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   Abstract 
 

In this study, the kinematics of a hexapod spider robot with 18 joints, consisting of 3 joints per leg, 

were modeled. The aim was to provide a theoretical framework for algorithms enabling the robot to 

walk, change direction, and control its body coordinate system. A novel and parametric approach 

was taken by creating a model instead of a table listing joint positions for various scenarios typically 

used in spider robot motion trajectories. Initially, the kinematic model of the hexapod robot was 

established using the D-H method. Subsequently, algorithms derived from kinematic equations were 

tested in a simulation environment to enable walking, rotation, and movement within the body's 

coordinate system. The simulation visualized movement trajectories without relying on 

mathematical libraries or specific programming languages, ensuring flexibility across different 

environments. Results from simulations and experimental tests demonstrated realistic movement 

capabilities. The software, validated in the simulation environment, was successfully implemented 

on a physical spider robot, leading to effective operation. 

 
 

 

 

1. Introduction* 

 

Numerous research studies have been conducted for 

decades on multi-legged walking robots created to mimic 

the structure and movement control of limbs in insects and 

arthropods. Among multi-legged robots, hexapod robots 

have been a popular choice for a wide range of tasks [1] as 

they are less affected by environmental conditions than 

wheeled robots [2]. With the advancement of robot 

technology, robotic applications have expanded beyond 

industrial applications and gained popularity in other 

sectors such as service, medicine, and cleaning [3]. 

Possible areas of application of hexapod robots include 

volcanic exploration, search and rescue applications, 

detection of land mines, sample collection in locations that 

are not easily reachable, and life search in extraterrestrial 

explorations. Many of these tasks are dangerous and are 

often conducted in challenging environments that are 

hazardous to human beings [4]. When a hexapod robot 

moves, each joint can be in various joint positions. In some 
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applications, the necessary joint angles for all the joints are 

pre-calculated for every possible leg configuration during 

walking and these calculated joint angles are stored as a 

table.  

These pre-calculated joint angles are later used during 

walking [5-6]. In such applications, when the dimensions 

of the limbs of the robot change, these tables need to be 

recreated. Creating these tables is a laborious task. 

Additionally, when the robot is moved based on this table, 

the positioning resolution of the legs is limited to the size 

of the table, and the mobility of the robot is therefore 

restricted by the table. There are many studies other than 

the tabular solution. 

For example, Sun et al. experimentally studied the 

walking and turning abilities of a six-legged spider robot 

[7]. In their study, forward and inverse kinematic equations 

were used to implement the robot's movement algorithms, 

and D-H parameters were employed to derive the 

kinematic equations. They planned the movement 

trajectories of the robot's toes using cosine, sine, and 

straight-line functions and executed the movements 

associated with these trajectories. 

Thilderkvist and Svensson conducted a thesis 

2667-484X © This paper published in Kocaeli Journal of Science and Engineering is licensed under a Creative 

Commons Attribution-NonCommercial 4.0 International License 

https://doi.org/10.34088/kojose.517520
https://doi.org/10.34088/kojose.517520
https://orcid.org/0000-0002-0973-5180
https://orcid.org/0000-0002-8884-9679
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-1874-3104


Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178 

167 

utilizing a model-based design for controlling a spider 

robot [8]. They implemented enhancements to alter the 

movement, walking pattern, rotation, and body height of 

the spider robot. Additionally, their thesis encompassed a 

successful balancing mode. In their experimental findings, 

they managed to maintain the main body in an upright 

position despite changes in the ground angle of the robot. 

Yamagan conducted a kinematic analysis of a six-

legged spider robot in his thesis and subsequently 

simulated it in the MATLAB environment to facilitate 

real-time system implementation [9]. This study serves as a 

preliminary investigation for hardware simulation of actual 

applications involving six-legged robots and rapid 

prototyping applications. The D-H approach, commonly 

employed in analyzing forward and inverse kinematics of 

designed systems, was utilized. Additionally, the study 

mentioned the use of the Lagrange-Euler equation for 

solving robot dynamics. 

Ekelund conducted a thesis focused on enabling a 

spider robot to walk and maintain balance [10]. PID 

control was employed to ensure system stability. He tested 

the implemented algorithms for walking and balance 

maintenance in both simulation and real-world 

environments, examining the experimental results obtained 

from the actual system. 

Erkol investigated real-time kinematic control of 

multi-jointed robots [11], with a particular emphasis on 

minimizing the processing load associated with kinematic 

calculations. To achieve this, they developed FPGA-based 

hardware. Utilizing this hardware, kinematic calculations 

were performed, enabling motion control of a six-legged 

spider robot. D-H parameters were employed to facilitate 

the kinematic calculations. Trajectories were generated, 

and the robot's motion was coordinated by referencing 

each foot base relative to the coordinate system 

corresponding to the leg connected to the body. 

In this study, the forward and inverse kinematic 

equations of a 6-legged spider hexapod robot were derived. 

Using these equations, motion algorithms for the robot 

have been developed and initially used in a simulation 

environment for verification of motion patterns and then 

applied to a real hexapod robot. Using the derived 

equations, the points of contact of each leg with the ground 

were controlled with developed motion algorithms, 

allowing the spider robot to perform realistic movements 

such as walking and rotating. Since the algorithms do not 

use any table, high mobility was achieved using the robot's 

kinematic model. Furthermore, by deriving the kinematic 

model, a foundation was provided for the angular control 

of the robot's body, enabling the development of 

algorithms for the robot to maintain balance on surfaces 

with changing slopes. 

 

2. Hexapod Robot 

 

In the classification of multi-legged robots, the 

hexapod robot is defined as a robot with six legs for 

mobility. The CAD drawing of the robot used in this study 

is shown in Figure 1. Each leg has three degrees of 

freedom. 

 
Figure 1. Hexapod Robot 

 

The rotation directions of each joint are shown in 

Figure 2. All the joints in the legs can rotate around the Z-

axis. As shown in Figure 2, since each leg has 3 joints, 

there are a total of 18 joints on the robot. In addition to the 

coordinate systems placed on these joints, a coordinate 

system has also been placed at the center of the robot's 

body for use in kinematic calculations. Additionally, there 

are imaginary points at the base of each foot. The positions 

of these imaginary points are determined by solving the 

kinematic equations of the legs with respect to the 

coordinate system at the point where the leg is connected 

to the body. The robot is moved by bringing these 

imaginary points to the desired positions. 

 

 
Figure 2. Axes located on each leg 

 

3. Kinematic 

 

In this section, the forward and inverse kinematic 

solutions of the developed spider robot are presented. The 
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algorithms used for the robot's walking and various 

movements are developed using the fundamental kinematic 

equations derived in this section. 

 

3.1. Forward Kinematics 

 

To obtain the kinematics of the robot under 

consideration, the modified Denavit-Hartenberg (D-H) 

parameters method was adopted and applied to one of the 

legs of the spider robot. This robot consists of a 

symmetrical structure composed of six identical legs, each 

with three degrees of freedom. As shown in Figure 2, each 

leg has 3 coordinate systems corresponding to each joint 

and an additional coordinate system holding the position of 

the contact point of the leg with the ground. In these 

coordinate systems, the blue vector represents the Z-axis, 

the green vector represents the Y-axis, and the red vector 

represents the X-axis.  

The second coordinate system is obtained by rotating 

the first coordinate system around the X-axis by -90 

degrees. The third coordinate system is a translated version 

of the second coordinate system. The first three coordinate 

systems lie on the same line. 

While the first joint allows the leg to rotate around 

the robot's body, the second and the third joints change the 

vertical and lateral position of the leg's contact point with 

the ground. The fourth frame is an auxiliary frame which is 

used to calculate the position of the foot. 

Figure 3 shows the locations and orientations of the 

frames that will be used in the kinematic analysis of the 

robot. The structure shown in Figure 3 is different from the 

one shown in Figure 2. 

 

 
Figure 3. General coordinate system structure 

 

This is because the system aims to be parametric, 

making it applicable to spider robots with different 

structures when needed.  

Enhancing flexibility provides a significant advantage 

during both the software development process and its 

subsequent use, offering users a broader array of options 

[12]. In this study, the structure illustrated in Figure 3 was 

employed to ensure the software's compatibility with 

robots featuring varying lengths or kinematics. 1st, 2nd 

and 4th frames represent the rotating joints of the leg. As 

shown in the figure, the spider robot is defined by entering 

the length values of 𝑐𝑜𝑥𝑖𝑎𝑋, 𝑡𝑖𝑏𝑖𝑎𝐻 , 𝑡𝑖𝑏𝑖𝑎𝑋, 𝑓𝑒𝑚𝑢𝑎𝑟𝑋ve 

𝑓𝑒𝑚𝑢𝑎𝑟𝐻as parameters according to the mechanical 

structure of the robot. These parameter names are the 

names used to physically identify the bit spider [13]. 

 

 
Figure 4. Length parameters on the leg 

 

On the robot leg used in this study, as shown in 

Figure 4, the 𝑡𝑖𝑏𝑖𝑎𝐻  value is zero, and the 𝑐𝑜𝑥𝑖𝑎𝑋 and 

𝑡𝑖𝑏𝑖𝑎𝑋 are side by side. The parameters obtained by 

applying the D-H method to these joints are shown in 

Table 1. 

 

Tablo 1. D-H variables 

𝑖 𝛼𝑖−1 a𝑖−1 𝑑𝑖 𝜃𝑖 

1 0 0 0 𝜃1 

2 -90 𝑐𝑜𝑥𝑖𝑎𝑋 0 𝜃2 

3 -90 0 𝑡𝑖𝑏𝑖𝑎𝐻  0 

4 90 𝑡𝑖𝑏𝑖𝑎𝑋 0 𝜃3 

5 -90 𝑓𝑒𝑚𝑢𝑎𝑟𝑋 0 0 

6 0 0 𝑓𝑒𝑚𝑢𝑎𝑟𝐻  0 

 

After the determination of the D-H parameters of the 

robot, the template given in Equation (1) is used for 

calculating the transformation matrices in forward 

kinematics analysis [14]. 

𝑇𝑖
𝑖−1 =

[
 
 
 
 
 
 

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 𝑎𝑖−1

𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠 ∝𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠 ∝𝑖−1 −𝑠𝑖𝑛 ∝𝑖−1 −𝑠𝑖𝑛 ∝𝑖−1 𝑑𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛 ∝𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛 ∝𝑖−1 𝑐𝑜𝑠 ∝𝑖−1 𝑐𝑜𝑠 ∝𝑖−1 𝑑𝑖

0 0 0 1 ]
 
 
 
 
 
 

  (1) 
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Using the D-H parameters method and the parameters 

in Table 1, the transformation matrices for each frame 

were found as given in the equations below. 

𝑇1
0 =

[
 
 
 
 
𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0 0

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0 0

0 0 1 0

0 0 0 1]
 
 
 
 

 (2) 

𝑇2
1 =

[
 
 
 
 
𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0 𝑐𝑜𝑥𝑖𝑎𝑋

0 0 1 0

−𝑠𝑖𝑛𝜃2 −𝑐𝑜𝑠𝜃2 0 0

0 0 0 1 ]
 
 
 
 

 (3) 

𝑇3
2 =

[
 
 
 
 
1 0 0 0

0 0 1 𝑡𝑖𝑏𝑖𝑎𝐻

0 −1 0 0

0 0 0 1 ]
 
 
 
 

 (4) 

𝑇4
3 =

[
 
 
 
 
𝑐𝑜𝑠𝜃3 −𝑠𝑖𝑛𝜃3 0 𝑡𝑖𝑏𝑖𝑎𝑋

0 0 −1 0

𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃3 0 0

0 0 0 1 ]
 
 
 
 

 
 

(5) 

𝑇5
4 =

[
 
 
 
 
1 0 0 𝑓𝑒𝑚𝑢𝑎𝑟𝑋

0 0 1 0

0 −1 0 0

0 0 0 1 ]
 
 
 
 

 (6) 

𝑇6
5 =

[
 
 
 
 
1 0 0 0

0 1 0 0

0 0 1 𝑓𝑒𝑚𝑢𝑎𝑟𝐻

0 0 0 1 ]
 
 
 
 

 (7) 

The transformation matrix 𝑇6
0 , which provides the 

position and orientation of the robot's foot with respect to 

the frame on the robot body, is obtained by multiplying the 

transformation matrices given by Equations (2) - (7) as 

shown in Equation (8). 

 

𝑇6
0  =  𝑇 1

0 𝑇 2
1 𝑇 3

2 𝑇 4
3 𝑇 5

4 𝑇 6
5  (8) 

 

The position of the foot is given by, 

𝑝𝑥  =  𝑐𝑜𝑠𝜃1(𝑐𝑜𝑥𝑖𝑎𝑋 +  𝑎 −  𝑏 +  𝑐 −  𝑑) (9) 

𝑝𝑦  =  𝑠𝑖𝑛𝜃1(𝑐𝑜𝑥𝑖𝑎𝑋 +  𝑎 −  𝑏 +  𝑐 −  𝑑) (10) 

𝑝𝑧  =  −𝑎 −  𝑏 − 𝑡𝑖𝑏𝑖𝑎𝐻𝑐𝑜𝑠𝜃2  −  𝑡𝑖𝑏𝑖𝑎𝑋  −  𝑠𝑖𝑛𝜃2 (11) 

where 

𝑎 =  𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃2+3 (12) 

𝑏 =  𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃2+3 (13) 

𝑐 =  𝑡𝑖𝑏𝑖𝑎𝑋𝑐𝑜𝑠𝜃2 (14) 

𝑑 =  𝑡𝑖𝑏𝑖𝑎𝐻𝑠𝑖𝑛𝜃2 (15) 

3.2. Inverse Kinematics 

 

Inverse kinematics is the process of determining the 

required joint angles for bringing the end effector to a 

desired position/orientation in Cartesian space [14]. Unlike 

the problem posed by forward kinematics, the procedure 

for obtaining these equations of joint angles is highly 

dependent on the configuration of the robot. This 

complicates the process significantly, as acquiring these 

equations systematically poses considerable challenges. In 

such cases, inverse kinematics is obtained with geometric 

evaluations based on the shape of the leg [14]. Therefore, 

to derive the inverse kinematic equations of the system, 

Equation (16) is obtained from the forward kinematic 

equations. 

𝑇−1 𝑇6
0

1
0  =  𝑇 2

1 𝑇 3
2 𝑇 4

3 𝑇 5
4 𝑇 6

5   (1) 

The product on the left-hand side of Equation (16) is 

named SL and is given by Equation (17). The result of the 

product on the right-hand side is named SR and is 

represented by Equation (18). 

[
 
 
 
 
… … … 𝑝𝑥𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑝𝑧𝑠𝑖𝑛𝜃2 − 𝑐𝑜𝑠𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1

… … … 𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 − 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2

… … … 𝑝𝑦𝑐𝑜𝑠𝜃1 − 𝑝𝑥𝑠𝑖𝑛𝜃1

… … … 1 ]
 
 
 
 

 (2) 

[
 
 
 
 
… … … 𝑡𝑖𝑏𝑖𝑎𝑋 + 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃3

… … … 𝑡𝑖𝑏𝑖𝑎𝐻 + 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑠𝑖𝑛𝜃3

… … … 0

… … … 1 ]
 
 
 
 

 (3) 

By equating Equations (17) and (18), Equations (21), 

(24), and (25) are obtained. 

𝑆𝐿1 = 𝑝𝑥𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑝𝑧𝑠𝑖𝑛𝜃2 − 𝑐𝑜𝑠𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 (4) 
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𝑆𝑅1 = 𝑡𝑖𝑏𝑖𝑎𝑋 + 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃3 (5) 

𝑆𝐿1 = 𝑆𝑅1 (6) 

𝑆𝐿2 =  𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 − 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 (7) 

𝑆𝑅2  =  𝑡𝑖𝑏𝑖𝑎𝐻 + 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑠𝑖𝑛𝜃3 (8) 

𝑆𝐿2 =  𝑆𝑅2 (9) 

0 =  𝑝𝑦𝑐𝑜𝑠𝜃1 − 𝑝𝑥𝑠𝑖𝑛𝜃1 (10) 

By using Equation (10) the angular value of 𝜃1 is 

found as in Equation (11). 

𝜃1 = 𝑡𝑎𝑛
𝑝𝑦

𝑝𝑥
 (11) 

By using the representation in Equation (27), 

Equations (13) and (14) were obtained from Equations (19) 

and (20).  

𝑎 =  𝑝𝑥𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑠𝑖𝑛𝜃1  (12) 

𝑆𝐿1  =  𝑐𝑜𝑠𝜃2𝑎 − 𝑝𝑧𝑠𝑖𝑛𝜃2 (13) 

𝑆𝐿2 = −𝑠𝑖𝑛𝜃2𝑎 − 𝑝𝑧𝑐𝑜𝑠𝜃2 (14) 

By taking the sum of the squares of the equalities 

SL1= SR1 and SL2= SR2 and using the following 

representations, the Equation (32) was obtained. 

𝑏 =  (2𝑡𝑖𝑏𝑖𝑎𝐻𝑎 +  2𝑝𝑧𝑡𝑖𝑏𝑖𝑎𝑋)  (15) 

𝑐 =  (−2𝑡𝑖𝑏𝑖𝑎𝑋𝑎 + 2𝑝𝑧𝑡𝑖𝑏𝑖𝑎𝐻) (16) 

𝑑 =  𝑠𝑖𝑛𝜃2𝑏 + 𝑐𝑜𝑠𝜃2𝑐 (17) 

By using Equation (10) the angular value of 𝜃2 is 

found as in Equation (11). 

𝜃2  =  𝑎𝑡𝑎𝑛2(𝑏, 𝑐) ± 𝑎𝑡𝑎𝑛2((𝑏2 + 𝑐2 − 𝑑2)1/2, 𝑑) (18) 

𝜃3 is found as in Equation (37) by solving the 

equality 𝑆𝐿2 =  𝑆𝑅2 using the following representations. 

𝑎 =  𝑓𝑒𝑚𝑢𝑎𝑟𝑋 (19) 

𝑏 =  𝑓𝑒𝑚𝑢𝑎𝑟𝐻 (20) 

𝑐 =  𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2

− 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 − 𝑡𝑖𝑏𝑖𝑎𝐻 (21) 

𝜃3  =  𝑎𝑡𝑎𝑛2(𝑎, 𝑏) ± 𝑎𝑡𝑎𝑛2((𝑎2 + 𝑏2 − 𝑐2)1/2, 𝑐)  (22)  

 

Tests performed on the robot with both solutions of 

equations 33 and 36 in the Unity 3D simulation 

environment have shown the correct results of the positive 

solutions. 

 

4. Algorithms 

 

In this study, by systematically relocating the 

coordinate frames on the robot's body, the kinematic 

relationships between each leg and the body were defined, 

enabling the robot's body movements to be realized in a 

coordinated and natural manner. Additionally, by 

establishing the relationship between the leg and the body, 

walking movements were made in harmony with the 

rotation of the coordinate system on the body, allowing the 

robot to adapt to changes in rotation. Furthermore, this 

relationship provided the robot with capabilities such as 

maintaining balance on inclined surfaces and direction 

stabilization. For the spider robot to perform various 

movements smoothly, balanced, and in a controlled 

manner, the legs need to work in synchrony with each 

other. While the legs in each group work in sync, the legs 

outside the moving group maintain the foot base position 

in their initial location before starting the movement. 

Typically, in previous studies, robot legs were divided into 

two groups and moved accordingly. In this way, the three 

non-moving legs remain on the ground while the other 

three legs remain in the air, allowing the spider robot to 

move without falling over. 

 
Figure 5. Leg groups on the robot 
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For this purpose, the six feet of the spider robot were 

divided into two groups, as shown in Figure 5, and moved 

sequentially. For kinematic calculations, imaginary 

coordinate systems were placed at the attachment points of 

the legs to the body and in the space where the robot 

moves, as shown in Figure 6. The coordinate systems at 

the attachment points were named Leg1 through Leg6. 

Additionally, an imaginary coordinate system outside the 

robot, named Origin Cs, was created as a reference for the 

coordinate systems on the robot. The main goal of robot 

control is to move the foot base position along the desired 

trajectory. 

 

 
Figure 6. Coordinate systems on the robot 

 

To achieve this, the angles 𝜃1, 𝜃2 and 𝜃3 of the joints, 

necessary for moving the foot base along the desired 

trajectory, need to be calculated. These angle values are 

found by inverse kinematics solution of the foot base 

position with respect to LegX.  Additionally, there is a 

coordinate system called Body on the body of the robot, 

containing the position information of the robot's body. 

The position of the foot base with respect to the 

origin coordinate system is determined by Equation (38). 

𝑃𝐵𝐴𝑆𝐸
𝑂  =  𝑃(𝑋𝑂𝐵,𝑌𝑂𝐵,𝑍𝑂𝐵) (38) 

The position of the point where the leg is attached to 

the body (LegX) with respect to the origin coordinate 

system is calculated by Equation (39). 

𝑃𝐿𝑋
𝑂  =  𝑃(𝑋𝑂𝐿,𝑌𝑂𝐿,𝑍𝑂𝐿) (39) 

A rotation matrix describes the orientation of a 

coordinate system {B} concerning another coordinate 

system {A}. When this rotation matrix is known, it is 

possible to define the position of a point defined in 

coordinate system B with respect to coordinate system A 

[12]. The position of the foot base with respect to the 

coordinate system where the foot is attached to the body is 

calculated by Equation (40). 

𝑃 𝐵𝐴𝑆𝐸
𝐿𝑋 =  𝑅−1

𝐿𝑋
𝑂 𝑃𝐵𝐴𝑆𝐸

𝑂  

 

(40) 

The position of the foot base with respect to the 

origin coordinate system is calculated by Equation (41). 

𝑃𝐵
𝑂 = 𝑅 𝐿𝑋

𝑂 𝑃𝐵𝐴𝑆𝐸
𝐿𝑋  (41) 

Each 𝑃𝐿𝑋
𝑂  value is calculated using the 

transformations between the coordinate system in the 

robot's body and the origin coordinate system. 

 

 
    Figure 7. LX, Body, and origin coordinate systems 

 

As shown in Figure 7, the LX coordinate system is 

calculated with Equation (42) with respect to the origin 

coordinate system. The value r, as shown in the figure, is 

expressed by 𝑃𝐿𝑋
𝐵 . This value represents the position of the 

LX coordinate system with respect to the body. A similar 

approach has been used in the kinematic calculations and 

transformations of a spider robot climbing on a wall using 

a vacuum in literature [15]. Establishing the connection of 

the LX coordinate system with the robot's body causes the 

legs to adapt to different orientations of the robot’s body.  

𝑃𝐿𝑋
𝑂 = 𝑅 𝑃𝐿𝑋

𝐵
𝐵
𝑂 + 𝑃𝐵

𝑂  (42) 

4.1. Walking Algorithm 

 

As mentioned in the previous sections, in the walking 

algorithm, robot legs are divided into two different groups 

and moved. Movements are carried out in an orderly and 

sequential manner. 

 

 
Figure 8. Movement pattern of legs in different groups 
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Figure 8 illustrates the movements of the legs in two 

different groups of the robot during walking. The legs 

shown in gray indicate the position of the robot before 

starting the movement, while the white ones show the 

position of the legs after one step of walking. As shown in 

Figure 8, one group of legs remains on the ground to 

prevent the robot from tipping over during the robot's 

movement, while the other group of legs moves to make 

the robot move forward. At the same time, the legs in 

contact with the ground move the body forward by the 

desired distance.  

 

 

Figure 9. Trajectory of a leg in Group 1 

 

Figure 9 shows the trajectory of a leg in Group 1. 

This trajectory represents the path followed by the foot 

base of a leg in the LegX coordinate system. Here, the leg 

base is moved in the X-axis of the LegX coordinate system 

by the desired distance the robot needs to cover. For 

example, suppose the robot needs to move a distance K. In 

each time sample t during the movement, the foot base is 

moved by a distance 𝑥1 on the X-axis and ±𝑦1 on the Y-

axis. If half of the distance to be traveled has been 

completed, the foot base is moved downward by a distance 

  −𝑦1 in the Y-axis. 

When the robot needs to move a distance K in the X-

axis of the origin coordinate system, the following steps 

are executed sequentially. The foot base position of each 

leg is known with respect to the origin coordinate system 

before these steps are executed. 

 

1. The position of the Body coordinate system on the body 

is moved by a distance 𝑥1 in the X-axis with respect to 

the origin coordinate system using Equation (43). 

𝑃  𝐵𝑂𝐷𝑌
𝑂 = 𝑃(𝑥 + 𝑥1,𝐵𝑂𝐷𝑌

𝑂 𝑦 , 𝑧) (43) 

2. The coordinate system on the foot base of each leg in 

Group 1 is moved by a distance 𝑥1 in the X-axis with 

respect to the origin coordinate system using Equation 

(44). 

𝑃 𝐵𝐴𝑆𝐸
0 =  𝑃(𝑥 + 𝑥1,𝐵𝐴𝑆𝐸

𝑂 𝑦 , 𝑧) (44) 

3. The coordinate system on the foot base of each leg in 

Group 1 is moved in the Y-axis with respect to the 

origin coordinate system using Equation (45).  

3.1 If half of the targeted distance has not been completed 

in the X-axis, the foot base is moved by a distance +𝑦1 

in the Y-axis. 

3.2 If half of the targeted distance has been completed in 

the X-axis, the foot base is moved by a distance −𝑦1 

in the Y-axis. 

𝑃𝐵𝐴𝑆𝐸
0  =  𝑃(𝑥,𝐵𝐴𝑆𝐸

𝑂 𝑦 ± 𝑦1  , 𝑧) (45) 

4. After the first three steps are executed, the inverse 

kinematics of the system is solved. The following steps 

are sequentially processed for each leg group.  

5. The rotation matrix 𝑅𝐿𝑋
0   of the point where the foot is 

attached to the body concerning the origin coordinate 

system is calculated. 

6. The rotation matrix 𝑅𝐵𝑂𝐷𝑌
0   of the coordinate system on 

the body for the origin coordinate system is calculated. 

7. Using the position of the coordinate system on the body 

with respect to the origin coordinate system 𝑃𝐵𝑂𝐷𝑌
0  and 

the position of the coordinate system to which a leg is 

attached with respect to the body's coordinate system 

𝑃𝐿𝑋
𝐵𝑂𝐷𝑌 , the position value of the coordinate system 

where the leg is connected to the body is calculated with 

respect to the origin coordinate system using Equation 

(46). 

𝑃𝐿𝑋
𝑂  =  𝑅𝐵𝑂𝐷𝑌

𝑂 𝑃𝐿𝑋
𝐵𝑂𝐷𝑌 + 𝑃𝐵𝑂𝐷𝑌

𝑂  (46) 

8. Using Equation (46) and the rotation matrix 𝑅𝐿𝑋
0 , the 

transformation matrix of the coordinate system where a 

leg is connected to the body with respect to the origin 

coordinate system is calculated as follows with 

Equation (47).  

𝑇𝐿𝑋
𝑂 = [ 𝑅𝐿𝑋

0 𝑃𝐿𝑋
𝑂

0 0 0 1
] (47) 

9. If the inverse of Equation (47) is taken, the 

transformation matrix in Equation (48) is obtained. By 

means of this matrix, any position value known with 

respect to the origin coordinate system can be calculated 

in the LegX coordinate system. 

𝑇 𝑂
𝐿𝑋 =  𝑇𝐿𝑋

𝑂 −1 (48) 

10. Using Equation (48), the position information for each 

foot base known with respect to the origin coordinate 

system is calculated in the LegX coordinate systems. 

𝑃𝐵𝐴𝑆𝐸
𝐿𝑋  =  𝑇𝑂

𝐿𝑋  𝑃𝐵𝐴𝑆𝐸
𝑂  (49) 
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11. Using the position information in Equation (49), 

inverse kinematic equations are solved in order to 

calculate the angles 𝜃1, 𝜃2 and 𝜃3. 

12. If the distance to be traveled has been covered, the 

group with stationary foot bases is changed, and the 

algorithm proceeds to the first step. If the distance has 

not been covered, the first four steps are repeated 

sequentially. 

Table 2. Transition table for the walking algorithm 

T1.1 state = walking 

T1.2 unconditional 

T1.3 0 ≤  stepX and stepX ≤  k/2 

T1.4 k/2 ≤  stepX and stepX ≤  k 

T1.5 unconditional 

T1.6 unconditional 

T1.7 unconditional 

T1.8 state ≠ stop or stepX ≠ k 

T1.9 state = stop and stepX = k 

T1.10 Feet group = Group 2 

T1.11 Feet group = Group 1 

T1.12 unconditional 

 
Figure 10. State machine for the walking algorithm 

 

Figure 10 depicts the state machine of the walking 

algorithm. Table 2 provides the transition conditions in this 

state machine. In the first step, the foot group to move is 

configured, as shown in the figure. Subsequently, the body 

is moved. In the next step, the relevant group leg is moved 

up or down. If a stop command is given, the algorithm 

waits for the completion of the relevant movement, as 

indicated in the table. It is crucial for the robot to be in the 

initial position before starting any movement. The 

algorithms are designed to complete and terminate a 

movement and are developed to be run from a specific 

initial position. Unconditional transitions are shown in 

Table 2, created to move on to the next operation after any 

process is completed. 

 

4.2. Body Movement Algorithm 

 

The body movement algorithm is developed to allow 

the robot to rotate around itself. With this developed 

algorithm, the robot can change its walking direction. 

 

 
Figure 11. Top view of the robot 

 

As shown in Figure 11, the foot bases of the legs in 

the yellow group maintain their positions. When the body 

is moved, these legs move as shown in the figure above to 

preserve their foot base positions. As shown in the figure, 

the coordinate systems located on the axis where each leg 

is connected to the body move along with the body. 

Movement occurs through the different actions of the two 

groups of legs, similar to the walking algorithm. While one 

group of legs tries to maintain the point where it touches 

the ground before the turning motion, the other group of 

legs performs the turning step along with the body. As the 

coordinate system on the axis where each leg is connected 

to the body, as shown in the figure, moves with the body, 

motion occurs through the group of legs that either 

preserves or does not preserve the place it steps on. 

 

 
Figure 12. Side view of the robot 
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As shown in Figure 12, one group of legs preserves 

their location, while the other legs are in motion. This way, 

the body moves forward a certain distance, and the robot is 

made to walk. It is relatively easier to move the body of the 

robot only in the x, y, or z-axis. In this case, before moving 

the body, the position where each foot will step with 

respect to the origin coordinate system, 𝑃𝐵𝐴𝑆𝐸
𝑂 , is 

memorized. Then, the coordinate systems where each leg 

is connected to the body are moved by a distance of k 

concerning the origin coordinate system. The new position 

values of the coordinate systems are also denoted by 𝑃𝐿𝑋
𝑂 . 

The position of the LegX coordinate system 𝑃,𝐿𝑋𝑂𝑅𝐺
𝑂  

is calculated for the origin coordinate system. With the 

found position and rotation matrix, the position of the foot 

base is calculated in the new LegX coordinate system 

using Equation (50). 

PBASE
LX  = RO

LX PBASE
O + PLXORG

O  (50) 

The position information calculated with Equation 

(50) is solved with the equations in the inverse kinematics 

section to find the values of 𝜃1,  𝜃2 and 𝜃3. 

 

 
Figure 13. Negative movement along the Y-axis 

 

When the calculated values of 𝜃1,  𝜃2 and 𝜃3 are set to 

the axes, the robot performs the movements shown in 

Figure 13. The calculated values of 𝜃1,  𝜃2 and 𝜃3 perform 

the movements shown in Figure 13 when a desired axis is 

moved. As shown in Figure 13, when only the body of the 

robot is desired to move, all feet touch the ground and 

make a pushing movement. This pushing movement occurs 

by giving the angle values obtained from the inverse 

kinematics solutions, due to the shift of coordinate 

systems, to the axes in the legs. 

 

4.3. Balancing Algorithm 

 

In this section, the studies conducted for the robot to 

maintain balance on an inclined surface are explained. To 

allow the spider robot to stay balanced on an inclined 

surface, the pitch and roll angle changes on the body, as 

given in Figure 14, are calculated. 

As shown in Figure 14, the pitch angle change 

corresponds to the rotation of the robot body around the X-

axis, the roll angle change is around the Y-axis, and the 

yaw angle change is around the Z-axis.  

 

 
Figure 14. Roll, pitch, and yaw rotation axes on the spider 

robot 

 

To calculate roll, pitch, and yaw angle changes, an 

MPU6050 sensor was used. The angular accelerometer 

values obtained from the sensor were used to calculate roll 

and pitch angle changes using the Equations (51) and (52) 

as follows [16]. The values 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 used in the 

equations represent the gravitational accelerations. The 

respective A value indicates the acceleration affected by 

gravity along the relevant axis of the device. The 

measurements provide the accelerations with the unit g. 

𝑝𝑖𝑡𝑐ℎ =  𝑡𝑎𝑛−1 (
𝐴𝑥

√𝐴𝑦2+𝐴𝑧2
) (51) 

𝑟𝑜𝑙𝑙 =  𝑡𝑎𝑛−1 (
𝐴𝑦

√𝐴𝑥2+𝐴𝑧2
) (52) 

 
Figure 15. Balancing algorithm 

 

The calculated angle values were used to keep the 

robot balanced using the algorithm shown in Figure 15. 

The roll and pitch angle values from the sensor and the 

reference angle values for the robot to stay used in a PID 

algorithm and then kinematic transformations were 

calculated. 
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5. Experimental Results 

 

The developed algorithms were executed, and the 

trajectories for the foot bases were examined. 

 

 
Figure 16. Walking trajectory of two different groups of 

legs in the Unity 3D environment 

 

During the execution of the walking algorithms, the 

positions of the foot bases in two different groups are 

shown in Figure 16 for retrospective analysis. It can be 

observed that while one group of legs performs a stepping 

motion as desired in the walking algorithm, the legs in the 

other group maintain their position. 

 

 
Figure 17. Position change of a leg's foot base during 

walking 

 

During the test of the robot's walking algorithm, the 

robot was moved forward by 300 cm, to its right by 340 

cm, then backward by 300 cm, and to its left by 340 cm. 

The positional changes in the X and Y axes of a leg's foot 

base were obtained as shown in Figure 17. As depicted in 

the figure, the foot base successfully returned to the initial 

position. 

 

 

Figure 18. Implementation of the designed spider robot 

 

A control algorithm with parametrically high 

maneuverability was successfully developed for the motion 

and control of the spider robot without creating any pre-

calculated table. Furthermore, the algorithm was developed 

in the Unity 3D environment, a 3D game engine, and 

simulated. The code, whose accuracy and functionality 

were tested during the simulation, was transferred to an 

ARM-based processor, resulting in the realization of the 

spider robot shown in Figure 18. It was observed that the 

implemented spider robot successfully completed the 

motions tested during the simulation. 

 

 

Figure 19. Test setup for the balancing algorithm 

 

To test the effectiveness of the balancing algorithm, 

the robot was placed on an inclined surface as shown in 

Figure 19, and then the balancing mode was activated 

through a remote interface, and the results were observed. 

During the experiments, the 𝐾𝑝 coefficient was initially 

changed, followed by the 𝐾𝑑 coefficient, and finally, the 

𝐾𝑖 coefficient was changed. After each coefficient change, 

the test was repeated from the beginning. By altering the 

PID controller coefficients in this manner, it was possible 

to examine the robot's ability to maintain balance on an 

inclined surface. In this experiment, where the effect of 

PID coefficients, especially to the roll angle due to the 

slope of the tested surface, was observed, the roll angle 

change around the y-axis on the body of the robot was 

monitored. 

 

 
Figure 20. Roll angle change for Kp = 0.5 

In the created test setup, the initial observation was 



Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178 

176 

made by setting the 𝐾𝑝 coefficient to 0.5. The roll angle 

change on the Y-axis in the robot's body, as shown in 

Figure 20, was obtained. The robot's effort to keep its body 

in a horizontal position was observed, however the robot 

could not stay completely horizontal and entered 

oscillations. As seen in the figure, while the robot 

attempted to keep its body parallel to the ground, 

oscillations in the roll angle between −6 and +6 degrees 

were observed. 

 

 
Figure 21. Roll angle change for KP = 0.1 

 

In the next step, the 𝐾𝑝 coefficient was set to 0.1 to 

examine the robot's response. The roll angle change on the 

Y-axis in the robot's body was obtained as shown in Figure 

21. The robot's effort to keep its body in a level position 

was observed. Reducing the 𝐾𝑝 value resulted in a 

reduction in oscillations. With a 𝐾𝑝 value of 0.1, it was 

observed that the robot’s body came to a level position, 

and the steady-state error varied between −0.4 and +0.4 

degrees. 

 

 
Figure 22. Roll angle change for Kp = 0.1 and Kd = 0.2 

 

Following the 𝐾𝑝 value, the roll angle change was 

recorded for 𝐾𝑑 coefficient of 0.2, as shown in Figure 22. 

As in other tests, the robot's effort to keep its body in a 

parallel position is notable. Incorporating the 𝐾𝑑 parameter 

effectively mitigated oscillations and reduced the steady-

state error to 0.1 degrees. 

In the next step, the response of the balance algorithm 

with the addition of the 𝐾𝑖 coefficient is observed, as 

shown in Figure 23. 

 

 
Figure 23. Roll angle change for Kp = 0.1, Kd = 0.2 Ki = 

0.01 

 

It was determined that the 𝐾𝑖 parameter had little 

effect on the system. It was observed that the steady-state 

error remains in the range of 0.1 degrees. 

 

 
Figure 24. Effect of the balance algorithm on the test setup 

 

Figure 24 shows the robot keeping the robot’s body 

parallel to the ground on an inclined surface. The robot 

solved a kinematic model to keep its body parallel to the 

ground on an inclined surface by moving its legs to the 

corresponding position. 
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Figure 25. Test of the balance algorithm, condition 1 

 

 
Figure 26. Test of the balance algorithm, condition 2 

 

To test the system's balance on a platform, a test 

setup was prepared as shown in Figures 25 and 26. In the 

test setup, a cup filled with liquid was placed on the robot. 

Then, the platform was moved as shown in the figures, and 

the condition of the cup was observed. Due to the balance 

algorithm, the robot kept its body parallel to the ground, 

preventing the cup from falling and spilling its contents. 

 

6. Conclusion 

 

In this study, algorithms for walking, turning, and balance control on inclined surfaces for a hexapod spider robot were developed in a virtual environment and successfully implemented on a real robot. The advantages of conducting the development process in a virtual environment, compared to developing directly on a physical system, were experienced. Developing the algorithms in a 

virtual environment allowed for the rapid testing of many 

scenarios, and the impact on the robot was observed in a 

short time. To facilitate the transfer of code from a virtual 

environment to a real system with minimal changes, the 

code developed in the virtual environment did not use 

libraries specific to the development environment. 

Developments were made in Unity 3D without using any 

ready-made mathematical libraries. After the developed 

algorithms were transferred to a real spider robot, walking 

and turning algorithms were tested on the system. Based 

on the tests conducted, similar movements were observed 

in both the virtual and real environments. In the study, a 

PID-based algorithm was developed for the robot to 

maintain balance on inclined surfaces. The response of the 

robot on inclined surfaces was observed using different 

PID coefficients, and suitable coefficients were 

determined. It was observed that 𝐾𝑝 and 𝐾𝑑 coefficients 

were more effective on the system. With high coefficient 

values, the system was observed to oscillate and could not 

find the balance position. With the determined PID 

coefficients, the robot successfully maintained balance 

when tested on an inclined surface with a cup of water 

placed on it, without spilling the water. Information from 

the IMU sensor on the robot indicated that the robot-

maintained balance with a precision of 0.1 degrees on the 

roll and pitch axes of its body. Further development of the 

robot is planned with new features to be added. With the 

addition of sensors to the robot, the goal is to determine the 

robot's position, follow desired trajectories on a map, and 

navigate around obstacles encountered in its path. 
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