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Research Article 

Abstract − In this paper, we introduce the concept of transversal lightlike submersions from semi-Riemannian 

manifolds onto semi-Riemannian manifolds. Specifically, we present the concepts of transversal r-lightlike and 

isotropic transversal lightlike submersions and examine the geometry of foliations formed by these submersions 

through various examples. In this way, we demonstrate certain points where transversal r-lightlike submersions 

differ from semi-Riemannian submersions. Furthermore, we investigate O’Neill’s tensors for transversal r-

lightlike submersions and examine the integrability of certain distributions by employing these tensor fields. Thus, 

valuable information regarding such submersions’ geometric structures and properties can be provided, paving 

the way for new research avenues. We finally discuss the need for further research. 

Keywords − Transversal submersion, Riemannian submersion, lightlike manifold, lightlike submersion 

1. Introduction 

Riemannian submersions are foundational mappings within the realm of differential geometry, serving as 

potent instruments for unraveling the geometric properties of Riemannian manifolds. These submersions allow 

for methodically examining the interactions between several manifolds. Their importance spans several fields 

in pure mathematics and theoretical physics, providing a detailed framework for examining the complex 

interactions between different geometries and providing deep insights into the structure of the physical 

universe. 

O’Neill [1] and Gray [2] introduced the theory of Riemannian submersion, which has subsequently become 

the subject of numerous studies [3-12]. Consequently, it has become a useful tool for clarifying the structure 

of Riemannian manifolds. It is well known that when 𝑀1 and 𝑀2 are Riemannian manifolds, the fibers become 

Riemannian manifolds; however, it has been noted that the fibers of 𝑓 may not be semi-Riemannian when the 

manifolds are semi-Riemannian [13]. 

Şahin has recently introduced and studied the concept of submersion from lightlike manifolds onto semi-

Riemannian manifolds in [14], along with the submersion from semi-Riemannian manifolds onto lightlike 

manifolds in [13], providing significant insights into the geometric relationship between these disparate 

manifold types. 

Hereinafter, we will initially provide an overview of a lightlike manifold and subsequently introduce the 

concept of transversal submersion from semi-Riemannian manifolds to semi-Riemannian manifolds. We will 

investigate specific examples to assess the possibility of constructing such a submersion and draw conclusions 

based on our analysis. Thus, the concept of transversal lightlike submersion will pave the way for innovative 
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geometric inquiries. 

2. Lightlike Manifolds 

Let 𝑉 be a real vector space and 𝑔1 be a bilinear form on V. If there exists a non-zero vector 𝜉 in 𝑉 such that 

𝑔1(𝜉, 𝑣) = 0, for every 𝑣 ∈ 𝑉,  then 𝑔1 is considered degenerate on 𝑉; otherwise, it is termed as non-

degenerate. On the other hand, if 𝑔1(𝑣, 𝑣) > 0, then 𝑔1 is said to be positively defined on 𝑉; conversely, 

𝑔1(𝑣, 𝑣) < 0, then 𝑔1  is said to be negatively defined on 𝑉. Consequently, a positive or negative defined 𝑔1 

is deemed to be non-degenerate [15]. 

Consider 𝑉 as a vector space and suppose that there exists a symmetric bilinear form 𝑔1 on 𝑉. In this case, 

there exist bases {𝑒𝑖} on 𝑉 that 

(

 

1 ≤ 𝑖 ≤ 𝑟 ; 𝑔1(𝑒𝑖, 𝑒𝑖) = 0

1 ≤ 𝑗 ≤ 𝑞 ; 𝑔1(𝑒𝑗, 𝑒𝑗) = −1

1 ≤ 𝑘 ≤ 𝑝 ; 𝑔1(𝑒𝑘 , 𝑒𝑘) = 1
𝑖 ≠ 𝑗 ; 𝑔1(𝑒𝑖, 𝑒𝑗) = 0 )

  

These bases are referred to as orthonormal bases, and the triplet (𝑟, 𝑞, 𝑝) is the type of the bilinear form 𝑔1 

[16]. Let (𝑀1, 𝑔1) denote a real differentiable 𝑛 dimensional manifold, where 𝑔1 is a symmetric tensor field of 

type (0,2). Assume that 𝑀1 is paracompact. The radical space of 𝑇𝑥𝑀1 denoted by Rad 𝑇𝑥𝑀1 and given as 

Rad 𝑇𝑥𝑀1 = {𝜉 ∈ 𝑇𝑥𝑀1: 𝑔1(𝜉, 𝑋) = 0,𝑋 ∈ 𝑇𝑥𝑀1} 

The nullity degree of 𝑔1 corresponds to the dimension of 𝑇𝑥𝑀1. Suppose Rad 𝑇𝑀1 corresponds to the radical 

subspace of Rad 𝑇𝑥𝑀1 for every 𝑥 ∈ 𝑀1. In this case, Rad 𝑇𝑀1 becomes the radical distribution of 𝑀1, and if 

0 < 𝑟 ≤ 𝑛, this manifold 𝑀1 is called a lightlike manifold [13]. The non-degenerate symmetric bilinear form 

𝑔1 on  𝑉 is referred to as a semi-Euclidean metric, in this case, 𝑉 is termed as a semi-Euclidean space [15].  

We note that  𝑔1(𝑣, 𝑣)>0 or 𝑣 = 0, then 𝑣 is defined as spacelike. Similarly, if 𝑔1(𝑣, 𝑣)<0, then 𝑣 is defined 

as timelike. Moreover, if 𝑔1(𝑣, 𝑣)=0 and 𝑣 ≠ 0, then 𝑣 is defined as lightlike (null, isotropic), where 𝑣 ∈ 𝑉, 𝑉 

is a semi-Euclidean space [15]. 

Afterward, we present the concepts of Riemannian and lightlike submersions, necessary for providing 

transversal lightlike submersions. 

3. Riemannian Submersions 

In this section, the definition of Riemann submersions is provided, along with some significant information 

concerning these submersions. 

Let (𝑀1, 𝑔1) and (𝑀2, 𝑔2) be 𝑚 and 𝑛 dimensional Riemannian manifolds, respectively, and 𝑓:𝑀1 → 𝑀2 be 

a submersion. In this case, rank 𝑓 = dim𝑀2 < dim𝑀1. For any 𝑥 ∈ 𝑀2, the fiber 𝐹𝑥 = 𝑓
−1(𝑥) is a 

submanifold of 𝑀1 with dimension 𝑟 = (𝑚 − 𝑛). Submanifolds 𝑓−1(𝑥) are called submersion fibers. 

The integrable distribution 𝒱 of the submersion 𝑓:𝑀1 → 𝑀2 in (𝑀1, 𝑔1) is defined by 𝒱𝑝 = ker𝑓∗p, where 𝑝 ∈

𝑀1. 𝒱𝑝 is called the vertical distribution of submersion. Furthermore, ℋ𝑝 = (𝒱𝑝)
⊥ is orthogonal to and 

complements the vertical distribution. We refer to the ℋ distribution as the horizontal distribution of the 

submersion [17, 18]. 
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Consider (𝑀1, 𝑔1) and (𝑀2, 𝑔2) as Riemannian manifolds. A differentiable mapping 𝑓 is referred to as a 

Riemannian submersion if it satisfies the following conditions: 

i. 𝑓 has maximal rank. 

ii. For any 𝑝 ∈ 𝑀1, 𝑓∗𝑝 preserves the length of 𝑋𝑝 ∈ 𝛤(ℋ𝑝), where ℋ𝑝 represents the horizontal vectors [1]. 

The first condition in the definition ensures that the mapping is a submersion. The second condition states that 

the 𝑓∗ derivative transformation at the point 𝑝 ∈ 𝑀1 is a linear isometry from the horizontal space ℋp to the 

tangent space 𝑇𝑓(𝑝)𝑀2. Therefore, 𝑔1𝑝(𝑢, 𝑣) = 𝑔2𝑓(𝑝)(𝑓∗𝑝𝑢, 𝑓∗𝑝𝑣), holds for 𝑢, 𝑣 ∈ ℋ𝑝, 𝑝 ∈ 𝑀1 [17]. 

Furthermore, given that 𝑋 is horizontal and f –related to a vector field �̃�  on 𝑀2, that is,  𝑓∗(𝑋) = �̃�𝑓(𝑝) for any 

𝑝 ∈ 𝑀1 a vector field 𝑋 on 𝑀1 is considered basic [1]. 

Proposition 3.1 Let (𝑀1, 𝑔1)  and (𝑀2, 𝑔2)  be Riemannian manifolds, where 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) is a 

Riemannian submersion, and let ∇ and ∇′ denote the Levi-Civita connections of 𝑀1 and 𝑀2, respectively. 

Suppose the basic vector fields 𝑋 and 𝑌 on 𝑀1 are 𝑓 −related to the vector fields 𝑋′ and 𝑌′. In this case, the 

following equations are obtained [18]: 

1. 𝑔1(𝑋, 𝑌 )  =  𝑔2 (𝑋′ , 𝑌′ ) ∘ 𝑓 

2. The basic vector field ℎ[𝑋, 𝑌] corresponds to [�̃�,  �̃�] 

3. The basic vector field ℎ(∇𝑋𝑌) corresponds to ∇𝑋′𝑌
′ 

4. Lightlike Submersions 

Sahin and Gündüzalp previously introduced several concepts related to lightlike submersions in [13]. Let 

(𝑀1, 𝑔1) be a semi-Riemannian manifold, (𝑀2, 𝑔2) be an 𝑟-lightlike manifold. Consider a differentiable 

submersion 𝑓:𝑀1 → 𝑀2, where 𝑓∗ denotes the derivative transformation. The kernel of 𝑓∗ at the point 𝑝 ∈ 𝑀2, 

denotes as ker 𝑓∗ , is defined as [13]: 

ker 𝑓∗ = {𝑋 ∈ 𝑇𝑝(𝑀1):  𝑓∗(𝑋) = 0} 

Case 4.1 0 < dim 𝛥 < min{dim (ker 𝑓∗), dim (ker 𝑓∗)
⊥}: In this case, 𝛥 is the radical subspace of 𝑇𝑝𝑀1. 

Thus, a quasi-orthonormal basis of 𝑀1 along ker 𝑓∗ is constructed as described in [15]. Since ker 𝑓∗ is a real 

lightlike vector space, there exists a non-degenerate subspace that complements 𝛥 [15]. Then, 

ker 𝑓∗ = 𝛥 ⊥ 𝑆(ker 𝑓∗) 

and similarly, 

(ker 𝑓∗)
⊥ = 𝛥 ⊥ 𝑆(ker 𝑓∗)

⊥ 

where 𝑆(ker 𝑓∗)
⊥ denotes the complementary subspace of 𝛥 in (ker 𝑓∗)

⊥. Given the expression 𝑇𝑝𝑀1 =

𝑆(ker 𝑓∗) ⊥ (𝑆(ker 𝑓∗))
⊥, since 𝑆(ker 𝑓∗) is non-degenerate in 𝑇𝑝𝑀1, it can be observed that (𝑆(ker 𝑓∗))

⊥ is 

the complementary subspace of 𝑆(ker 𝑓∗) in 𝑇𝑝𝑀1. Additionally, since 𝑆(ker 𝑓∗) and (𝑆(ker 𝑓∗))
⊥ are non-

degenerate, we can observe that 

(𝑆(ker 𝑓∗))
⊥ = 𝑆(ker 𝑓∗)

⊥ ⊥ (𝑆(ker 𝑓∗)
⊥)⊥ 

Then, according to Proposition 2.4 in [15], it is known that “There exists a quasi-orthonormal basis of ker 𝑓∗”. 

Therefore, we have the following expressions: 
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(
𝑔1(𝜉𝑖, 𝜉𝑗) = 𝑔1(𝑁𝑖, 𝑁𝑗) = 0 ; 𝑔1(𝜉𝑖, 𝑁𝑗) = 𝛿𝑖𝑗
𝑔1(𝑊𝛼, 𝜉𝑗) = 𝑔1(𝑊𝛼, 𝑁𝑗) = 0 ; 𝑔1(𝑊𝛼 ,𝑊𝛼) = 휀𝛼𝛿𝛼𝛽

) 

where 𝑖, 𝑗 ∈ {1, . . . , 𝑟} and 𝛼, 𝛽 ∈ {1, . . . , 𝑡}. Here {𝑁𝑖} represents differentiable null vector fields of 

(𝑆(ker 𝑓∗)
⊥)⊥, {𝜉𝑖} is the basis of 𝛥, and {𝑊𝛼} is the basis of 𝑆(ker 𝑓∗)

⊥. The set of vector fields {𝑁𝑖} is denoted 

by ltr(ker 𝑓∗), and consider the following subspace: 

tr(ker 𝑓∗) = ltr(ker 𝑓∗) ⊥ 𝑆(ker 𝑓∗)
⊥ 

It should be noted that ltr(ker 𝑓∗) and (ker 𝑓∗) are not orthogonal to each other. The space ker 𝑓∗, denoted as 

𝒱, is referred to as the vertical space of 𝑇𝑝𝑀1, while tr(ker 𝑓∗), denoted as ℋ, is called the horizontal space of 

𝑇𝑝𝑀1, as is usual in the theory of Riemannian submersions. Thus, we have the decomposition: 

𝑇𝑝𝑀1 = 𝒱𝑝⊕ℋ𝑝 

We notice that 𝒱 and ℋ are not orthogonal [13]. 

Definition 4.2 [13] Let (𝑀1, 𝑔1) be a semi-Riemannian manifold and (𝑀2, 𝑔2) be an 𝑟-lightlike manifold. 

Consider a submersion 𝑓:𝑀1 → 𝑀2 satisfying the following conditions: 

i. dim 𝛥 = dim {(ker 𝑓∗) ∩ (ker 𝑓∗)
⊥} = 𝑟, 0 < 𝑟 < min {dim (ker 𝑓∗), dim (ker 𝑓∗)

⊥}. 

ii. 𝑓∗ preserves the length of horizontal vectors, i.e. 𝑔1(𝑋, 𝑌) = 𝑔2(𝑓∗𝑋, 𝑓∗𝑌) for 𝑋, 𝑌 ∈ 𝛤(ℋ). In this case, we 

can say that 𝑓 is an 𝑟-lightlike submersion.  

Case 4.3. [13] dim 𝛥 = dim (ker 𝑓∗) < dim(ker 𝑓∗)
⊥. Then, 𝒱 = 𝛥 and ℋ = 𝒮(ker 𝑓∗)

⊥ ⊥ ltr(ker 𝑓∗). 

Thus, we name 𝑓 an isotropic submersion.  

Case 4.4. [13] dim 𝛥 = dim (ker 𝑓∗)
⊥ < dim(ker 𝑓∗). Then, 𝒱 = 𝒮(ker 𝑓∗) ⊥ Δ and ℋ = ltr(ker 𝑓∗). Thus, 

we name 𝑓 co-isotropic submersion.  

Case 4.5. [13] dim 𝛥 = dim (ker 𝑓∗)
⊥ = dim (ker 𝑓∗). Then, 𝒱 = 𝛥 and ℋ = ltr(ker 𝑓∗). Thus, we name 𝑓 

totally lightlike submersion.  

Therefore, in conjunction with this information, we present a new concept. 

5. Transversal Lightlike Submersions 

In this section, we will introduce the concept of transversal submersion and provide four related examples. 

Through these examples, we will explore the existence of various types of submersions. Additionally, we will 

introduce O’Neill tensors for transversal submersions, which will lead to different results regarding their 

overall properties. 

Firstly we note that a basic vector field on 𝑀1 is a horizontal vector field 𝑋 that is 𝑓-related to vector field �̃� 

on 𝑀2, meaning that 𝑓∗(𝑋𝑝) = �̃�𝑓(𝑝) for all 𝑝 ∈ 𝑀1 (Where 𝑓∗ is a derivative map). Every vector field �̃� on 𝑀2 

has a unique horizontal lift 𝑋 to 𝑀1, and 𝑋 is basic. Therefore, the correspondence 𝑋 ↔ �̃� establishes a one-

to-one relationship between fundamental vector fields on 𝑀1 and arbitrary vector fields on 𝑀2 [13]. Thus, we 

can give the following definition. 

Definition 5.1 Consider (𝑀1, 𝑔1) and (𝑀2, 𝑔2) be a semi-Riemannian manifold and let 𝑓:𝑀1 → 𝑀2 be a 

submersion. If the condition 



JARNAS / 2024, Vol. 10, Issue 2, Pages: 476-492 / Transversal Lightlike Submersions 

 

 

480 

𝑔1(𝑋, 𝑌) = 𝑔2(𝑓∗(𝑋), 𝑓∗(𝑌)) (5.1) 

holds for all 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), we call the mapping 𝑓 as a transversal submersion. 

Therefore, 

• 𝑓 has maximal rank, 

• At each point 𝑝 in 𝑀1, the 𝑓∗𝑝 mapping preserves the lengths of horizontal vectors; that is, 𝑔1𝑝(𝑋, 𝑌) =

𝑔2𝑓(𝑝)(𝑓∗𝑝𝑋, 𝑓∗𝑝𝑌). This implies that at a point 𝑝 in 𝑀1, the 𝑓∗ derivative transformation states a linear 

isometry from 𝛤(𝑆(ker 𝑓∗)
⊥) space onto 𝑇𝑓(𝑝)𝑀2. 

Note that for 𝑝 ∈ 𝑀2, 𝑓
−1(𝑝) is a submanifold with dim 𝑀1-dim 𝑀2. 

Definition 5.2 Consider (𝑀1, 𝑔1) and (𝑀2, 𝑔2) as semi-Riemannian manifolds and let 𝑓: 𝑀₁ →  𝑀₂ be a 

transversal submersion. According to Definition 4.2 in Case 4.1, 𝑓 is characterized as a transversal 𝑟-lightlike 

submersion. Furthermore, as per Definition 4.2 in Case 4.3, 𝑓 is denoted as an isotropic transversal lightlike 

submersion. 

We will give examples of transversal 𝑟-lightlike and isotropic transversal lightlike submersions. 

Example 5.3 Consider ℝ1
6 and ℝ1

3 to be ℝ6 and ℝ3endowed with semi-Riemannian metrics. Define these 

metrics as follows: 

𝑔1 = −(𝑑𝑥1)
2 + (𝑑𝑥2)

2 + (𝑑𝑥3)
2 + (𝑑𝑥4)

2 + (𝑑𝑥5)
2 + (𝑑𝑥6)

2 

and 

𝑔2 = −(𝑑𝑦1)
2 +

1

2
(𝑑𝑦2)

2 +
1

2
(𝑑𝑦3)

2 

where {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and {𝑦1, 𝑦2, 𝑦3} are the canonical coordinates on ℝ6 and ℝ3, respectively. 

Moreover, we define the following map: 

𝑓 : ℝ1
6 → ℝ1

3 

  (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) → (𝑥1 − 𝑥5, 𝑥2 + 𝑥6, 𝑥3 + 𝑥4) 

The kernel of 𝑓∗ is then given by 

ker 𝑓∗ = Span {𝑊1 =
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥5
,  𝑊2 = −

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥6
,𝑊3 = −

𝜕

𝜕𝑥3
+
𝜕

𝜕𝑥4
} 

Thus, 

(ker 𝑓∗)
⊥ = Span {𝑇1 =

𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥5
, 𝑇2 =

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥6
, 𝑇3 =

𝜕

𝜕𝑥3
+
𝜕

𝜕𝑥4
} 

Therefore, 

𝑊1 = 𝑇1, 𝛥 = ker 𝑓∗ ∩ (ker 𝑓∗)
⊥ = Span{𝑊1} 

Then, 

ltr(ker 𝑓∗) = Span {𝑁 =
1

2
(−

𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥5
)} 
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Using 𝑁 =
1

𝑔1(𝜉,𝑉)
{𝑉 −

𝑔1(𝑉,𝑉)

2𝑔1(𝜉,𝑉)
𝜉} from Equation (1.5) in [15], it is easy to check that 𝑔1(𝑁,𝑊1) = 1, 

𝑔1(𝑁,𝑊2) = 0, and 𝑔1(𝑁,𝑊3) = 0. Thus, we give the vertical and horizontal spaces as: 

𝒱 = Span{𝑊1,𝑊2,𝑊3},ℋ = Span{𝑇2, 𝑇3, 𝑁} 

Furthermore, since 𝑓∗(𝑇2) = 2
𝜕

𝜕𝑦2
, 𝑓∗(𝑇3) = 2

𝜕

𝜕𝑦3
, and 𝑓∗(𝑁) = −

𝜕

𝜕𝑦1
, we obtain that 

𝑔1(𝑇2, 𝑇2) = 𝑔2(𝑓∗(𝑇2), 𝑓∗(𝑇2)) = 2, 𝑔1(𝑇3, 𝑇3) = 𝑔2(𝑓∗(𝑇3), 𝑓∗(𝑇3)) = 2 

𝑔1(𝑁,𝑁) = 0, 𝑔2(𝑓∗(𝑁), 𝑓∗(𝑁)) = −1 

Here, we state that the lengths of the vectors in 𝑆(ker 𝑓∗)
⊥ are conserved, but we cannot say the same for 

ltr(ker 𝑓∗). In this case, the mapping 𝑓 is a transversal 1 −lightlike submersion. 

Example 5.4 Consider ℝ2
6 and ℝ2

3 be ℝ6 and ℝ3endowed with semi-Riemannian metrics. Define these metrics 

as follows: 

𝑔1 = −(𝑑𝑥1)
2 − (𝑑𝑥2)

2 + (𝑑𝑥3)
2 + (𝑑𝑥4)

2 + (𝑑𝑥5)
2 + (𝑑𝑥6)

2 

and 

𝑔2 = −(𝑑𝑦1)
2 − (𝑑𝑦2)

2 +
1

2
(𝑑𝑦3)

2 

where {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and {𝑦1, 𝑦2, 𝑦3} are the canonical coordinates on ℝ6 and ℝ3, respectively. We 

define the following map: 

𝑓 : ℝ2
6 → ℝ2

3 

  (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) → (𝑥1 + 𝑥4, 𝑥2 + 𝑥5, 𝑥3 + 𝑥6) 

The kernel of 𝑓∗ is then 

ker 𝑓∗ = Span {𝑊1 = −
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥4
,𝑊2 = −

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥5
,𝑊3 = −

𝜕

𝜕𝑥3
+
𝜕

𝜕𝑥6
} 

Thus, 

(ker 𝑓∗)
⊥ = Span {𝑇1 = −

𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥4
, 𝑇2 = −

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥5
, 𝑇3 =

𝜕

𝜕𝑥3
+
𝜕

𝜕𝑥6
} 

Therefore, we have 𝑊1 = 𝑇1 and 𝑊2 = 𝑇2, 

𝛥 = (ker 𝑓∗) ∩ (ker 𝑓∗)
⊥ = Span{𝑊1 = 𝑇1,  𝑊2 = 𝑇2} 

Then, 

ltr(ker 𝑓∗) = Span {𝑁1 =
1

2
(
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥4
) , 𝑁2 =

1

2
(
𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥5
)} 

Moreover, we have 

𝑓∗(𝑇3) = 2
𝜕

𝜕𝑦3
, 𝑓∗(𝑁1) =

𝜕

𝜕𝑦1
, 𝑓∗(𝑁2) =

𝜕

𝜕𝑦2
 

Then, we obtain that 

𝑔1(𝑇3, 𝑇3) = 𝑔2(𝑓∗(𝑇3), 𝑓∗(𝑇3)) = 2 

𝑔1(𝑁1, 𝑁1) = 0, 𝑔2(𝑓∗(𝑁1), 𝑓∗(𝑁1)) = −1, 𝑔1(𝑁2, 𝑁2) = 0, 𝑔2(𝑓∗(𝑁2), 𝑓∗(𝑁2)) = −1 
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Thus, 𝑓 is a transversal 2-lightlike submersion. 

Example 5.5 Let ℝ1
4 and ℝ1

3 be ℝ4 and ℝ3endowed with semi-Riemannian metrics. Define these metrics as 

follows: 

𝑔1 = −(𝑑𝑥1)
2 + (𝑑𝑥2)

2 + (𝑑𝑥3)
2 + (𝑑𝑥4)

2 

and 

𝑔2 = −(𝑑𝑦1)
2 + (𝑑𝑦2)

2 + (𝑑𝑦3)
2 

where {𝑥1, 𝑥2, 𝑥3, 𝑥4} and {𝑦1, 𝑦2, 𝑦3} are the canonical coordinates on ℝ4 and ℝ3, respectively. We define the 

following map: 

𝑓 : ℝ1
4 → ℝ1

3 

  (𝑥1, 𝑥2, 𝑥3, 𝑥4) → (𝑥1 + 𝑥2, 𝑥3, 𝑥4) 

The kernel of 𝑓∗ is then 

ker 𝑓∗ = 𝑆𝑝𝑎𝑛 {𝑊1 = −
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥2
} 

Thus, 

(ker 𝑓∗)
⊥ = Span {𝑇1 = −

𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥2
, 𝑇2 =

𝜕

𝜕𝑥3
, 𝑇3 =

𝜕

𝜕𝑥4
} 

Hence, we have 

𝛥 = ker 𝑓∗ ∩ (ker 𝑓∗)
⊥ = Span{𝑊1} 

Then, 

ltr(ker 𝑓∗) = Span {𝑁 =
1

2
(
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥2
)} 

Moreover, 

𝑓∗(𝑁) =
𝜕

𝜕𝑦1
, 𝑓∗(𝑇2) =

𝜕

𝜕𝑦2
, 𝑓∗(𝑇3) =

𝜕

𝜕𝑦3
 

Thus, we obtain that 

𝑔1(𝑇2, 𝑇2) = 1, 𝑔2(𝑓∗(𝑇2), 𝑓∗(𝑇2)) = 1, 𝑔1(𝑇3, 𝑇3) = 1, 𝑔2(𝑓∗(𝑇3), 𝑓∗(𝑇3)) = 1 

𝑔1(𝑁,𝑁) = 0, 𝑔2(𝑓∗(𝑁), 𝑓∗(𝑁))) = −1 

Hence, 𝑓 is isotropic transversal 1-lightlike submersion. 

Example 5.6 Let ℝ2
6 and ℝ2

4 be ℝ6 and ℝ4endowed with semi-Riemannian metrics. Define these metrics as 

follows: 

𝑔1 = −(𝑑𝑥1)
2 − (𝑑𝑥2)

2 + (𝑑𝑥3)
2 + (𝑑𝑥4)

2 + (𝑑𝑥5)
2 + (𝑑𝑥6)

2 

and 

𝑔2 = −(𝑑𝑦1)
2 − (𝑑𝑦2)

2 + (𝑑𝑦3)
2 + (𝑑𝑦4)

2 

where {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6} and {𝑦1, 𝑦2, 𝑦3, 𝑦4} are the canonical coordinates on ℝ6 and ℝ4, respectively. We 

define the following map: 
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𝑓 : ℝ2
6 → ℝ2

4 

  (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6) → (
𝑥1 + 𝑥5

√2
,
𝑥2 + 𝑥6

√2
, 𝑥3, 𝑥4) 

The kernel of 𝑓∗ is then 

ker 𝑓∗ = Span {𝑊1 = −
𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥5
,𝑊2 = −

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥6
} 

Thus,  

(ker 𝑓∗)
⊥ = Span {𝑇1 = −

𝜕

𝜕𝑥1
+
𝜕

𝜕𝑥5
, 𝑇2 = −

𝜕

𝜕𝑥2
+
𝜕

𝜕𝑥6
, 𝑇3 =

𝜕

𝜕𝑥3
, 𝑇4 =

𝜕

𝜕𝑥4
} 

Hence, we have 𝑊1 = 𝑇1, 𝑊2 = 𝑇2 ,and  

𝛥 = ker 𝑓∗ ∩ (ker 𝑓∗)
⊥ = Span{𝑊1 = 𝑇1,𝑊2 = 𝑇2} 

Then,  

ltr(ker 𝑓∗) = Span {𝑁1 =
1

2

𝜕

𝜕𝑥1
+
1

2

𝜕

𝜕𝑥5
, 𝑁2 =

1

2

𝜕

𝜕𝑥2
+
1

2

𝜕

𝜕𝑥6
} 

Moreover, we have 

𝑓∗(𝑁1) =
1

√2

𝜕

𝜕𝑦1
, 𝑓∗(𝑁2) =

1

√2

𝜕

𝜕𝑦2
, 𝑓∗(𝑇3) =

𝜕

𝜕𝑦3
, 𝑓∗(𝑇4) =

𝜕

𝜕𝑦4
 

Then,  

       𝑔1(𝑇3, 𝑇3) = 𝑔2(𝑓∗(𝑇3), 𝑓∗(𝑇3)) = 1, 𝑔1(𝑇4, 𝑇4) = 𝑔2(𝑓∗(𝑇4), 𝑓∗(𝑇4)) = 1 

𝑔1(𝑁1, 𝑁1) = 0, 𝑔2(𝑓∗(𝑁1), 𝑓∗(𝑁1)) = −
1

2
, 𝑔1(𝑁2, 𝑁2) = 0, 𝑔2(𝑓∗(𝑁2), 𝑓∗(𝑁2)) = −

1

2
 

Thus, 𝑓 is isotropic transversal 2 −lightlike submersion. 

Corollary 5.7 From Definition 5.1 and the examples provided above for a transversal submersion with 

degenerate fibers, we can introduce the concepts of transversal r-lightlike and isotropic transversal submersion. 

However, it is important to note that the notions of co-isotropic and totally lightlike submersion are not 

applicable in this context. 

Lemma 5.8 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). Then, for all 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥) 

𝑔1(𝑋, 𝑌) = 𝑔2(�̃�, �̃�) ∘ 𝑓 

Proof. The proof can be made easily from the isometry condition in Definition 5.1 using (5.1). 

Theorem 5.9 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). Then ℎ𝛻𝑋𝑌 is the fundamental vector field corresponding to 𝛻
 𝑀2

�̃��̃�, for 𝑋, 

𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥).  

Proof. Since 𝑀1 is a semi-Riemannian manifold with the Levi-Civita connection, the Koszul equality holds, 

leading to  

 2𝑔1(𝛻𝑋𝑌, 𝑍) = 𝑋(𝑔1(𝑌, 𝑍)) + 𝑌(𝑔1(𝑋, 𝑍)) − 𝑍(𝑔1(𝑋, 𝑌)) + 𝑔1([𝑋, 𝑌], 𝑍) + 𝑔1([𝑍, 𝑋], 𝑌) − 𝑔1([𝑌, 𝑍], 𝑋) 
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where 𝑋, 𝑌, 𝑍 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥). By utilizing Lemma 5.8, we obtain (𝑔1(𝑌, 𝑍)) = �̃�𝑔2(�̃�, �̃�) ∘ 𝑓. Similarly, if 

we generalize this equality, we have 

2𝑔1(𝛻𝑋𝑌, 𝑍) = �̃�𝑔2(�̃�, 𝑍) ∘ 𝑓 + �̃�𝑔2(𝑍, �̃�) ∘ 𝑓 − 𝑍𝑔2(�̃�, �̃�) ∘ 𝑓 + 𝑔2([�̃�, �̃�], 𝑍) ∘ 𝑓 + 𝑔2([𝑍, �̃�], �̃�) ∘ 𝑓 − 𝑔2([�̃�, 𝑍], �̃�) ∘ 𝑓 

Considering that 𝑀2 is a semi-Riemannian manifold, it has a Levi-Civita connection. From here, we can state 

that 𝛻
𝑀2

 satisfies Koszul’s equality. Then, 

𝑔1(𝛻𝑋𝑌, 𝑍) = 𝑔2(𝛻
𝑀2

�̃��̃�, �̃�) ∘ 𝑓 

Therefore, we deduce that ℎ𝛻𝑋𝑌 represents the fundamental vector field associated with 𝛻
𝑀2

�̃��̃�.  

Remark 5.10 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2), in this case, the expression in Theorem 5.9 does not apply to 𝑁1, 𝑁2 ∈

𝛤(ltr(ker 𝑓∗)).  

Remark 5.11 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, for any 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)) and 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), [𝑋, 𝑈] is a 

vertical vector field. 

Theorem 5.12 Consider the semi-Riemannian manifolds, 𝑀1 and 𝑀2, equipped with the metrics 𝑔1 and 𝑔2, 

respectively. Let 𝑓:𝑀1 → 𝑀2 be a transversal 𝑟-lightlike submersion. In this case, we have 𝑔1(𝛻𝑁1𝑁2, 𝑁3) =

−𝑔1(𝑁2, 𝛻𝑁1𝑁3) for all 𝑁1, 𝑁2, 𝑁3 in 𝛤(ltr(ker 𝑓∗)), where 𝛻 represents the Levi-Civita connection.  

Proof. Since 𝛻 is the Levi-Civita connection for 𝑁1, 𝑁2, 𝑁3 in 𝛤(ltr(ker 𝑓∗)), we have 

(𝛻𝑁1𝑔1)(𝑁2, 𝑁3) = 𝑁1(𝑔1(𝑁2, 𝑁3)) − 𝑔1(𝛻𝑁1𝑁2, 𝑁3) − 𝑔1(𝑁2, 𝛻𝑁1𝑁3) 

𝑔1(𝛻𝑁1𝑁2, 𝑁3) = −𝑔1(𝑁2, 𝛻𝑁1𝑁3) 

◻  

Let 𝑀1 and 𝑀2 be semi-Riemannian manifolds, 𝑓:𝑀1 → 𝑀2 be transversal submersion and 𝐸, 𝐹 arbitrary 

vector fields on 𝑀1. Also, let the projections ℎ: 𝑇𝑀1 → ℋ and 𝑣: 𝑇𝑀1 → 𝒱 denote the natural projections 

associated with the decomposition of 𝑇𝑀1 = ℋ⊕𝒱. Moreover, 𝛻 represents the Levi-Civita connection of 

(𝑀1, 𝑔1). We define the fundamental tensor field 𝑇 of type (1,2); 

 

 𝑇𝐸𝐹 = ℎ𝛻𝑣𝐸𝑣𝐹 + 𝑣𝛻𝑣𝐸ℎ𝐹 (5.2) 

has the following properties: 

i. 𝑇 exchances the role of horizontal and vertical subspaces 

ii. 𝑇 is vertical: 𝑇𝐸 = 𝑇𝑣𝐸 

The tensor field 𝐴; 

 𝐴𝐸𝐹 = 𝑣𝛻ℎ𝐸ℎ𝐹 + ℎ𝛻ℎ𝐸𝑣𝐹 (5.3) 

has the following properties: 

i.  𝐴 exchances the role of horizontal and vertical subspaces 

ii. 𝐴 is horizontal: 𝐴𝑋 = 𝐴ℎ𝑋 



JARNAS / 2024, Vol. 10, Issue 2, Pages: 476-492 / Transversal Lightlike Submersions 

 

 

485 

Lemma 5.13 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, we obtain the followings:  

i. 𝑇𝑈𝑉 = ℎ∇𝑈𝑉  (5.4) 

ii. 𝑇Uξ = h∇Uξ  (5.5) 

iii. 𝑇𝜉𝑉 = ℎ∇𝜉𝑉  (5.6) 

iv. 𝑇𝜉1𝜉2 = ℎ∇𝜉1𝜉2  (5.7) 

where 𝑈, 𝑉 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉, 𝜉1, 𝜉2 ∈ 𝛤(𝛥). 

Proof. Here, we will consider two situations: 

i. If we use (5.2) for transversal 𝑟-lightlike submersion, we can express it as  

 𝑇𝑈𝑉 = ℎ∇𝑈𝑉 (5.8) 

ii. Considering elements for which the multiplication equations by 𝑇𝑈𝑉 is non-zero, examine the following 

equations: 

𝑈𝑔1(𝑉, 𝜉) = 𝑔1(𝛻𝑈𝑉, 𝜉) + 𝑔1(𝑉, 𝛻𝑈𝜉) 

𝑔1(𝛻𝑈𝑉, 𝜉) = −𝑔1(𝑉, 𝛻𝑈𝜉) 

𝑔1(ℎ𝛻𝑈𝑉, 𝜉) = −𝑔1(𝑉, 𝑣𝛻𝑈𝜉) − 𝑔1(𝑉, ℎ𝛻𝑈𝜉) 

 𝑔1(𝑇𝑈𝑉, 𝜉) = −𝑔1(𝑉, 𝑣𝛻𝑈𝜉)⏟        
≠0
 

 (5.9) 

where 𝑈, 𝑉 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉 ∈ 𝛤(𝛥). In this case, 𝑇𝑈𝑉 ≠ 0. 

𝑈𝑔1(𝑉, 𝑋) = 𝑔1(𝛻𝑈𝑉, 𝑋) + 𝑔1(𝑉, 𝛻𝑈𝑋) 

𝑔1(𝛻𝑈𝑉, 𝑋) = −𝑔1(𝑉, 𝛻𝑈𝑋) 

𝑔1(ℎ𝛻𝑈𝑉, 𝑋) = −𝑔1(𝑉, 𝑣𝛻𝑈𝑋) − 𝑔1(𝑉, ℎ𝛻𝑈𝑋) 

 𝑔1(𝑇𝑈𝑉, 𝑋) = −𝑔1(𝑉, 𝑣𝛻𝑈𝑋)⏟        
≠0
 

 (5.10) 

In this case, 𝑇𝑈𝑉 ≠ 0 where 𝑈, 𝑉 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥). Consequently, from (5.9) and (5.10), 

we derive the non-zero equality expressed as 𝑇𝑈𝑉 = ℎ𝛻𝑈𝑉. Similarly, we can establish the proofs for (5.5)-

(5.7). 

Corollary 5.14 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, utilizing Lemma 5.13, we can deduce the expression:  

 𝑇𝑊1𝑊2 = ℎ𝛻𝑊1𝑊2  (5.11) 

where 𝑊1, 𝑊2 ∈ 𝛤(ker 𝑓∗).  

Lemma 5.15 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, we have the following equations: 

i. 𝑇𝑈𝑋 = 𝑣∇𝑈𝑋 

ii. 𝑇𝑈𝑁 = 𝑣𝛻𝑈𝑁 
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iii. 𝑇𝜉𝑋 = 𝑣𝛻𝜉𝑋 

iv. 𝑇𝜉𝑁 = 𝑣𝛻𝜉𝑁 

where 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉 ∈ 𝛤(𝛥), 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)).  

Proof. The proof of the first equation is done in a similar way to the proof of Lemma 5.13, using (5.2) and the 

Levi-Civita connection. Other equations can be obtained similarly easily. 

Corollary 5.16 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-

Riemannian manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, by using Lemma 5.15, we obtain  

𝑇𝑊𝐹 = 𝑣𝛻𝑊𝐹 

where 𝑊 ∈ 𝛤(ker 𝑓∗), 𝐹 ∈ 𝛤(tr(ker 𝑓∗)).  

Lemma 5.17 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, we have 

i. 𝐴𝑋𝑈 = ℎ𝛻𝑋𝑈 

ii. 𝐴𝑋𝜉 = ℎ𝛻𝑋𝜉 

iii. 𝐴𝑁𝑈 = ℎ𝛻𝑁𝑈 

iv. 𝐴𝑁𝜉 = ℎ𝛻𝑁𝜉 

where 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉 ∈ 𝛤(𝛥), 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)).  

Proof. The proof of the first equation is done in a similar way to the proof of Lemma 5.13, using (5.3) and the 

Levi-Civita connection. Other equations can be obtained similarly easily. 

Corollary 5.18 Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be semi-Riemannian manifold and 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a 

transversal 𝑟 −lightlike submersion. In this case, based on Lemma 5.17, we obtain 𝐴𝐹𝑊 = ℎ𝛻𝐹𝑊, where 𝐹 ∈

𝛤(tr(ker 𝑓∗)), 𝑊 ∈ 𝛤(ker 𝑓∗).  

Lemma 5.19 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, we have 

i. 𝐴𝑋𝑌 = 𝑣∇𝑋𝑌  (5.12) 

ii. 𝐴𝑋𝑁 = 𝑣∇𝑋𝑁  (5.13) 

iii. 𝐴𝑁𝑋 = 𝑣∇𝑁𝑋  (5.14) 

iv. 𝐴𝑁1𝑁2 = 𝑣∇𝑁1𝑁2  (5.15) 

where 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁, 𝑁1, 𝑁2 ∈ 𝛤(ltr(ker 𝑓∗)).  

Proof: The proof of (5.12) is done in a similar way to the proof of Lemma 5.13, using (5.3) and the Levi-Civita 

connection. Other equations can be obtained similarly easily. 

Corollary 5.20 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-

Riemannian manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, utilizing Lemma 5.19, we derive 𝐴𝐹1𝐹2 = 𝑣𝛻𝐹1𝐹2, 

where 𝐹1, 𝐹2 ∈ 𝛤(tr(ker 𝑓∗)).  

Lemma 5.21 Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be semi-Riemannian manifolds, 𝛻 be Levi-Civita connection in 𝑀1, 𝑇 

and 𝐴 be tensor fields, 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion. In this case, 
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i. 𝛻𝑊1𝑊2 = 𝑇𝑊1𝑊2 + 𝑣𝛻𝑊1𝑊2  (5.16) 

ii. 𝛻𝑊𝜉 = 𝑇𝑊𝜉 + 𝑣𝛻𝑊𝜉  (5.17) 

iii. 𝛻𝑈𝑊 = 𝑇𝑈𝑊 + 𝑣𝛻𝑈𝑊  (5.18) 

iv. 𝛻𝑈𝑉 = 𝑇𝑈𝑉 + 𝑣𝛻𝑈𝑉  (5.19) 

v. 𝛻𝑈𝜉 = 𝑇𝑈𝜉 + 𝑣𝛻𝑈𝜉  (5.20) 

vi. 𝛻𝜉𝑊 = 𝑇𝜉𝑊 + 𝑣𝛻𝜉𝑊  (5.21) 

vii. 𝛻𝜉1𝜉2 = 𝑇 𝜉1
𝜉2 + 𝑣𝛻𝜉1𝜉2  (5.22) 

viii. 𝛻𝜉𝑉 = 𝑇𝜉𝑉 + 𝑣𝛻𝜉𝑉  (5.23) 

where 𝑊, 𝑊1, 𝑊2, ∈ Γ(ker 𝑓∗), 𝜉, 𝜉1, 𝜉2 ∈ 𝛤(𝛻), 𝑈, 𝑉 ∈ Γ(𝑆(ker 𝑓∗)).  

Proof. Here, we will prove only (5.16). For any vector fields 𝑊1, 𝑊2 ∈ 𝛤(ker 𝑓∗), we can establish the equation 

𝛻𝑊1𝑊2 = 𝑣𝛻𝑊1𝑊2 + ℎ𝛻𝑊1𝑊2. Using Lemma 5.13 and Corollary 5.14, we obtain the equation 𝛻𝑊1𝑊2 =

𝑣𝛻𝑊1𝑊2 + 𝑇𝑊1𝑊2. The proof of the remaining equations can also be carried out similarly. ◻ 

Lemma 5.22 Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be semi-Riemannian manifolds, 𝛻 be Levi-Civita connection in 𝑀1, 𝑇 

and 𝐴 be tensor fields, 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion. In this case, we obtain 

the following equations: 

i. 𝛻𝑊𝑁 = 𝑇𝑊𝑁 + ℎ𝛻𝑊𝑁 

ii. 𝛻𝑈𝑁 = 𝑇𝑈𝑁 + ℎ𝛻𝑈𝑁 

iii. 𝛻𝜉𝑁 = 𝑇𝜉𝑁 + ℎ𝛻𝜉𝑁 

iv. 𝛻𝑈𝐹 = 𝑇𝑈𝐹 + ℎ𝛻𝑈𝐹 

v. 𝛻𝜉𝐹 = 𝑇𝜉𝐹 + ℎ𝛻𝜉𝐹 

vi. 𝛻𝑊𝐹 = 𝑇𝑊𝐹 + ℎ𝛻𝑊𝐹 

where 𝑊 ∈ 𝛤(ker 𝑓∗), 𝑈, 𝑉 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)), 𝐹 ∈ 𝛤(tr(ker 𝑓∗)).  

Proof. Here, we will prove only second equation. For any vector fields 𝑈 ∈  𝛤(𝑆(ker 𝑓∗)), and 𝑁 ∈

𝛤(ltr(ker 𝑓∗)), we can establish the equation  𝛻𝑈𝑁 = 𝑣𝛻𝑈𝑁 + ℎ𝛻𝑈𝑁. Using Lemma 5.15, we can establish 

𝛻𝑈𝑁 = 𝑇𝑈𝑁 + ℎ𝛻𝑈𝑁. Other equations can be obtained in a similar way. 

Lemma 5.23 Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be semi-Riemannian manifolds, 𝛻 be Levi-Civita connection in 𝑀1, 𝑇 

and 𝐴 be tensor fields, 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion. In this case, we obtain 

the following equations: 

i. 𝛻𝑋𝑊 = 𝐴𝑋𝑊 + 𝑣𝛻𝑋𝑊 

ii. 𝛻𝑋𝜉 = 𝐴𝑋𝜉 + 𝑣𝛻𝑋𝜉 

iii. 𝛻𝑁𝑊 = 𝐴𝑁𝑊+ 𝑣𝛻𝑁𝑊 

iv. 𝛻𝑁𝑈 = 𝐴𝑁𝑈 + 𝑣𝛻𝑁𝑈 

v. 𝛻𝑁𝜉 = 𝐴𝑁𝜉 + 𝑣𝛻𝑁𝜉 

vi. 𝛻𝐹𝑊 = 𝐴𝐹𝑊 + 𝑣𝛻𝐹𝑊 

vii. 𝛻𝐹𝑈 = 𝐴𝐹𝑈 + 𝑣𝛻𝐹𝑈 



JARNAS / 2024, Vol. 10, Issue 2, Pages: 476-492 / Transversal Lightlike Submersions 

 

 

488 

viii. 𝛻𝐹𝜉 = 𝐴𝐹𝜉 + 𝑣𝛻𝐹𝜉 

where 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉 ∈ 𝛤(𝛥), 𝑊 ∈ 𝛤(ker 𝑓∗), 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)), 𝐹 ∈

𝛤(tr(ker𝑓∗)).  

Proof.  Here we will prove only fourth equation. For any vector fields 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)) and 𝑈 ∈

𝛤(𝑆(ker 𝑓∗)), we can establish the equation  𝛻𝑁𝑈 = 𝑣𝛻𝑁𝑈 + ℎ𝛻𝑁𝑈. Using Lemma 5.17, we can establish the 

equation 𝛻𝑁𝑈 = 𝐴𝑁𝑈 + 𝑣𝛻𝑁𝑈. Other equations can be obtained in a similar way. 

Lemma 5.24 Let (𝑀1, 𝑔1), (𝑀2, 𝑔2) be semi-Riemannian manifolds, 𝛻 be Levi-Civita connection in 𝑀1, 𝑇 

and 𝐴 be basic tensor fields, 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion. In this instance, 

we obtain the following equations: 

i. 𝛻𝑋𝑁 = 𝐴𝑋𝑁 + ℎ𝛻𝑋𝑁  (5.24) 

ii. 𝛻𝑁1𝑁2 = 𝐴𝑁1𝑁2 + ℎ𝛻𝑁1𝑁2  (5.25) 

iii. 𝛻𝐹1𝐹2 = 𝐴𝐹1𝐹2 + ℎ𝛻𝐹1𝐹2  (5.26) 

iv. 𝛻𝑋𝐹 = 𝐴𝑋𝐹 + ℎ𝛻𝑋𝐹  (5.27) 

v. 𝛻𝑁𝐹 = 𝐴𝑁𝐹 + ℎ𝛻𝑁𝐹  (5.28) 

vi. 𝛻𝐹𝑁 = 𝐴𝐹𝑁 + ℎ𝛻𝐹𝑁  (5.29) 

vii. 𝛻𝑋𝑌 = 𝐴𝑋𝑌 + ℎ𝛻𝑋𝑌  (5.30) 

where 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁, 𝑁1, 𝑁2 ∈ 𝛤(ltr(ker 𝑓∗)), 𝐹, 𝐹1, 𝐹2 ∈ 𝛤(tr(ker 𝑓∗)).  

Proof. Here we will prove only first equation. For any vector fields 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥) and 𝑁 ∈

𝛤(ltr(ker 𝑓∗)), we can establish the equation 𝛻𝑋𝑁 = 𝑣𝛻𝑋𝑁 + ℎ𝛻𝑋𝑁. Using Lemma 5.19, we can establish 

𝛻𝑋𝑁 = 𝐴𝑋𝑁 + ℎ𝛻𝑋𝑁. Other equations can be obtained in a similar way. 

Corollary 5.25. Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-

Riemannian manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). Then, 

i. 𝑔1(𝑇𝑈𝑁1, 𝑁2) = −𝑔1(𝑁1, 𝑇𝑈𝑁2) 

ii. 𝑔1(𝑇𝜉𝑁1, 𝑁2) = −𝑔1(𝑁1, 𝑇𝜉𝑁2) 

iii. 𝑔1(𝐴𝑁𝜉1, 𝜉2) = −𝑔1(𝜉1, 𝐴𝑁𝜉2) 

iv. 𝑔1(𝐴𝑋𝑁1, 𝑁2) = −𝑔1(𝑁1, 𝐴𝑋𝑁2) 

where 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝜉1, 𝜉2 ∈ 𝛤(𝛥), 𝑋 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑁1, 𝑁2 ∈ 𝛤(ltr(ker 𝑓∗)).  

Proof.  Provide the proof solely for the first equality. 

Since (𝑀1, 𝑔1) is a semi-Riemannian manifold the torsion-free metric connection used here is the Levi-Civita 

connection. For 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)), 𝑁1, 𝑁2 ∈ 𝛤(ltr(ker 𝑓∗)), we have 

𝑈𝑔1(𝑁1, 𝑁2) = 𝑔1(𝛻𝑈𝑁1, 𝑁2) + 𝑔1(𝑁1, 𝛻𝑈𝑁2) 

𝑔1(𝑣𝛻𝑈𝑁1, 𝑁2) = −𝑔1(𝑁1, 𝑣𝛻𝑈𝑁2) 

By using Lemma 5.15 and Lemma 5.22, we can derive the expression 𝑔1(𝑇𝑈𝑁1, 𝑁2) = −𝑔1(𝑁1, 𝑇𝑈𝑁2). 

Similarly, by using Lemma 5.23 and Lemma 5.24, we can obtain other equations.  
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Theorem 5.26. Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟 −lightlike submersion between semi-

Riemannian manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, ker 𝑓∗ integrable for 𝑊1, 𝑊2 ∈ 𝛤(ker 𝑓∗).  

Proof. Since 𝑊1𝑝, 𝑊2𝑝 are elements of 𝛤(ker 𝑓∗𝑝), we have 𝑓∗(𝑊1) = 𝑊1̃ = 0 and 𝑓∗(𝑊2) = 𝑊2̃ = 0. From 

equation in Definition 20 [1], we obtain [�̃�1, �̃�2]𝑔2 = 𝑓∗([𝑊1,𝑊2]) ∘ 𝑔2. Therefore, [𝑊1,𝑊2] belongs to 

𝛤(ker 𝑓∗), then ker 𝑓∗ is integrable. ◻ 

Remark 5.27 Let 𝑓: (�̃�1, �̃�1) → (�̃�2, �̃�2) be a transversal 𝑟 − lightlike submersion between semi-Riemannian 

manifolds (�̃�1, �̃�1) and (�̃�2, �̃�2), where 𝛻 is the Levi-Civita connection corresponding to �̃�1 on the manifold 

𝑀1. 𝑆(ker 𝑓∗) and tr(ker 𝑓∗) denote the corresponding screen distribution and transversal lightlike vector 

bundle of 𝑀1, respectively. By utilizing the expression 𝑇�̃�1 = ker 𝑓∗⊕ tr(ker 𝑓∗), we can derive 𝛻𝑈𝑉 =

𝑣𝛻𝑈𝑉 + ℎ𝛻𝑈𝑉, where 𝑈, 𝑉 ∈ 𝛤(ker 𝑓∗). Furthermore, using (5.4), we obtain �̃�𝑈𝑉 = �̂�𝑈𝑉 + 𝑇𝑈𝑉, where 𝑇𝑈𝑉 

is associated with 𝛤(tr(ker 𝑓∗)) and �̃�𝑈𝑉 is associated with 𝛤(ker 𝑓∗).  

Remark 5.28 Let 𝑃 denote the projection morphism of (ker 𝑓∗) onto 𝑆(ker 𝑓∗) based on the decomposition of 

𝑉. By utilizing the equation 𝛻𝑈𝑃𝑉 = 𝑣𝛻
∗

𝑈𝑃𝑉 + ℎ𝛻
∗

𝑈𝑃𝑉, we get the following equation:  

 𝛻𝑈𝑃𝑉 = 𝛻
∗̂

𝑈𝑃𝑉 + 𝑇
∗

𝑈𝑃𝑉 (5.31) 

where 𝑇
∗

𝑈𝑃𝑉 is associated with 𝛤(𝛥), while 𝛻
∗̂

𝑈𝑃𝑉 is associated with 𝛤(ker 𝑓∗).  

Theorem 5.29 Let 𝑓: (�̃�1, �̃�1) → (�̃�2, �̃�2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (�̃�1, �̃�1) and (�̃�2, �̃�2). In this case, the necessary and sufficient condition for the integrability 

𝑆(ker 𝑓∗) is that  𝑇
∗

𝑈𝑃𝑉 = 𝑇
∗

𝑉𝑃𝑈.  

Proof. Let 𝑈, 𝑉 ∈ 𝛤(ker 𝑓∗), 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)). Since 𝛻 is torsion-free, we have �̃�1([𝑈, 𝑉], 𝑁) =

�̃�1(𝛻𝑈𝑉,𝑁) − �̃�1(𝛻𝑉𝑈,𝑁). From (5.31), it is easy to see that �̃�1([𝑈, 𝑉], 𝑁) = �̃�1(𝛻
∗̂

𝑈𝑃𝑉 + 𝑇
∗

𝑈𝑃𝑉,𝑁) −

�̃�1(𝛻
∗̂

𝑉𝑃𝑈 + 𝑇
∗

𝑉𝑃𝑈,𝑁). Then, since �̃�1(𝛻
∗̂

𝑈𝑃𝑉,𝑁) = 0 and �̃�1(𝛻
∗̂

𝑉𝑃𝑈,𝑁) = 0 , we have 

�̃�1([𝑈, 𝑉],𝑁) = �̃�1 (𝑇
∗

𝑈𝑃𝑉,𝑁) − �̃�1 (𝑇
∗

𝑉𝑃𝑈,𝑁) 

◻ 

Theorem 5.30 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, for 𝑊1,𝑊2 ∈ 𝛤(ker 𝑓∗), we have, 

𝑇𝑊1𝑊2 = 𝑇𝑊2𝑊1 

Proof. Utilizing equation (5.11) for 𝑊1,𝑊2 ∈ 𝛤(ker 𝑓∗), we observe 𝑇𝑊1𝑊2 − 𝑇𝑊2𝑊1 = ℎ[𝑊1,𝑊2]. By 

employing Theorem 5.26, as [𝑊1,𝑊2] ∈ 𝛤(ker 𝑓∗), we deduce ℎ[𝑊1,𝑊2] = 0. Consequently, this completes 

proof.  

Theorem 5.31 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, if 𝑆(ker 𝑓∗)
⊥ is integrable, we obtain 𝐴𝑋𝑌 = 𝐴𝑌𝑋 for 𝑋, 𝑌 ∈

𝛤(𝑆(ker 𝑓∗)
⊥). Conversely, if 𝐴𝑋𝑌 = 𝐴𝑌𝑋, we have [𝑋, 𝑌] ∈ ℋ.  

Proof. We will prove this theorem by considering two situations together. 

i. Since 𝛻 is the Levi-Civita connection, the following equation holds: 
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𝑔1([𝑋, 𝑌], 𝑈) = 𝑔1(𝛻𝑋𝑌, 𝑈) − 𝑔1(𝛻𝑌𝑋,𝑈) 

where 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)
⊥), 𝑈 ∈ 𝛤(𝑆(ker 𝑓∗)). By using (5.30), we can derive the following expression. 

𝑔1([𝑋, 𝑌], 𝑈) = 𝑔1(𝐴𝑋𝑌, 𝑈) − 𝑔1(𝐴𝑌𝑋,𝑈) 

If 𝑆(ker 𝑓∗)
⊥ is integrable, we can further simplify the equation and obtain:  

 𝑔1(𝐴𝑋𝑌, 𝑈) = 𝑔1(𝐴𝑌𝑋,𝑈) (5.32) 

ii. From the equation 𝑔1([𝑋, 𝑌], 𝑁) = 𝑔1(𝛻𝑋𝑌,𝑁) − 𝑔1(𝛻𝑌𝑋,𝑁) and the integrability of 𝑆(ker 𝑓∗)
⊥, we obtain 

the following equation:  

 𝑔1(𝐴𝑋𝑌,𝑁) = 𝑔1(𝐴𝑌𝑋,𝑁) (5.33) 

If we consider (5.32) and (5.33) together, it follows that 𝐴𝑋𝑌 = 𝐴𝑌𝑋. We can easily show that if 𝐴𝑋𝑌 = 𝐴𝑌𝑋, 

then [𝑋, 𝑌] ∈ ℋ.  

We also note that 𝐴 has the alternation property 𝐴𝑋𝑌 = −𝐴𝑌𝑋 for a Riemannian submersion. However, this 

situation differs for transversal 𝑟-lightlike submersions. 

Theorem 5.32 Let 𝑓: (𝑀1, 𝑔1) → (𝑀2, 𝑔2) be a transversal 𝑟-lightlike submersion between semi-Riemannian 

manifolds (𝑀1, 𝑔1) and (𝑀2, 𝑔2). In this case, if the ltr(ker 𝑓∗) distribution is parallel in the direction of the 

𝑆(ker 𝑓∗)
⊥ distribution, we obtain the equality 𝐴𝑋𝑌 = −𝐴𝑌𝑋, where 𝑋, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)

⊥), 𝑁 ∈

𝛤(ltr(ker 𝑓∗)).  

Proof. We first establish 𝐴𝑋𝑋 = 0 for any X ∈ 𝛤(𝑆(ker 𝑓∗)
⊥). Let X, 𝑌 ∈ 𝛤(𝑆(ker 𝑓∗)

⊥), then we derive 

𝑉𝑔1(𝑋, 𝑋) = 2𝑔1(𝛻𝑉𝑋, 𝑋), where 𝑉 ∈ 𝛤(𝑆(ker 𝑓∗)). By utilizing Remark 5.11, we then have 2𝑔1(𝛻𝑉𝑋, 𝑋) =

2𝑔1(𝛻𝑋𝑉, 𝑋). Subsequently, it becomes apparent that 2𝑔1(𝛻𝑋𝑉, 𝑋) = −2𝑔1(𝛻𝑋𝑋, 𝑉). Furthermore, in 

accordance with (5.30), we conclude that 

 2𝑔1(𝛻𝑋𝑉, 𝑋) = −2𝑔1(𝐴𝑋𝑋, 𝑉) (5.34) 

On the other hand, since 𝑀1 is a semi-Riemannian manifold, 𝑔1(𝑋, 𝑋) is constant on each fiber, and thus 

𝑉𝑔1(𝑋, 𝑋) = 0. From this, we conclude that 𝑔1(𝐴𝑋𝑋, 𝑉) = 0. However, the condition for the result to be zero 

relies on two possibilities: either 𝐴𝑋𝑋 ∈ 𝛤(𝛥) or 𝐴𝑋𝑋 = 0. It can be observed that if 𝐴𝑋𝑋 = 0, then 𝐴𝑋𝑌 =

−𝐴𝑌𝑋. If we consider the expression 𝑔1(𝐴𝑋𝑋,𝑁) for 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)), using (5.12), we obtain 

𝑔1(𝐴𝑋𝑋,𝑁) = 𝑔1(𝛻𝑋𝑋,𝑁) = 𝑋𝑔1(𝑋,𝑁) − 𝑔1(𝛻𝑋𝑁,𝑋) 

𝑔1(𝐴𝑋𝑋,𝑁) = −𝑔1(𝛻𝑋𝑁,𝑋) 

Then, if the ltr(ker 𝑓∗) distribution for 𝑁 ∈ 𝛤(ltr(ker 𝑓∗)) is parallel in the direction of the 𝑆(ker 𝑓∗)
⊥ 

distribution, then, 𝛻𝑋𝑁 ∈ 𝛤(ltr(ker 𝑓∗)), we have 

 𝑔1(𝐴𝑋𝑋,𝑁) = 0 (5.35) 

 Thus, from (5.34) and (5.35), we obtain the expression 

𝐴𝑋𝑌 = −𝐴𝑌𝑋 

6. Conclusion 

In this study, we introduced the concept of transversal lightlike submersions, and to illustrate the existence of 

such a structure, we offer illustrative examples. Our research delves into significant geometric analyses by 
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examining O’Neill tensors for submersion, which we have defined as transversal lightlike submersions. In this 

way, various connections were obtained according to vector fields selected from certain fibers by utilizing 

these tensor fields, and meaningful results were obtained by investigating the integrability of certain 

distributions. 

Thus, meaningful outcomes can be derived by computing various curvatures on the structure established for 

transversal submersions. Moreover, examining these submersions from two perspectives, transversal r-

lightlike and isotropic transversal lightlike submersions, facilitates a geometric comparison. These 

investigations offer valuable insights into the intrinsic geometric properties of such mappings, potentially 

paving the way for new avenues of research. 
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