
166

 Koc. J. Sci. Eng., 7(2): (2024) 166-178 https://doi.org/10.34088/kojose.1440839

Kocaeli University

 Kocaeli Journal of Science and Engineering

http://dergipark.org.tr/kojose

Kinematics-Based Motion and Balance Control of a Six-Legged Spider Robot

Enes VARDAR 1, * , Kenan IŞIK 2 , H. Metin ERTUNÇ 3

1 Department of Mechatronic Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0002-8884-9679
2 Department of Mechatronic Engineering, Karabük University, Karabük, 78050, Turkey, ORCID: 0000-0002-0973-5180
3 Department of Mechatronic Engineering, Kocaeli University, Kocaeli, 41001, Turkey, ORCID: 0000-0003-1874-3104

Article Info

Research paper

Received : February 21, 2024

Accepted : May 23, 2024

Keywords

Hexapod,

Kinematics,

Spider Robot,

Simulation

 Abstract

In this study, the kinematics of a hexapod spider robot with 18 joints, consisting of 3 joints per leg,

were modeled. The aim was to provide a theoretical framework for algorithms enabling the robot to

walk, change direction, and control its body coordinate system. A novel and parametric approach

was taken by creating a model instead of a table listing joint positions for various scenarios typically

used in spider robot motion trajectories. Initially, the kinematic model of the hexapod robot was

established using the D-H method. Subsequently, algorithms derived from kinematic equations were

tested in a simulation environment to enable walking, rotation, and movement within the body's

coordinate system. The simulation visualized movement trajectories without relying on

mathematical libraries or specific programming languages, ensuring flexibility across different

environments. Results from simulations and experimental tests demonstrated realistic movement

capabilities. The software, validated in the simulation environment, was successfully implemented

on a physical spider robot, leading to effective operation.

1. Introduction*

Numerous research studies have been conducted for

decades on multi-legged walking robots created to mimic

the structure and movement control of limbs in insects and

arthropods. Among multi-legged robots, hexapod robots

have been a popular choice for a wide range of tasks [1] as

they are less affected by environmental conditions than

wheeled robots [2]. With the advancement of robot

technology, robotic applications have expanded beyond

industrial applications and gained popularity in other

sectors such as service, medicine, and cleaning [3].

Possible areas of application of hexapod robots include

volcanic exploration, search and rescue applications,

detection of land mines, sample collection in locations that

are not easily reachable, and life search in extraterrestrial

explorations. Many of these tasks are dangerous and are

often conducted in challenging environments that are

hazardous to human beings [4]. When a hexapod robot

moves, each joint can be in various joint positions. In some

* Corresponding Author: enesvrdr0@gmail.com

applications, the necessary joint angles for all the joints are

pre-calculated for every possible leg configuration during

walking and these calculated joint angles are stored as a

table.

These pre-calculated joint angles are later used during

walking [5-6]. In such applications, when the dimensions

of the limbs of the robot change, these tables need to be

recreated. Creating these tables is a laborious task.

Additionally, when the robot is moved based on this table,

the positioning resolution of the legs is limited to the size

of the table, and the mobility of the robot is therefore

restricted by the table. There are many studies other than

the tabular solution.

For example, Sun et al. experimentally studied the

walking and turning abilities of a six-legged spider robot

[7]. In their study, forward and inverse kinematic equations

were used to implement the robot's movement algorithms,

and D-H parameters were employed to derive the

kinematic equations. They planned the movement

trajectories of the robot's toes using cosine, sine, and

straight-line functions and executed the movements

associated with these trajectories.

Thilderkvist and Svensson conducted a thesis

2667-484X © This paper published in Kocaeli Journal of Science and Engineering is licensed under a Creative

Commons Attribution-NonCommercial 4.0 International License

https://doi.org/10.34088/kojose.517520
https://doi.org/10.34088/kojose.517520
https://orcid.org/0000-0002-0973-5180
https://orcid.org/0000-0002-8884-9679
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-1874-3104

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

167

utilizing a model-based design for controlling a spider

robot [8]. They implemented enhancements to alter the

movement, walking pattern, rotation, and body height of

the spider robot. Additionally, their thesis encompassed a

successful balancing mode. In their experimental findings,

they managed to maintain the main body in an upright

position despite changes in the ground angle of the robot.

Yamagan conducted a kinematic analysis of a six-

legged spider robot in his thesis and subsequently

simulated it in the MATLAB environment to facilitate

real-time system implementation [9]. This study serves as a

preliminary investigation for hardware simulation of actual

applications involving six-legged robots and rapid

prototyping applications. The D-H approach, commonly

employed in analyzing forward and inverse kinematics of

designed systems, was utilized. Additionally, the study

mentioned the use of the Lagrange-Euler equation for

solving robot dynamics.

Ekelund conducted a thesis focused on enabling a

spider robot to walk and maintain balance [10]. PID

control was employed to ensure system stability. He tested

the implemented algorithms for walking and balance

maintenance in both simulation and real-world

environments, examining the experimental results obtained

from the actual system.

Erkol investigated real-time kinematic control of

multi-jointed robots [11], with a particular emphasis on

minimizing the processing load associated with kinematic

calculations. To achieve this, they developed FPGA-based

hardware. Utilizing this hardware, kinematic calculations

were performed, enabling motion control of a six-legged

spider robot. D-H parameters were employed to facilitate

the kinematic calculations. Trajectories were generated,

and the robot's motion was coordinated by referencing

each foot base relative to the coordinate system

corresponding to the leg connected to the body.

In this study, the forward and inverse kinematic

equations of a 6-legged spider hexapod robot were derived.

Using these equations, motion algorithms for the robot

have been developed and initially used in a simulation

environment for verification of motion patterns and then

applied to a real hexapod robot. Using the derived

equations, the points of contact of each leg with the ground

were controlled with developed motion algorithms,

allowing the spider robot to perform realistic movements

such as walking and rotating. Since the algorithms do not

use any table, high mobility was achieved using the robot's

kinematic model. Furthermore, by deriving the kinematic

model, a foundation was provided for the angular control

of the robot's body, enabling the development of

algorithms for the robot to maintain balance on surfaces

with changing slopes.

2. Hexapod Robot

In the classification of multi-legged robots, the

hexapod robot is defined as a robot with six legs for

mobility. The CAD drawing of the robot used in this study

is shown in Figure 1. Each leg has three degrees of

freedom.

Figure 1. Hexapod Robot

The rotation directions of each joint are shown in

Figure 2. All the joints in the legs can rotate around the Z-

axis. As shown in Figure 2, since each leg has 3 joints,

there are a total of 18 joints on the robot. In addition to the

coordinate systems placed on these joints, a coordinate

system has also been placed at the center of the robot's

body for use in kinematic calculations. Additionally, there

are imaginary points at the base of each foot. The positions

of these imaginary points are determined by solving the

kinematic equations of the legs with respect to the

coordinate system at the point where the leg is connected

to the body. The robot is moved by bringing these

imaginary points to the desired positions.

Figure 2. Axes located on each leg

3. Kinematic

In this section, the forward and inverse kinematic

solutions of the developed spider robot are presented. The

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

168

algorithms used for the robot's walking and various

movements are developed using the fundamental kinematic

equations derived in this section.

3.1. Forward Kinematics

To obtain the kinematics of the robot under

consideration, the modified Denavit-Hartenberg (D-H)

parameters method was adopted and applied to one of the

legs of the spider robot. This robot consists of a

symmetrical structure composed of six identical legs, each

with three degrees of freedom. As shown in Figure 2, each

leg has 3 coordinate systems corresponding to each joint

and an additional coordinate system holding the position of

the contact point of the leg with the ground. In these

coordinate systems, the blue vector represents the Z-axis,

the green vector represents the Y-axis, and the red vector

represents the X-axis.

The second coordinate system is obtained by rotating

the first coordinate system around the X-axis by -90

degrees. The third coordinate system is a translated version

of the second coordinate system. The first three coordinate

systems lie on the same line.

While the first joint allows the leg to rotate around

the robot's body, the second and the third joints change the

vertical and lateral position of the leg's contact point with

the ground. The fourth frame is an auxiliary frame which is

used to calculate the position of the foot.

Figure 3 shows the locations and orientations of the

frames that will be used in the kinematic analysis of the

robot. The structure shown in Figure 3 is different from the

one shown in Figure 2.

Figure 3. General coordinate system structure

This is because the system aims to be parametric,

making it applicable to spider robots with different

structures when needed.

Enhancing flexibility provides a significant advantage

during both the software development process and its

subsequent use, offering users a broader array of options

[12]. In this study, the structure illustrated in Figure 3 was

employed to ensure the software's compatibility with

robots featuring varying lengths or kinematics. 1st, 2nd

and 4th frames represent the rotating joints of the leg. As

shown in the figure, the spider robot is defined by entering

the length values of 𝑐𝑜𝑥𝑖𝑎𝑋, 𝑡𝑖𝑏𝑖𝑎𝐻 , 𝑡𝑖𝑏𝑖𝑎𝑋, 𝑓𝑒𝑚𝑢𝑎𝑟𝑋ve

𝑓𝑒𝑚𝑢𝑎𝑟𝐻as parameters according to the mechanical

structure of the robot. These parameter names are the

names used to physically identify the bit spider [13].

Figure 4. Length parameters on the leg

On the robot leg used in this study, as shown in

Figure 4, the 𝑡𝑖𝑏𝑖𝑎𝐻 value is zero, and the 𝑐𝑜𝑥𝑖𝑎𝑋 and

𝑡𝑖𝑏𝑖𝑎𝑋 are side by side. The parameters obtained by

applying the D-H method to these joints are shown in

Table 1.

Tablo 1. D-H variables

𝑖 𝛼𝑖−1 a𝑖−1 𝑑𝑖 𝜃𝑖

1 0 0 0 𝜃1

2 -90 𝑐𝑜𝑥𝑖𝑎𝑋 0 𝜃2

3 -90 0 𝑡𝑖𝑏𝑖𝑎𝐻 0

4 90 𝑡𝑖𝑏𝑖𝑎𝑋 0 𝜃3

5 -90 𝑓𝑒𝑚𝑢𝑎𝑟𝑋 0 0

6 0 0 𝑓𝑒𝑚𝑢𝑎𝑟𝐻 0

After the determination of the D-H parameters of the

robot, the template given in Equation (1) is used for

calculating the transformation matrices in forward

kinematics analysis [14].

𝑇𝑖
𝑖−1 =

[

𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝜃𝑖 0 𝑎𝑖−1

𝑠𝑖𝑛𝜃𝑖𝑐𝑜𝑠 ∝𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑐𝑜𝑠 ∝𝑖−1 −𝑠𝑖𝑛 ∝𝑖−1 −𝑠𝑖𝑛 ∝𝑖−1 𝑑𝑖

𝑠𝑖𝑛𝜃𝑖𝑠𝑖𝑛 ∝𝑖−1 𝑐𝑜𝑠𝜃𝑖𝑠𝑖𝑛 ∝𝑖−1 𝑐𝑜𝑠 ∝𝑖−1 𝑐𝑜𝑠 ∝𝑖−1 𝑑𝑖

0 0 0 1]

 (1)

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

169

Using the D-H parameters method and the parameters

in Table 1, the transformation matrices for each frame

were found as given in the equations below.

𝑇1
0 =

[

𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0 0

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0 0

0 0 1 0

0 0 0 1]

 (2)

𝑇2
1 =

[

𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0 𝑐𝑜𝑥𝑖𝑎𝑋

0 0 1 0

−𝑠𝑖𝑛𝜃2 −𝑐𝑜𝑠𝜃2 0 0

0 0 0 1]

 (3)

𝑇3
2 =

[

1 0 0 0

0 0 1 𝑡𝑖𝑏𝑖𝑎𝐻

0 −1 0 0

0 0 0 1]

 (4)

𝑇4
3 =

[

𝑐𝑜𝑠𝜃3 −𝑠𝑖𝑛𝜃3 0 𝑡𝑖𝑏𝑖𝑎𝑋

0 0 −1 0

𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃3 0 0

0 0 0 1]

(5)

𝑇5
4 =

[

1 0 0 𝑓𝑒𝑚𝑢𝑎𝑟𝑋

0 0 1 0

0 −1 0 0

0 0 0 1]

 (6)

𝑇6
5 =

[

1 0 0 0

0 1 0 0

0 0 1 𝑓𝑒𝑚𝑢𝑎𝑟𝐻

0 0 0 1]

 (7)

The transformation matrix 𝑇6
0 , which provides the

position and orientation of the robot's foot with respect to

the frame on the robot body, is obtained by multiplying the

transformation matrices given by Equations (2) - (7) as

shown in Equation (8).

𝑇6
0 = 𝑇 1

0 𝑇 2
1 𝑇 3

2 𝑇 4
3 𝑇 5

4 𝑇 6
5 (8)

The position of the foot is given by,

𝑝𝑥 = 𝑐𝑜𝑠𝜃1(𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑎 − 𝑏 + 𝑐 − 𝑑) (9)

𝑝𝑦 = 𝑠𝑖𝑛𝜃1(𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑎 − 𝑏 + 𝑐 − 𝑑) (10)

𝑝𝑧 = −𝑎 − 𝑏 − 𝑡𝑖𝑏𝑖𝑎𝐻𝑐𝑜𝑠𝜃2 − 𝑡𝑖𝑏𝑖𝑎𝑋 − 𝑠𝑖𝑛𝜃2 (11)

where

𝑎 = 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃2+3 (12)

𝑏 = 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃2+3 (13)

𝑐 = 𝑡𝑖𝑏𝑖𝑎𝑋𝑐𝑜𝑠𝜃2 (14)

𝑑 = 𝑡𝑖𝑏𝑖𝑎𝐻𝑠𝑖𝑛𝜃2 (15)

3.2. Inverse Kinematics

Inverse kinematics is the process of determining the

required joint angles for bringing the end effector to a

desired position/orientation in Cartesian space [14]. Unlike

the problem posed by forward kinematics, the procedure

for obtaining these equations of joint angles is highly

dependent on the configuration of the robot. This

complicates the process significantly, as acquiring these

equations systematically poses considerable challenges. In

such cases, inverse kinematics is obtained with geometric

evaluations based on the shape of the leg [14]. Therefore,

to derive the inverse kinematic equations of the system,

Equation (16) is obtained from the forward kinematic

equations.

𝑇−1 𝑇6
0

1
0 = 𝑇 2

1 𝑇 3
2 𝑇 4

3 𝑇 5
4 𝑇 6

5 (1)

The product on the left-hand side of Equation (16) is

named SL and is given by Equation (17). The result of the

product on the right-hand side is named SR and is

represented by Equation (18).

[

… … … 𝑝𝑥𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑝𝑧𝑠𝑖𝑛𝜃2 − 𝑐𝑜𝑠𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1

… … … 𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 − 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2

… … … 𝑝𝑦𝑐𝑜𝑠𝜃1 − 𝑝𝑥𝑠𝑖𝑛𝜃1

… … … 1]

 (2)

[

… … … 𝑡𝑖𝑏𝑖𝑎𝑋 + 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃3

… … … 𝑡𝑖𝑏𝑖𝑎𝐻 + 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑠𝑖𝑛𝜃3

… … … 0

… … … 1]

 (3)

By equating Equations (17) and (18), Equations (21),

(24), and (25) are obtained.

𝑆𝐿1 = 𝑝𝑥𝑐𝑜𝑠𝜃1𝑐𝑜𝑠𝜃2 − 𝑝𝑧𝑠𝑖𝑛𝜃2 − 𝑐𝑜𝑠𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑐𝑜𝑠𝜃2𝑠𝑖𝑛𝜃1 (4)

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

170

𝑆𝑅1 = 𝑡𝑖𝑏𝑖𝑎𝑋 + 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑠𝑖𝑛𝜃3 (5)

𝑆𝐿1 = 𝑆𝑅1 (6)

𝑆𝐿2 = 𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2 − 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 (7)

𝑆𝑅2 = 𝑡𝑖𝑏𝑖𝑎𝐻 + 𝑓𝑒𝑚𝑢𝑎𝑟𝐻𝑐𝑜𝑠𝜃3 − 𝑓𝑒𝑚𝑢𝑎𝑟𝑋𝑠𝑖𝑛𝜃3 (8)

𝑆𝐿2 = 𝑆𝑅2 (9)

0 = 𝑝𝑦𝑐𝑜𝑠𝜃1 − 𝑝𝑥𝑠𝑖𝑛𝜃1 (10)

By using Equation (10) the angular value of 𝜃1 is

found as in Equation (11).

𝜃1 = 𝑡𝑎𝑛
𝑝𝑦

𝑝𝑥
 (11)

By using the representation in Equation (27),

Equations (13) and (14) were obtained from Equations (19)

and (20).

𝑎 = 𝑝𝑥𝑐𝑜𝑠𝜃1 − 𝑐𝑜𝑥𝑖𝑎𝑋 + 𝑝𝑦𝑠𝑖𝑛𝜃1 (12)

𝑆𝐿1 = 𝑐𝑜𝑠𝜃2𝑎 − 𝑝𝑧𝑠𝑖𝑛𝜃2 (13)

𝑆𝐿2 = −𝑠𝑖𝑛𝜃2𝑎 − 𝑝𝑧𝑐𝑜𝑠𝜃2 (14)

By taking the sum of the squares of the equalities

SL1= SR1 and SL2= SR2 and using the following

representations, the Equation (32) was obtained.

𝑏 = (2𝑡𝑖𝑏𝑖𝑎𝐻𝑎 + 2𝑝𝑧𝑡𝑖𝑏𝑖𝑎𝑋) (15)

𝑐 = (−2𝑡𝑖𝑏𝑖𝑎𝑋𝑎 + 2𝑝𝑧𝑡𝑖𝑏𝑖𝑎𝐻) (16)

𝑑 = 𝑠𝑖𝑛𝜃2𝑏 + 𝑐𝑜𝑠𝜃2𝑐 (17)

By using Equation (10) the angular value of 𝜃2 is

found as in Equation (11).

𝜃2 = 𝑎𝑡𝑎𝑛2(𝑏, 𝑐) ± 𝑎𝑡𝑎𝑛2((𝑏2 + 𝑐2 − 𝑑2)1/2, 𝑑) (18)

𝜃3 is found as in Equation (37) by solving the

equality 𝑆𝐿2 = 𝑆𝑅2 using the following representations.

𝑎 = 𝑓𝑒𝑚𝑢𝑎𝑟𝑋 (19)

𝑏 = 𝑓𝑒𝑚𝑢𝑎𝑟𝐻 (20)

𝑐 = 𝑠𝑖𝑛𝜃2𝑐𝑜𝑥𝑖𝑎𝑋 − 𝑝𝑧𝑐𝑜𝑠𝜃2 − 𝑝𝑥𝑐𝑜𝑠𝜃1𝑠𝑖𝑛𝜃2

− 𝑝𝑦𝑠𝑖𝑛𝜃1𝑠𝑖𝑛𝜃2 − 𝑡𝑖𝑏𝑖𝑎𝐻 (21)

𝜃3 = 𝑎𝑡𝑎𝑛2(𝑎, 𝑏) ± 𝑎𝑡𝑎𝑛2((𝑎2 + 𝑏2 − 𝑐2)1/2, 𝑐) (22)

Tests performed on the robot with both solutions of

equations 33 and 36 in the Unity 3D simulation

environment have shown the correct results of the positive

solutions.

4. Algorithms

In this study, by systematically relocating the

coordinate frames on the robot's body, the kinematic

relationships between each leg and the body were defined,

enabling the robot's body movements to be realized in a

coordinated and natural manner. Additionally, by

establishing the relationship between the leg and the body,

walking movements were made in harmony with the

rotation of the coordinate system on the body, allowing the

robot to adapt to changes in rotation. Furthermore, this

relationship provided the robot with capabilities such as

maintaining balance on inclined surfaces and direction

stabilization. For the spider robot to perform various

movements smoothly, balanced, and in a controlled

manner, the legs need to work in synchrony with each

other. While the legs in each group work in sync, the legs

outside the moving group maintain the foot base position

in their initial location before starting the movement.

Typically, in previous studies, robot legs were divided into

two groups and moved accordingly. In this way, the three

non-moving legs remain on the ground while the other

three legs remain in the air, allowing the spider robot to

move without falling over.

Figure 5. Leg groups on the robot

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

171

For this purpose, the six feet of the spider robot were

divided into two groups, as shown in Figure 5, and moved

sequentially. For kinematic calculations, imaginary

coordinate systems were placed at the attachment points of

the legs to the body and in the space where the robot

moves, as shown in Figure 6. The coordinate systems at

the attachment points were named Leg1 through Leg6.

Additionally, an imaginary coordinate system outside the

robot, named Origin Cs, was created as a reference for the

coordinate systems on the robot. The main goal of robot

control is to move the foot base position along the desired

trajectory.

Figure 6. Coordinate systems on the robot

To achieve this, the angles 𝜃1, 𝜃2 and 𝜃3 of the joints,

necessary for moving the foot base along the desired

trajectory, need to be calculated. These angle values are

found by inverse kinematics solution of the foot base

position with respect to LegX. Additionally, there is a

coordinate system called Body on the body of the robot,

containing the position information of the robot's body.

The position of the foot base with respect to the

origin coordinate system is determined by Equation (38).

𝑃𝐵𝐴𝑆𝐸
𝑂 = 𝑃(𝑋𝑂𝐵,𝑌𝑂𝐵,𝑍𝑂𝐵) (38)

The position of the point where the leg is attached to

the body (LegX) with respect to the origin coordinate

system is calculated by Equation (39).

𝑃𝐿𝑋
𝑂 = 𝑃(𝑋𝑂𝐿,𝑌𝑂𝐿,𝑍𝑂𝐿) (39)

A rotation matrix describes the orientation of a

coordinate system {B} concerning another coordinate

system {A}. When this rotation matrix is known, it is

possible to define the position of a point defined in

coordinate system B with respect to coordinate system A

[12]. The position of the foot base with respect to the

coordinate system where the foot is attached to the body is

calculated by Equation (40).

𝑃 𝐵𝐴𝑆𝐸
𝐿𝑋 = 𝑅−1

𝐿𝑋
𝑂 𝑃𝐵𝐴𝑆𝐸

𝑂

(40)

The position of the foot base with respect to the

origin coordinate system is calculated by Equation (41).

𝑃𝐵
𝑂 = 𝑅 𝐿𝑋

𝑂 𝑃𝐵𝐴𝑆𝐸
𝐿𝑋 (41)

Each 𝑃𝐿𝑋
𝑂 value is calculated using the

transformations between the coordinate system in the

robot's body and the origin coordinate system.

 Figure 7. LX, Body, and origin coordinate systems

As shown in Figure 7, the LX coordinate system is

calculated with Equation (42) with respect to the origin

coordinate system. The value r, as shown in the figure, is

expressed by 𝑃𝐿𝑋
𝐵 . This value represents the position of the

LX coordinate system with respect to the body. A similar

approach has been used in the kinematic calculations and

transformations of a spider robot climbing on a wall using

a vacuum in literature [15]. Establishing the connection of

the LX coordinate system with the robot's body causes the

legs to adapt to different orientations of the robot’s body.

𝑃𝐿𝑋
𝑂 = 𝑅 𝑃𝐿𝑋

𝐵
𝐵
𝑂 + 𝑃𝐵

𝑂 (42)

4.1. Walking Algorithm

As mentioned in the previous sections, in the walking

algorithm, robot legs are divided into two different groups

and moved. Movements are carried out in an orderly and

sequential manner.

Figure 8. Movement pattern of legs in different groups

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

172

Figure 8 illustrates the movements of the legs in two

different groups of the robot during walking. The legs

shown in gray indicate the position of the robot before

starting the movement, while the white ones show the

position of the legs after one step of walking. As shown in

Figure 8, one group of legs remains on the ground to

prevent the robot from tipping over during the robot's

movement, while the other group of legs moves to make

the robot move forward. At the same time, the legs in

contact with the ground move the body forward by the

desired distance.

Figure 9. Trajectory of a leg in Group 1

Figure 9 shows the trajectory of a leg in Group 1.

This trajectory represents the path followed by the foot

base of a leg in the LegX coordinate system. Here, the leg

base is moved in the X-axis of the LegX coordinate system

by the desired distance the robot needs to cover. For

example, suppose the robot needs to move a distance K. In

each time sample t during the movement, the foot base is

moved by a distance 𝑥1 on the X-axis and ±𝑦1 on the Y-

axis. If half of the distance to be traveled has been

completed, the foot base is moved downward by a distance

 −𝑦1 in the Y-axis.

When the robot needs to move a distance K in the X-

axis of the origin coordinate system, the following steps

are executed sequentially. The foot base position of each

leg is known with respect to the origin coordinate system

before these steps are executed.

1. The position of the Body coordinate system on the body

is moved by a distance 𝑥1 in the X-axis with respect to

the origin coordinate system using Equation (43).

𝑃 𝐵𝑂𝐷𝑌
𝑂 = 𝑃(𝑥 + 𝑥1,𝐵𝑂𝐷𝑌

𝑂 𝑦 , 𝑧) (43)

2. The coordinate system on the foot base of each leg in

Group 1 is moved by a distance 𝑥1 in the X-axis with

respect to the origin coordinate system using Equation

(44).

𝑃 𝐵𝐴𝑆𝐸
0 = 𝑃(𝑥 + 𝑥1,𝐵𝐴𝑆𝐸

𝑂 𝑦 , 𝑧) (44)

3. The coordinate system on the foot base of each leg in

Group 1 is moved in the Y-axis with respect to the

origin coordinate system using Equation (45).

3.1 If half of the targeted distance has not been completed

in the X-axis, the foot base is moved by a distance +𝑦1

in the Y-axis.

3.2 If half of the targeted distance has been completed in

the X-axis, the foot base is moved by a distance −𝑦1

in the Y-axis.

𝑃𝐵𝐴𝑆𝐸
0 = 𝑃(𝑥,𝐵𝐴𝑆𝐸

𝑂 𝑦 ± 𝑦1 , 𝑧) (45)

4. After the first three steps are executed, the inverse

kinematics of the system is solved. The following steps

are sequentially processed for each leg group.

5. The rotation matrix 𝑅𝐿𝑋
0 of the point where the foot is

attached to the body concerning the origin coordinate

system is calculated.

6. The rotation matrix 𝑅𝐵𝑂𝐷𝑌
0 of the coordinate system on

the body for the origin coordinate system is calculated.

7. Using the position of the coordinate system on the body

with respect to the origin coordinate system 𝑃𝐵𝑂𝐷𝑌
0 and

the position of the coordinate system to which a leg is

attached with respect to the body's coordinate system

𝑃𝐿𝑋
𝐵𝑂𝐷𝑌 , the position value of the coordinate system

where the leg is connected to the body is calculated with

respect to the origin coordinate system using Equation

(46).

𝑃𝐿𝑋
𝑂 = 𝑅𝐵𝑂𝐷𝑌

𝑂 𝑃𝐿𝑋
𝐵𝑂𝐷𝑌 + 𝑃𝐵𝑂𝐷𝑌

𝑂 (46)

8. Using Equation (46) and the rotation matrix 𝑅𝐿𝑋
0 , the

transformation matrix of the coordinate system where a

leg is connected to the body with respect to the origin

coordinate system is calculated as follows with

Equation (47).

𝑇𝐿𝑋
𝑂 = [𝑅𝐿𝑋

0 𝑃𝐿𝑋
𝑂

0 0 0 1
] (47)

9. If the inverse of Equation (47) is taken, the

transformation matrix in Equation (48) is obtained. By

means of this matrix, any position value known with

respect to the origin coordinate system can be calculated

in the LegX coordinate system.

𝑇 𝑂
𝐿𝑋 = 𝑇𝐿𝑋

𝑂 −1 (48)

10. Using Equation (48), the position information for each

foot base known with respect to the origin coordinate

system is calculated in the LegX coordinate systems.

𝑃𝐵𝐴𝑆𝐸
𝐿𝑋 = 𝑇𝑂

𝐿𝑋 𝑃𝐵𝐴𝑆𝐸
𝑂 (49)

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

173

11. Using the position information in Equation (49),

inverse kinematic equations are solved in order to

calculate the angles 𝜃1, 𝜃2 and 𝜃3.

12. If the distance to be traveled has been covered, the

group with stationary foot bases is changed, and the

algorithm proceeds to the first step. If the distance has

not been covered, the first four steps are repeated

sequentially.

Table 2. Transition table for the walking algorithm

T1.1 state = walking

T1.2 unconditional

T1.3 0 ≤ stepX and stepX ≤ k/2

T1.4 k/2 ≤ stepX and stepX ≤ k

T1.5 unconditional

T1.6 unconditional

T1.7 unconditional

T1.8 state ≠ stop or stepX ≠ k

T1.9 state = stop and stepX = k

T1.10 Feet group = Group 2

T1.11 Feet group = Group 1

T1.12 unconditional

Figure 10. State machine for the walking algorithm

Figure 10 depicts the state machine of the walking

algorithm. Table 2 provides the transition conditions in this

state machine. In the first step, the foot group to move is

configured, as shown in the figure. Subsequently, the body

is moved. In the next step, the relevant group leg is moved

up or down. If a stop command is given, the algorithm

waits for the completion of the relevant movement, as

indicated in the table. It is crucial for the robot to be in the

initial position before starting any movement. The

algorithms are designed to complete and terminate a

movement and are developed to be run from a specific

initial position. Unconditional transitions are shown in

Table 2, created to move on to the next operation after any

process is completed.

4.2. Body Movement Algorithm

The body movement algorithm is developed to allow

the robot to rotate around itself. With this developed

algorithm, the robot can change its walking direction.

Figure 11. Top view of the robot

As shown in Figure 11, the foot bases of the legs in

the yellow group maintain their positions. When the body

is moved, these legs move as shown in the figure above to

preserve their foot base positions. As shown in the figure,

the coordinate systems located on the axis where each leg

is connected to the body move along with the body.

Movement occurs through the different actions of the two

groups of legs, similar to the walking algorithm. While one

group of legs tries to maintain the point where it touches

the ground before the turning motion, the other group of

legs performs the turning step along with the body. As the

coordinate system on the axis where each leg is connected

to the body, as shown in the figure, moves with the body,

motion occurs through the group of legs that either

preserves or does not preserve the place it steps on.

Figure 12. Side view of the robot

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

174

As shown in Figure 12, one group of legs preserves

their location, while the other legs are in motion. This way,

the body moves forward a certain distance, and the robot is

made to walk. It is relatively easier to move the body of the

robot only in the x, y, or z-axis. In this case, before moving

the body, the position where each foot will step with

respect to the origin coordinate system, 𝑃𝐵𝐴𝑆𝐸
𝑂 , is

memorized. Then, the coordinate systems where each leg

is connected to the body are moved by a distance of k

concerning the origin coordinate system. The new position

values of the coordinate systems are also denoted by 𝑃𝐿𝑋
𝑂 .

The position of the LegX coordinate system 𝑃,𝐿𝑋𝑂𝑅𝐺
𝑂

is calculated for the origin coordinate system. With the

found position and rotation matrix, the position of the foot

base is calculated in the new LegX coordinate system

using Equation (50).

PBASE
LX = RO

LX PBASE
O + PLXORG

O (50)

The position information calculated with Equation

(50) is solved with the equations in the inverse kinematics

section to find the values of 𝜃1, 𝜃2 and 𝜃3.

Figure 13. Negative movement along the Y-axis

When the calculated values of 𝜃1, 𝜃2 and 𝜃3 are set to

the axes, the robot performs the movements shown in

Figure 13. The calculated values of 𝜃1, 𝜃2 and 𝜃3 perform

the movements shown in Figure 13 when a desired axis is

moved. As shown in Figure 13, when only the body of the

robot is desired to move, all feet touch the ground and

make a pushing movement. This pushing movement occurs

by giving the angle values obtained from the inverse

kinematics solutions, due to the shift of coordinate

systems, to the axes in the legs.

4.3. Balancing Algorithm

In this section, the studies conducted for the robot to

maintain balance on an inclined surface are explained. To

allow the spider robot to stay balanced on an inclined

surface, the pitch and roll angle changes on the body, as

given in Figure 14, are calculated.

As shown in Figure 14, the pitch angle change

corresponds to the rotation of the robot body around the X-

axis, the roll angle change is around the Y-axis, and the

yaw angle change is around the Z-axis.

Figure 14. Roll, pitch, and yaw rotation axes on the spider

robot

To calculate roll, pitch, and yaw angle changes, an

MPU6050 sensor was used. The angular accelerometer

values obtained from the sensor were used to calculate roll

and pitch angle changes using the Equations (51) and (52)

as follows [16]. The values 𝐴𝑥, 𝐴𝑦 and 𝐴𝑧 used in the

equations represent the gravitational accelerations. The

respective A value indicates the acceleration affected by

gravity along the relevant axis of the device. The

measurements provide the accelerations with the unit g.

𝑝𝑖𝑡𝑐ℎ = 𝑡𝑎𝑛−1 (
𝐴𝑥

√𝐴𝑦2+𝐴𝑧2
) (51)

𝑟𝑜𝑙𝑙 = 𝑡𝑎𝑛−1 (
𝐴𝑦

√𝐴𝑥2+𝐴𝑧2
) (52)

Figure 15. Balancing algorithm

The calculated angle values were used to keep the

robot balanced using the algorithm shown in Figure 15.

The roll and pitch angle values from the sensor and the

reference angle values for the robot to stay used in a PID

algorithm and then kinematic transformations were

calculated.

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

175

5. Experimental Results

The developed algorithms were executed, and the

trajectories for the foot bases were examined.

Figure 16. Walking trajectory of two different groups of

legs in the Unity 3D environment

During the execution of the walking algorithms, the

positions of the foot bases in two different groups are

shown in Figure 16 for retrospective analysis. It can be

observed that while one group of legs performs a stepping

motion as desired in the walking algorithm, the legs in the

other group maintain their position.

Figure 17. Position change of a leg's foot base during

walking

During the test of the robot's walking algorithm, the

robot was moved forward by 300 cm, to its right by 340

cm, then backward by 300 cm, and to its left by 340 cm.

The positional changes in the X and Y axes of a leg's foot

base were obtained as shown in Figure 17. As depicted in

the figure, the foot base successfully returned to the initial

position.

Figure 18. Implementation of the designed spider robot

A control algorithm with parametrically high

maneuverability was successfully developed for the motion

and control of the spider robot without creating any pre-

calculated table. Furthermore, the algorithm was developed

in the Unity 3D environment, a 3D game engine, and

simulated. The code, whose accuracy and functionality

were tested during the simulation, was transferred to an

ARM-based processor, resulting in the realization of the

spider robot shown in Figure 18. It was observed that the

implemented spider robot successfully completed the

motions tested during the simulation.

Figure 19. Test setup for the balancing algorithm

To test the effectiveness of the balancing algorithm,

the robot was placed on an inclined surface as shown in

Figure 19, and then the balancing mode was activated

through a remote interface, and the results were observed.

During the experiments, the 𝐾𝑝 coefficient was initially

changed, followed by the 𝐾𝑑 coefficient, and finally, the

𝐾𝑖 coefficient was changed. After each coefficient change,

the test was repeated from the beginning. By altering the

PID controller coefficients in this manner, it was possible

to examine the robot's ability to maintain balance on an

inclined surface. In this experiment, where the effect of

PID coefficients, especially to the roll angle due to the

slope of the tested surface, was observed, the roll angle

change around the y-axis on the body of the robot was

monitored.

Figure 20. Roll angle change for Kp = 0.5

In the created test setup, the initial observation was

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

176

made by setting the 𝐾𝑝 coefficient to 0.5. The roll angle

change on the Y-axis in the robot's body, as shown in

Figure 20, was obtained. The robot's effort to keep its body

in a horizontal position was observed, however the robot

could not stay completely horizontal and entered

oscillations. As seen in the figure, while the robot

attempted to keep its body parallel to the ground,

oscillations in the roll angle between −6 and +6 degrees

were observed.

Figure 21. Roll angle change for KP = 0.1

In the next step, the 𝐾𝑝 coefficient was set to 0.1 to

examine the robot's response. The roll angle change on the

Y-axis in the robot's body was obtained as shown in Figure

21. The robot's effort to keep its body in a level position

was observed. Reducing the 𝐾𝑝 value resulted in a

reduction in oscillations. With a 𝐾𝑝 value of 0.1, it was

observed that the robot’s body came to a level position,

and the steady-state error varied between −0.4 and +0.4

degrees.

Figure 22. Roll angle change for Kp = 0.1 and Kd = 0.2

Following the 𝐾𝑝 value, the roll angle change was

recorded for 𝐾𝑑 coefficient of 0.2, as shown in Figure 22.

As in other tests, the robot's effort to keep its body in a

parallel position is notable. Incorporating the 𝐾𝑑 parameter

effectively mitigated oscillations and reduced the steady-

state error to 0.1 degrees.

In the next step, the response of the balance algorithm

with the addition of the 𝐾𝑖 coefficient is observed, as

shown in Figure 23.

Figure 23. Roll angle change for Kp = 0.1, Kd = 0.2 Ki =

0.01

It was determined that the 𝐾𝑖 parameter had little

effect on the system. It was observed that the steady-state

error remains in the range of 0.1 degrees.

Figure 24. Effect of the balance algorithm on the test setup

Figure 24 shows the robot keeping the robot’s body

parallel to the ground on an inclined surface. The robot

solved a kinematic model to keep its body parallel to the

ground on an inclined surface by moving its legs to the

corresponding position.

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

177

Figure 25. Test of the balance algorithm, condition 1

Figure 26. Test of the balance algorithm, condition 2

To test the system's balance on a platform, a test

setup was prepared as shown in Figures 25 and 26. In the

test setup, a cup filled with liquid was placed on the robot.

Then, the platform was moved as shown in the figures, and

the condition of the cup was observed. Due to the balance

algorithm, the robot kept its body parallel to the ground,

preventing the cup from falling and spilling its contents.

6. Conclusion

In this study, algorithms for walking, turning, and balance control on inclined surfaces for a hexapod spider robot were developed in a virtual environment and successfully implemented on a real robot. The advantages of conducting the development process in a virtual environment, compared to developing directly on a physical system, were experienced. Developing the algorithms in a

virtual environment allowed for the rapid testing of many

scenarios, and the impact on the robot was observed in a

short time. To facilitate the transfer of code from a virtual

environment to a real system with minimal changes, the

code developed in the virtual environment did not use

libraries specific to the development environment.

Developments were made in Unity 3D without using any

ready-made mathematical libraries. After the developed

algorithms were transferred to a real spider robot, walking

and turning algorithms were tested on the system. Based

on the tests conducted, similar movements were observed

in both the virtual and real environments. In the study, a

PID-based algorithm was developed for the robot to

maintain balance on inclined surfaces. The response of the

robot on inclined surfaces was observed using different

PID coefficients, and suitable coefficients were

determined. It was observed that 𝐾𝑝 and 𝐾𝑑 coefficients

were more effective on the system. With high coefficient

values, the system was observed to oscillate and could not

find the balance position. With the determined PID

coefficients, the robot successfully maintained balance

when tested on an inclined surface with a cup of water

placed on it, without spilling the water. Information from

the IMU sensor on the robot indicated that the robot-

maintained balance with a precision of 0.1 degrees on the

roll and pitch axes of its body. Further development of the

robot is planned with new features to be added. With the

addition of sensors to the robot, the goal is to determine the

robot's position, follow desired trajectories on a map, and

navigate around obstacles encountered in its path.

Declaration of Ethical Standards

The author of this article declares that the materials

and methods used in this study do not require ethical

committee permission and/or legal-special permission.

Conflict of Interest

The authors declare that they have no known

competing financial interests or personal relationships that

could have appeared to influence the work reported in this

paper.

Acknowledgements

This work was conducted in the Sensor Laboratory of

the Mechatronics Engineering Department at Kocaeli

University.

References

[1] Urvaev I., Spirkin A., Bazykin S, 2022. Kinematic

Control of The Hexapod Robot. IEEE 23rd

International Conference of Young Professionals in

Electron Devices And Materials, Altai, Russian

Federation, 30-31 June 2022.

[2] Tedeschi F., Carbone G., 2014. Design Issues for

Hexapod Walking Robots. Robotics, 3(2), 181-206.

DOI:10.3390/robotics3020181

[3] Sastry, Naveen K., 2016. Design and development of

a bio-inspired hexapod robot for search and rescue

operations. Journal of Field Robotics, 33, pp. 452-

475.

Enes VARDAR et al. / Koc. J. Sci. Eng., 7(2): (2024) 166-178

178

[4] Roth J., 2019. Trajectory Regulation for Walking

Multipod Robots. International Journal on Advances

in Systems and Measurements, 12, pp. 265-278.

[5] Quadruped Robot using Arduino | Spider Robot

https://www.electronicshub.org/quadruped-robot-

using-arduino/ 31/03/2023

[6] Spider Robot using Arduino

https://www.flyrobo.in/blog/spider-robot-arduino

31/03/2023

[7] Sun J., Ren J., Wang B., Chen D., 2017. Hexapod

Robot Kinematics Modeling and Tripod Gait Design

Based on the Foot End Trajectory. IEEE International

Conference on Robotics and Biomimetics, Macau,

Macao, 12-13 December 2022.

[8] Thilderkvist, D., Svensson S., 2015. Motion Control

of Hexapod Robot Using Model Based Design.

Master Thesis, Lund University, Department of

Automatic Control, Lund.

[9] Yamağan I., 2013. Altı Bacaklı Bir Robot için

Dinamik Simülatör Tasarımı. Yüksek Lisans Tezi,

Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Karabük,

334623.

[10] Ekelund J., 2018. Balancing and Locomotion of a

Hexapod Robot Traversing Uneven Terrain. Master

Thesis, Lund University, Department of Automatic

Control, Lund.

[11] Erkol H., 2015. Robot Kinematik Denklemlerinin

FPGA ile Çözülmesi ve Çok Eklemli Bir Robota

Uygulanması. Doktora Tezi, Karabük Üniversitesi,

Fen Bilimleri Enstitüsü, Karabük, 405868.

[12] Martin R., 2008. Clean Code a Handbook of Agile

Software Craftsmanship (1st ed.). Boston: Pearson.

[13] Jocqué R., Schoeman A., Sophia A. 2001. African

Spiders an Identification Manual (1st ed.). United

Kingdom: Pemberley Natural History Books BA.

[14] Bingül Z., Küçük S., 2006. Robot Kinematiği.

İstanbul: Birsen Yayınevi.

[15] Xu S., He Bin., Hu H. 2019. Research on Kinematics

and Stability of a Bionic WallClimbing Hexapod

Robot. Hindawi Applied Bionics and Biomechanics,

1(1), 1-17, DOI:10.1155/2019/6146214

[16] https://www.analog.com/en/app-notes/an-1057.html,

