used in the study are given along with the 

ML method for estimating parameters of the Weibull, 

Gamma, inverse Gauss, and lognormal distributions. In 

section 3, application results are presented and modeling 

performances of the given distributions are compared. In 

section 4, the study is finalized with some concluding 

remarks. 

 

2. MATERIAL AND METHOD 

 

This section provides parameter estimations and the 

probability distribution functions (pdf), the cumulative 

density function (cdf) for the Weibull, and gamma, 

lognormal, and generalized Rayleigh distributions. 

 

2.1. Weibull Distribution  

 

Among lifetime distributions, the Weibull distribution is 

one of the most often used. W. Weibull first proposed the 

Weibull distribution and used it to describe the 

distribution of a materials breaking strength. The 

reliability theory, numerous environmental science fields, 

and renewable energy have all benefited greatly from the 

distribution; see [16–18]. The probability density function 

(pdf) and the pdf cumulative density function (cdf) and of 

the Weibull distribution are: 

 

𝑓(𝑥; 𝛼, 𝛽) =
𝛼

𝛽𝛼 𝑥𝛼−1𝑒
(

−𝑥

𝛽
)

𝛼

< 𝑥 < ∞;  𝛼 > 0, 𝛽 > 0  (1) 

 

and 

 

𝐹(𝑥; 𝛼, 𝛽) = 1 − 𝑒
(

𝑥

𝛽
)

−𝛼

0 < 𝑥 < ∞;  𝛼 > 0, 𝛽 > 0. (2) 

 

Here, α is the shape parameter and β is the scale 

parameter. 

 

2.1.1 Parameter estimation of Weibull distribution 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample from Weibull 

distribution. The likelihood function is given by: 

 

𝐿(𝑥; 𝛼, 𝛽) =
𝛼𝑛

𝛽𝑛𝛼
∏ 𝑥𝑖

(𝛼−1)
𝑒

−(
𝑥𝑖
𝛽

)
𝛼

𝑛
𝑖=1   (3)  

Following that, the logarithm of 𝐿(𝑥; 𝛼, 𝛽) is defined as 

follows to define the log-likelihood function: 

 

𝑙𝑛𝐿 = 𝑛𝑙𝑛𝛼 − 𝑛𝛼𝑙𝑛𝛽 + (𝛼 − 1) ∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1 − ∑ (

𝑥𝑖

𝛽
)

𝛼
.𝑛

𝑖=1   (4) 

 

By taking the partial derivative of (4) with respect to α and 

β, and equating them to zero, we obtain the following log-

likelihood equations: 

 
𝜕𝑙𝑛𝐿

𝛼
=

𝑛

𝛼
− 𝑛𝑙𝑛𝛽 + ∑ 𝑙𝑛𝑥𝑖 − ∑ (

𝑥𝑖

𝛽
)

𝛼
𝑛
𝑖=1

𝑛
𝑖=1 𝑙𝑛 (

𝑥𝑖

𝛽
) = 0  (5) 

 
𝜕𝑙𝑛𝐿

𝛽
=

−𝑛𝛼

𝛽
+

𝛼 ∑ 𝑥𝑖
𝛼𝑛

𝑖=1

𝛽𝛼+1 = 0.   (6) 

 

Then, from the solution of equation (6), the parameter 𝛽 

is obtained as  

 

𝛽 = (
∑ 𝑥𝑖

𝛼𝑛
𝑖=1

𝑛
)

1

𝛼
  

 

By substituting the solution of 𝛽  into equation (5), we 

have 

 
∑ 𝑥𝑖

𝛼𝑙𝑛𝑥𝑖
𝑛
𝑖=1

∑ 𝑥𝑖
𝛼𝑛

𝑖=1

−
1

𝛼
−

∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1

𝑛
= 0. 

 

The equation g(α)=0 cannot be solved explicitly, but a 

numerical method should be used to solve this equation. 

The 𝛼̂ can be obtained by using the following well-known 

Newton-Raphson formula 

 

𝑎̂𝑚+1=𝑎̂𝑚
−

𝑔(𝑎̂𝑚)

𝑔′(𝑎̂𝑚)
 𝑚 = 1,2,3, …  

 

where 𝛼̂1 is as initial value and 𝑔′(𝛼̂) is the derivative of 

𝑔(𝛼). Then the ML estimator of 𝛽 is given as follows: 

 

𝛽̂ = (
∑ 𝑥𝑖

𝛼̂𝑛
𝑖=1

𝑛
)

1

𝛼̂

.  

 

2.2. Gamma Distribution 

 

Because of its flexible shape, the positively skewed 

gamma distribution has numerous applications in a 

variety of industries, including hydrology, engineering, 

medicine, seismology, and reliability. The works of 

Aksoy [19], Shapiro and Chen [20], and Hristopulos et al. 

[21] provide a thorough summary of the literature's study 

on the application of gamma distribution. 

 

The pdf and the cdf of the Gamma distribution are given 

by: 

 

𝑓(𝑥) =
1

𝛤(𝛼)𝛽𝛼 𝑥𝛼−1𝑒
−𝑥

𝛽 , 𝑥 > 0; 𝛼, 𝛽 > 0,   (7) 

 

and 

 

𝐹(𝑥) = ∫
1

𝛤(𝛼)𝛽𝛼 𝑥𝛼−1𝑒
−𝑥

𝛽 𝑑𝑥
𝑥

0
 𝑥 > 0; 𝛼, 𝛽 > 0,  (8) 

respectively. 

 

2.2.1. Parameter estimation of Gamma distribution 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be a random sample of size 𝑛  from 

Gamma (𝛼, 𝛽)  distribution. The likelihood function for 

𝑋𝑖 𝑖 = 1,2, … , 𝑛 is written as follows: 
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𝐿(𝑥; 𝛼, 𝛽) = ∏
1

𝛤(𝛼)𝛽𝛼 𝑥𝑖
(𝛼−1)

𝑒
−

𝑥𝑖
𝛽𝑛

𝑖=1    (9) 

 

Then the log-likelihood function is defined as the 

logarithm of 𝐿(𝑥; 𝛼, 𝛽) is given by: 

 

𝑙𝑛𝐿(𝑥; 𝛼, 𝛽) = 

 

−𝑛𝑙𝑛𝛤(𝛼) − 𝑛𝛼𝑙𝑛(𝛽) + (𝛼 − 1) ∑ 𝑙𝑛𝑥𝑖 −
1

𝛽

𝑛
𝑖=1 ∑ 𝑥𝑖

𝑛
𝑖=1 .  (10) 

 

The likelihood equations are found by equating the first 

partial derivatives of 𝑙𝑛𝐿(𝑥; 𝛼, 𝛽)with respect to the α and 

β parameters to zero. The α and β parameters are shown 

as follows: 

 
𝜕𝑙𝑛𝐿

𝜕𝛼
= −𝑛Ѱ(𝛼) − 𝑛𝑙𝑛𝛽 + ∑ ln 𝑥𝑖 = 0𝑛

𝑖=1   (11) 

 

and 

 
𝜕𝑙𝑛𝐿

𝜕𝛽
=

−𝑛𝛼

𝛽
+

1

𝛽2
∑ 𝑥𝑖

𝑛
𝑖= = 0.  (12) 

 

Here Ѱ(𝛼) =
𝜕𝑙𝑛𝛤(𝛼)

𝜕𝛼
 is the digamma function. Then, by 

solving equation (11), the parameter β is found as: 

 

𝛽 =
1

𝑛𝛼
∑ 𝑥𝑖 .

𝑛
𝑖=1   

 

Substitution of β into equation (12), the resulting equation 

in α becomes  

 

−𝑛Ѱ(𝛼) − 𝑛𝑙𝑛 (
1

𝑛𝛼
∑ 𝑥𝑖

𝑛
𝑖=1 ) + ∑ ln 𝑥𝑖 = 0𝑛

𝑖=1  . 

 

This equation does not yield an explicit estimator for the 

α; therefore, we resort to iterative methods. Hence, 

approximate solutions for the parameters are found using 

iterative numerical methods. In this study, we used the 

Newton Raphson method. 

 

2.3. Lognormal Distribution  

 

The lognormal distribution, a long-tailed, positively 

skewed distribution, is a suitable model for reliability and 

life span study. Furthermore, Johnson et al. [22] mention 

that it can be used as a model for several applications in 

engineering and medical.  

 

The pdf of the log-normal distribution is given by: 

 

𝑓(𝑥) =
1

𝑥𝜏√2𝜋
𝑒

−1

2
(

𝑙𝑛𝑥−𝜇

𝜏
)

2

, 𝑥 > 0, 𝜇 ∈ ℝ, 𝜏 > 0,  (13) 

 

where 
1

𝜏
 is the shape parameter and 𝜇  is the scale 

parameter. 

 

2.3.1. Parameter estimation of lognormal distribution 

 

The likelihood function based on the observed values of a 

random sample from the lognormal distribution with pdf 

(13) is given by 

 

𝐿(𝑥; 𝜇, 𝜏) =
1

𝜎𝑛(2𝜋)
𝑛

2⁄
∏

1

𝑥𝑖
𝑒

−1

2𝜎2 ∑ (𝑙𝑛𝑥𝑖−𝜇)2𝑛
𝑖=1𝑛

𝑖=1   (14) 

 

Then the log likelihood function is 

 
𝑙𝑛𝐿(𝑥; 𝜇, 𝜏) = 

−𝑛𝑙𝑛𝜏 −
𝑛

2
𝑙𝑛(2𝜋) − ∑ 𝑙𝑛𝑋𝑖

𝑛
𝑖=1 −

1

2
∑ (

(𝑙𝑛𝑋𝑖−𝜇)

𝜏
)

2
𝑛
𝑖=1   (15) 

 

By taking the derivatives of 𝑙𝑛𝐿  with respect to these 

parameters and equating them to zero, the following 

likelihood equations are obtained  

 
𝜕𝑙𝑛𝐿

𝜕𝜇
=

∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1

𝜏2 −
2𝑛𝜇

2𝜏2 = 0  (16) 

 

and 

 
𝜕𝑙𝑛𝐿

𝜏2 =
−𝑛

2𝜏2 + ∑
(𝑙𝑛𝑋𝑖−𝜇)2

2𝜏4
𝑛
𝑖=1 = 0.  (17) 

 

Thus, the MLs are  

𝜇̂ =
∑ 𝑙𝑛𝑥𝑖

𝑛
𝑖=1

𝑛
 and 𝜏̂2 =

1

𝑛
∑ (𝑙𝑛𝑥𝑖 −

∑ 𝑙𝑛𝑥𝑖
𝑛
𝑖=1

𝑛
)

2
𝑛
𝑖=1 , 

 

respectively. 

 

2.4. Generalized Rayleigh Distribution  

 

For data modeling, Burr [23] provided twelve distinct 

kinds of cumulative distribution functions. Out of the 

twelve, Burr-Type X and Burr-Type XII were the two 

distribution functions that attracted the greatest attention. 

The generalized Rayleigh distribution was appropriately 

termed and the two parameter Burr Type X distribution 

was recently presented by Surles and Padgett [24]. Keep 

in mind that the exponentiated Weibull distribution, 

which was first put forth by Mudholkar and Srivastava 

[25], includes the two-parameter generalized Rayleigh 

distribution as one of its members. Both general lifetime 

modeling and the modeling of strength data can benefit 

greatly from the application of this distribution. 

 

The pdf of the two-parameter generalized Rayleigh 

distribution is: 

 

𝑓(𝑥; 𝛼, 𝜆) = 

2𝛼𝜆2𝑥𝑒−(𝜆𝑥)2
(1 − 𝑒−(𝜆𝑥)2

)
𝛼−1

, 𝑥 > 0, 𝛼, 𝜆 > 0.  (18) 

 

2.4.1. Parameter estimation of generalized Rayleigh 

distribution 

 

Let 𝑋1, 𝑋2, … , 𝑋𝑛  be random sample of size n from 

generalized Rayleigh distribution with 𝛼  and 𝜆 

parameters, then the likelihood function can be written as: 

𝐿(𝑥; 𝛼, 𝜆) = 2𝑛𝛼𝑛𝜆2𝑛 ∏ 𝑥𝑖𝑒−(𝜆𝑥𝑖)2
(1 − 𝑒−(𝜆𝑥𝑖)2

)
𝛼−1𝑛

𝑖=1 . (19) 

 

Then, the log-likelihood function 𝑙𝑛𝐿(𝑥; 𝛼, 𝜆) as follows: 

 

𝑙𝑛𝐿(𝑥; 𝛼, 𝜆) = 𝑛𝑙𝑛2 + 𝑛𝑙𝑛𝛼 + 2𝑛𝑙

+ ∑ 𝑙𝑛𝑥𝑖 − 𝜆2 ∑ 𝑥𝑖
2

𝑛

𝑖=1

𝑛

𝑖=1
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+(𝛼 − 1) ∑ 𝑙𝑛(1 − 𝑒−(𝜆𝑥)2
)

𝑛

𝑖=1

. 

 

When we take the derivatives with respect to parameters 

normal equations become: 

 
𝜕𝑙𝑛𝐿

𝜕𝛼
=

𝑛

𝛼
+ ∑ 𝑙𝑛(1 − 𝑒−(𝜆𝑥)2

) = 0𝑛
𝑖=1    (20) 

 

and 

 
𝜕𝑙𝑛𝐿

𝜕𝜆
=

2𝑛

𝜆
− 2𝜆 ∑ 𝑥𝑖

2𝑛
𝑖=1 + 2𝜆(𝛼 − 1) ∑

𝑥𝑖
2𝑒−(𝜆𝑥)2

1−𝑒−(𝜆𝑥)2 = 0𝑛
𝑖=1   (21) 

 

Note that 𝛼̂  and 𝜆̂  are not in explicit form and hence, 

numerical methods, such as fixed-point solution. The ML 

estimators of generalized Rayleigh distribution can be 

seen from Esemen and Gürler [26].  

 

3. DATA AND APPLICATION  

 

In this section, the data set introduced and the Weibull, 

Gamma, lognormal, and generalized Rayleigh 

distributions are applied to the hourly wind speed data 

(m/s). The performances of the distributions are compared 

using several well-known criteria, such as the AIC,  

𝑅2 and RMSE. For analyzing MatlabR2021 software is 

used. 

 

3.1. The Data Set  

 

In this section, hourly wind speed data (m/s), measured 

hourly at 10m from Bitlis, Turkey during January, 

February, March, and April 2017 is used. There are 2978 

observations recorded. The data is taken with official 

permission from the Turkish State Meteorological 

Service. For the hourly wind speed data (m/s), estimates 

of the parameters of above mentioned distributions are 

obtained as reported in Table 1. To determine the 

distribution providing better determination ( 𝑅2 ) and 

Akaike information criteria (AIC) values for each 

distribution, as shown in Table 2. In addition to these 

statistical criteria, the cumulative density function of the 

given distributions is presented in Figure 1 for wind speed 

data. 

 

Table 2 gives the values of the evaluation criteria for the 

generalized Rayleigh, Gamma, Weibull, and lognormal 

distributions. It is well-known that a better fit is indicated 

by lower values of the AIC and RMSE and higher values 

of the 𝑅2. 

 
Table 1. ML estimators of the parameters for the given distributions 

Month Weibull Gamma Lognormal G.Rayleigh 

 𝛼̂ 𝛽̂ 𝛼̂ 𝛽̂ 𝜇̂ 𝜏̂ 𝛼̂ 𝜆̂ 

January 1.207 2.796 1.477 1.767 0.895 0.585 1.567 0.706 

February 1.432 2.364 1.999 1.067 0.488 0.781 2.292 0.906 

March 1.853 3.064 2.827 0.961 0.813 0.679 3.175 0.725 

April 1.639 3.643 2.220 1.467 0.939 0.776 2.299 0.588 

 
Table 2. Modeling performances of the given distribution for wind speed data 

Month Weibull Gamma Lognormal G. Rayleigh 

 𝑅2 𝑅𝑀𝑆𝐸 AIC 𝑅2 𝑅𝑀𝑆𝐸 AIC 𝑅2 𝑅𝑀𝑆𝐸 AIC 𝑅2 𝑅𝑀𝑆𝐸 AIC 

January 0.9675 0.0513 2739.63 0.9969 0.0498 2706.23 0.9932 0.0242 2546.33 0.9527 0.1534 2765.87 

February 0.9778 0.0401 2134.90 0.9989 0.0309 2109.78 0.9829 00363 2194.20 0.9193 0.2145 0.2180.32 

March 0.9968 0.0160 2625.55 0.9998 0.0132 2635.83 0.9717 0.0471 2725.20 0.9085 0.2338 2778.88 

April 0.9990 0.0094 2907.13 0.9995 0.0203 2905.42 0.9715 0.0477 2990.68 0.9049 0.2391 2986.68 

 

  

  
Figure 1. Cumulative density functions of Weibull, Gamma, lognormal, and generalized Rayleigh distributions, along with observed data (X Data), for 

wind speed measurements in Bitlis, Turkey, during (a) January, (b) February, (c) March, and (d) April (2017)  
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It can be seen from Table 1 that the Gamma distribution 

provided the smallest values for the AIC, and RMSE and 

the largest values for the 𝑅2 . In other words, the Gamma 

distribution performed better than the other three 

distributions in modeling the first months of 2017 of Bitlis 

province. Furthermore, in Figure 1 are consistent with 

Table 2. 

 

4. CONCLUSION 

 

In this study, the Weibull, Gamma, lognormal, and 

generalized Rayleigh are used in modelling the wind 

speed data of Bitlis in Turkey for the first four months of 

2017. In parameter estimation, the ML estimation 

methods are considered. The results summarized in both 

Figure 1 and Table 2 show that the Gamma distribution 

described wind speed data in Bitlis during January, 

February, March, and April 2017 better than Weibull, 

lognormal, and generalized Rayleigh distributions. 
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