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Abstract. The (2+1)-dimensional conformable nonlinear shallow water wave equation is examined in

this work. Initially, definitions and properties of suitable derivatives are presented. Subsequently, exact
solutions to this equation are derived using the exp(–ϕ(ξ))-expansion and the modified extended tanh-

function methods. Then, a numerical method, namely the residual power series method, is utilized to

obtain approximate solutions. The interplay between analytical and numerical approaches is explored
to validate the solutions. This study fills a gap in the literature on fractional shallow water models,

particularly in (2+1)-dimensions, and offers new insights into wave dynamics governed by fractional

derivatives. The physical implications of the findings are illustrated through 3D and 2D contour sur-
faces of some obtained data, offering insight into the physical interpretation of geometric structures. A

table is also presented to compare the obtained results. These solutions highlight the practical uses of

the investigated model and other nonlinear models in applied sciences. These techniques can potentially
yield significant results in solving various fractional differential equations.
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1. Introduction

Fractional differential equations are essential in various fields spanning social and fundamental sci-
ences and engineering disciplines. Recently, their importance has increased due to their indispensable
contribution to understanding complex physical processes in areas such as control theory, electrical cir-
cuits, and wave propagation. In particular, fractional differential equations arise in various applications,
including electrical circuits, chemical engineering, biostatistics and epidemiology, mechanical systems,
computer science, optimization, drug development, social sciences, medicine and biology, weather and
climate models, robotics and artificial intelligence, and signal processing.

These equations are valuable tools for modeling, analyzing, and designing solutions for numerous engi-
neering problems. Their ability to vividly illustrate nonlinear physical features makes them an essential
framework for guiding future work. Consequently, finding solutions to these equations is a remarkable
achievement in related fields. Several authors utilized various techniques to compute these solutions and
gain a deeper understanding of the essential features of material structures in various settings.

A variety of analytical methods have been employed to pursue solutions and nuanced comprehension
of these equations. It has become evident that no single technique can universally address all types of
nonlinear problems with precision. This realization has given rise to numerous methods, including the
modified simplest equation method [31,32], the auxiliary equation method [18,19], the modified extended
tanh-function method [16], the Bernoulli sub-equation function method [35,36], the exp(–ϕ(ξ))-expansion
method [11], the sine-Gordon expansion method [37], the modified exponential function method [38], the

rational sine-Gordon expansion method [39], the (1/G′)-expansion method [13,40], the (G′/G
2
)-expansion
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method [14], the modified (G′/G)-expansion method [5], the φ6-model expansion method [20], and the
homotopy perturbation method [15,25,26] etc.

The allure of high-dimensional fractional partial differential equations (FPDEs) has captivated the
attention of academics in recent years. Their prevalence extends across biology, chemistry, physics, en-
gineering, mechanics, and economics, among other branches. Various derivative definitions have been
proposed for fractional differential equations, including the Riemann-Liouville [17], Caputo [34], and con-
formable [2] derivatives. The Riemann-Liouville derivative, stemming from the contributions of Riemann
and Liouville, stands out for its frequent application in contemporary mathematical discourse. Addi-
tionally, the conformable fractional derivative approach has gained popularity among mathematicians
due to its simplicity and reliability. The term “conformable” refers to the use of conformable fractional
derivatives in the equation, which generalizes the classical shallow water wave equation to account for
non-integer-order calculus. This fractional framework allows the model to better describe physical pro-
cesses that exhibit memory, nonlocal effects, or complex dynamics, making the equation more adaptable
to real-world phenomena.

As a well-known FPDE, shallow water wave equations model wave behavior in shallow bodies of water
like seas, rivers, or coastal regions. The (2+1)-dimensions account for two spatial variables and time,
which allows for more complex interactions like wave breaking, dispersion, and nonlinear effects. Here,
we address the following shallow water wave problem in (2+1)-dimensions [3],

ADϑ
t ux + auxx + b(u)2xx + cuxxxx + duyy = 0. (1)

where Dϑ
t denotes the conformable derivative, and A, a, b, c, d are arbitrary constants. This equation

serves as a descriptive model for the propagation of gravity waves on a water surface, particularly in
scenarios where oblique waves directly interact with the surface [22]. Besides, the conformable shallow
water wave equation describes the behavior of shallow water waves, typically focusing on how waves
propagate in fluids where the horizontal length scale is much larger than the vertical depth.

Although there is a body of work on integer-order (2+1)-dimensional shallow water wave equations,
the fractional (conformable) extension in (2+1)-dimensions is less studied. Research is particularly lim-
ited in deriving exact solutions for this model. For instance, in [27], the authors have obtained multiple
rogue wave solutions to the model using the Hirota bilinear transformation and the trial function method.
Besides, in this research paper, innovative methodologies are employed to present exact traveling wave
solutions as well as the numerical solutions to Eq. (1). The objective is to surmount the limitations
associated with conventional methods and offer effective solutions to this intricate equation.

The paper is organized as follows. Basic definitions are given in Section 2. The exp(–ϕ(ξ))-expansion
method is described in detail in Section 3. The modified extended tanh-function approach is detailed in
Section 4. A numerical approach, the residual power series method (RPSM), is introduced in Section 5.
Section 6 contains analytical and approximate solutions of the studied equation. In Section 7, the paper
presents the results.

2. Conformable Derivative

The conformable derivative is a relatively recent approach to fractional calculus that preserves many
properties of the standard derivative, making it easier to apply to physical systems. Conformable deriva-
tives have already been applied to classical models, improving the flexibility of solutions to represent
more realistic physical phenomena.

Definition 1. The conformable derivative of a function, h : [0,∞) → R, t > 0, θ ∈ (0, 1) of order θ
is as follows defined:

Dθ
t (h)(t) = lim

γ→0

h(t+ γt1−θ)− h(t)

γ
. (2)

Additionally, in the event that h is-differentiable within a given interval (0, k), where k > 0, and the
limt→0+ Dθ

t (h)(t) exists, then definition is formed

Dθ
t (h)(0) = lim

t→0+
Dθ

t (h)(t). (3)
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Lemma 1. Let h1 and h2 be θ-differentiable at t > 0 for 0 < θ ≤ 1 [12,24,28]. There after,

• Dθ
t (t

s1) = s1t
s1−θ, s1 ∈ R,

• Dθ
t (s1h1 + s2h2) = s1Dθ

t (h1) + s2Dθ
t (h2), s1, s2 ∈ R,

• Dθ
t (

h1

h2
) =

h2.Dθ
t (h1)−h1T θ

t (h2)

h2
2

,

• Dθ
t (h1.h2) = h1.Dθ

t (h2) + h2.Dθ
t (h1),

• Dθ
t (h1)(t) = t1−θ dh1(t)

dt ,

• Dθ
t (C) = 0, when C is a const.

Definition 2. Let the function h with n variables be defined as (y1, y2, . . . , yn). The partial derivatives
of h with respect to yi of order θ ∈ (0, 1] are given as [29,33]:

dθ

dyθi
h(y1, y2, . . . , yn) = lim

γ→0

h(y1, y2, . . . , yi−1, yi + γy1−θ
i , yn)− h(y1, y2, . . . , yn)

γ
.

The next section is reserved to introduce the exp(−ϕ(ξ))-expansion, the modified extended tanh-
function, and the RPS methods.

3. The Exp(−ϕ(ξ))-Expansion Method

Examine the nonlinear equation, which is presented as follows:

P(u,Dθ
t u,Dxu,Dyu,D2

xu,D2
yu, . . .) = 0. (4)

In this case, Dθ
t represents the conformable derivative operator of the function. When P is a polynomial

of u(x, y, . . . , t) and its derivatives, and the subscripts signifying partial derivatives. During utilizing the
exp(–ϕ(ξ))-expansion method [1, 21,23] for obtaining wave solutions of Eq. (4), it is crucial to carry out
the next procedures.

• The real variables x, y, z, . . . , t are combined using ξ as a compound variable.

ξ = kx+ ly + · · ·+ mtθ

θ
, u(x, y, z, . . . , t) = u(ξ). (5)

where the k, l, . . . ,m are arbitrary values to be determined later.

• The following ordinary differential equation (ODE) is what is left after reducing Eq. (4),

H(u(ξ), u′(ξ), u′′(ξ), . . .) = 0. (6)

• The following finite series can be used to construct the precise solutions:

u(ξ) = B0 +

N∑
r=1

Br(exp(ξ(−ϕ)))r, BN ̸= 0. (7)

• The following ODE is satisfied by ϕ = ϕ(ξ).

ϕ′(ξ) = exp(−ϕ(ξ)) + ηexp(ϕ(ξ)) + λ. (8)

• Eq. (8) shows the following solutions when η ̸= 0 and λ2 − 4η > 0, depending on certain
parameters.

u1(ξ) =

ln

(
−
√
(λ2 − 4η) tanh

(√
(λ2−4η)

2 (h+ ξ)

)
− λ

)
2η

, (9)

in the case of λ2 − 4η < 0 and η ̸= 0
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u2(ξ) =

ln

(√
(4η − λ2) tanh

(√
(4η−λ2)

2 (h+ ξ)

)
− λ

)
2η

, (10)

in the case of λ2 − 4η > 0, λ ̸= 0 and η = 0,

u3(ξ) = − ln

(
λ

sinh(λ(h+ ξ)) + cosh(λ(h+ ξ))− 1

)
, (11)

in the case of λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u4(ξ) = ln

(
−2(λ(h+ ξ) + 2)

λ2(h+ ξ)

)
, (12)

in the case of λ2 − 4η = 0, λ = 0 and η = 0,

u5(ξ) = ln(h+ ξ), (13)

where the constant for integration is h.

• The determination of the N value in Eq. (7) involves considering the balance principle be-
tween the largest nonlinear terms and the highest order derivatives of u(ξ) as outlined in Eq.
(6). Upon replacing Eq. (7) with Eq. (8) into Eq. (6) and consolidating terms with identical
powers of exp(−ϕ), the left-hand side of Eq. (6) undergoes a transformation into a polyno-
mial. This transformation results in a system of algebraic equations involving variables Br, (r =
0, 1, 2, 3, . . . , N), c, λ, and η. The solution to Eq. (6) can be obtained by setting all the coeffi-
cients of this polynomial to zero, solving the resulting system of algebraic equations, and then
substituting the solutions back into Eq. (7).

4. Modified Extended Tanh-Function Method

Let us explore a specific partial differential equation (PDE) to illustrate the core concept of the modified
extended tanh-function method [4, 30,41].

B(v,Dθ
t v,Dxv,Dyv,D2

xv,D2
yv, . . .) = 0, (14)

where B is a polynomial in v(x, y, z, . . . , t) with nonlinear components in its partial derivatives. The
transformation,

ξ = kx+ ly + . . .+
mtθ

θ
, v(x, y, z, . . . , t) = v(ξ), (15)

converts Eq. (14) into an ODE presented in the subsequent form,

B(v(ξ), v′(ξ), v′′(ξ), . . .) = 0. (16)

Assume that the solution to Eq. (16) takes on the following form,

v(ξ) = A0 +

N∑
r=1

(
Arϕ

r(ξ) +Brϕ
−r(ξ)

)
. (17)

Here, ϕ(ξ) satisfies the following Riccati equation,

ϕ′(ξ) = σ + ϕ(ξ)
2
, (18)

where σ is a constant that will be found out afterward. As may be seen below, Eq. (18) admits several
different solutions as,

• If σ < 0

ϕ(ξ) = −
√
−σtanh(

√
−σξ) or ϕ(ξ) = −

√
−σcoth(

√
−σξ).
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• If σ > 0

ϕ(ξ) =
√
σtan(

√
σξ) or ϕ(ξ) = −

√
σcot(

√
σξ).

• If σ = 0

ϕ(ξ) = −1

ξ
. (19)

Determining the positive integer N in Eq. (17) involves achieving a balance between the highest order
derivatives and the nonlinear variables. Symbolic calculations can be used to find the values of Ar and
Br by replacing Eq. (17), and Eq. (18) in Eq. (16). Following this path, by gathering terms with the
same power ϕr, where (r = 0, 1, 2, · · · , N), and setting them to zero, produces the unknown constants.
The exact solutions to Eq. (14) can subsequently be derived by replacing the determined values, along
with the Eq. (17).

5. Residual Power Series Method (RPSM)

To illustrate the principle of the RPSM [6–10] algorithm, examine the following nonlinear fractional
differential equation (FDE).

Dθ
t u(x, y, t) +R[x, y]u(x, y, t) +N [x, y]u(x, y, t) = h(x, y, t). (20)

where R[x, y] is a linear and N [x, y] is a nonlinear operator. The initial condition of the equation is
expressed as

u(x, y, 0) = f0(x, y) = f(x, y). (21)

Subject to the constraint of Eq. (21), the approach entails expanding a fractional series at t = 0 to find
the solution to Eq. (20),

fn−1(x, y) = h(x, y) = D(n−1)θ
t u(x, y, 0). (22)

As seen below, the solution can be stated as a series expansion,

u(x, y, t) =

∞∑
n=0

fn(x, y)
tnθ

θnn!
. (23)

Thus, for R 1
v be the radius of convergence, 0 ≤ t < R 1

v and 0 < θ ≤ 1, the k − th truncated series of
u(x, y, t), represented as,

uk(x, y, t) = f(x, y) +

k∑
n=1

fn(x, y)
tnθ

θnn!
, k = 1, 2, 3, . . . (24)

Therefore, the k − th residual function’s initial expression is

Resuk(x, y, t) = Dθ
t uk(x, y, t) +R[x, y]uk(x, y, t) +N [x, y]uk(x, y, t)− h(x, y, t). (25)

It is evident that for t ≥ 0, Resu(x, y, t) = 0 and
limk→∞ Resuk(x, y, z, t) = Resu(x, y, z, t).

Calculating out Resu1(x, y, z, 0) = 0, yields the first unknown function, f1(x, y, z). The fractional
derivative of a constant is 0 in the conformable sense, hence

D(n−1)ω
t Resuk(x, y, z, t) = 0 relative to n = 1, 2, 3, ..., k. The desired fn(x, y, z) coefficients are obtained

by solving this equation for t = 0. Thus, un(x, y, z, t) solutions may be determined, respectively.
The exp(–ϕ(ξ))-expansion and the modified extended tanh-function method can generate a variety

of exact solutions, including exponential, solitons, periodic, and rational solutions. They are highly
adaptable to different types of nonlinear equations. Besides, unlike many other techniques (such as
perturbation methods), the RPSM does not require linearization or small parameter assumptions, making
it suitable for strongly nonlinear PDEs. These methods are adaptable to a wide variety of nonlinear PDEs.
This adaptability makes them suitable for models where other methods might fail or require substantial
modification. For example, if your PDE includes fractional derivatives, nonlinear terms, or higher-order
terms, these methods can often be extended to handle such complexities.
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6. Application of the techniques

For the analytical methods, if we examine Eq. (1) in this context,

ADθ
t ux + auxx + b(u)2xx + cuxxxx + duyy = 0. (26)

Utilizing u(x, y, t) = u(ξ) with ξ = kx+ ly + mtθ

θ and performing the integration results in,

ak2u(ξ) +Akmu(ξ) + bk2u(ξ)2 + ck4u′′(ξ) + dl2u(ξ) = 0. (27)

Balancing, u2 = 2N, u′′ = N + 2 results in N = 2. Upon substitution it into Eq. (7) and Eq. (17), the
following exact solutions are derived.

6.1. Analytical solutions by exp(−ϕ(ξ))-expansion method. Given that N = 2, upon substituting
Eq. (7), the series of sums is as follows:

u = B0 +B1 exp(−ϕ(ξ)) +B2 exp(−ϕ(ξ))2. (28)

When combined with Eq. (8), the algebraic system that follows is created.

ak2B0 + dl2B0 +AkmB0 + bk2B2
0 + ck4ηλB1 + 2ck4η2B2 = 0,

ak2B1 + dl2B1 +AkmB1 + 2ck4ηB1 + ck4λ2B1 + 2bk2B0B1 + 6ck4ηλB2 = 0,

3ck4λB1 + bk2B2
1 + ak2B2 + dl2B2 +AkmB2 + 8ck4ηB2 + 4ck4λ2B2

+2bk2B0B2 = 0,

2ck4B1 + 10ck4λB2 + 2bk2B1B2 = 0,

6ck4B2 + bk2B2
2 = 0.

Two cases and two sets of solutions for B0, B1, B2, and m are obtained.

Case 1.

B0 = −6cηk2

b
, B1 = −6ck2λ

b
, B2 = −6ck2

b
,

m = −
ak2 + ck4

(
λ2 − 4η

)
+ dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 1.
For λ2 − 4η > 0 , η ̸= 0,

u1(x, y, t) = −6cη k2

b
− 12c ηk2λ

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΨ

)
− λ

)
− 24cη2k2

b
(
−
√

λ2 − 4η tanh
(

1
2

√
λ2 − 4ηΨ

)
− λ

)2 , (29)

For λ2 − 4η < 0 and η ̸= 0,

u2(x, y, t) = −6cη k2

b
− 12c ηλk2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Ψ

)
− λ

)
− 24cη2k2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Ψ

)
− λ

)2 , (30)

where Ψ =

(
− tθ(ak2+ck4(λ2−4η)+dl2)

Aθk + h+ kx+ ly

)
.

For λ2 − 4η > 0, λ ̸= 0 and η = 0,
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u3(x, y, t) = − 6ck2λ2

b (sinh (λΩ) + cosh (λΩ)− 1)

− 6ck2λ2

b (sinh ( (λΩ) + cosh (λΩ)− 1)
2 , (31)

where Ω =

(
− tθ(ak2+cλ2k4+dl2)

Aθk + h+ kx+ ly

)
.

For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u4(x, y, t) = −6cηk2

b
+

3ck2λ3Λ

b (λΛ + 2)
− 3ck2λ4Λ2

2b (λΛ + 2)
2 , (32)

where Λ =

(
− tθ(ak2+dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η = 0, λ = 0 and η = 0,

u5(x, y, t) = − 6ck2

b
(
− tθ(ak2+4cηk4+dl2)

Aθk + h+ kx+ ly
)2 . (33)

Case 2.

B0 = −
ck2

(
2η + λ2

)
b

, B1 = −6ck2λ

b
, B2 = −6ck2

b
,

m =
−ak2 + ck4

(
λ2 − 4η

)
− dl2

Ak
, ξ = kx+ ly +

mtθ

θ

Set 2.
For λ2 − 4η > 0 , η ̸= 0,

u6(x, y, t) = −
ck2

(
2η + λ2

)
b

− 12cηk2λ

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΥ

)
− λ

)
− 24cη2k2

b
(
−
√
λ2 − 4η tanh

(
1
2

√
λ2 − 4ηΥ

)
− λ

)2 , (34)

For λ2 − 4η < 0 and η ̸= 0,

u7(x, y, t) = −
ck2

(
2η + λ2

)
b

− 12cηk2λ

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Υ

)
− λ

)
− 24cη2k2

b
(√

4η − λ2 tan
(

1
2

√
4η − λ2Υ

)
− λ

)2 , (35)

where Υ =

(
tθ(−ak2+ck4(λ2−4η)−dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η > 0, λ ̸= 0 and η = 0,

u8(x, y, t) = − 6ck2λ2

b (sinh (λΦ) + cosh (λΦ)− 1)

− 6ck2λ2

b (sinh (λΦ) + cosh (λΦ)− 1)
2 − ck2λ2

b
, (36)

where Φ =

(
tθ(−ak2+cλ2k4−dl2)

Aθk + h+ kx+ ly

)
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For λ2 − 4η = 0, λ ̸= 0 and η ̸= 0,

u9(x, y, t) = −6cηk2

b
+

3ck2λ3Ξ

b (λΞ + 2)
−

3ck2λ4

(
tθ(−ak2−dl2)

Aθk + h+ kx+ ly

)2

2b
(
λ
(

tθ(−ak2−dl2)
Aθk + h+ kx+ ly

)
+ 2
)2 , (37)

where Ξ =

(
tθ(−ak2−dl2)

Aθk + h+ kx+ ly

)
For λ2 − 4η = 0, λ = 0 and η = 0,

u10(x, y, t) = −4cηk2

b
− 6ck2

b
(

tθ(−ak2+4cηk4−dl2)
Aθk + h+ kx+ ly

)2 . (38)

6.2. The modified extended tanh-function method solutions. By taking N = 2, Eq. (17) be-
comes,

v = A0 +A1ϕ(ξ) +B1ϕ(ξ)
−1 +A2ϕ(ξ)

2 +B2ϕ(ξ)
−2, (39)

and when considered together with the Eq. (18) here, the following algebraic system of equations is
obtained,

ak2A0 + dl2A0 +AkmA0 + bk2A2
0 + 2ck4σ2A2 + 2bk2A1B1 + 2ck4B2

+2bk2A2B2 = 0,

bk2A2
1 + ak2A2 + dl2A2 +AkmA2 + 8ck4σA2 + 2bk2A0A2 = 0,

ak2A1 + dl2A1 +AkmA1 + 2ck4σA1 + 2bk2A0A1 + 2bk2A2B1 = 0,

bk2B2
1 + ak2B2 + dl2B2 +AkmB2 + 8ck4σB2 + 2bk2A0B2 = 0,

ak2B1 + dl2B1 +AkmB1 + 2ck4σB1 + 2bk2A0B1 + 2bk2A1B2 = 0,

2ck4σ2B1 + 2bk2B1B2 = 0,

6ck4σ2B2 + bk2B2
2 = 0,

2ck4A1 + 2bk2A1A2 = 0,

6ck4A2 + bk2A2
2 = 0.

Four cases and four sets of solutions for A0, A1 A2, B1, B2 and m are obtained here.

Case 3.

A0 = −12ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = −6ck2σ2

b
,

m =
−ak2 + 16ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 3.
For σ < 0,

v1(x, y, t) = −12ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (40)

or

v2(x, y, t) = −12ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
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+

6ck2σ coth

(√
−σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (41)

For σ > 0,

v3(x, y, t) = −12ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (42)

or

v4(x, y, t) = −12ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2+16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (43)

For σ = 0,

v5(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (44)

Case 4.

A0 = −6ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = 0,

m =
−ak2 + 4ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 4.
For σ < 0,

v6(x, y, t) = −6ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (45)

or

v7(x, y, t) = −6ck2σ

b
+

6ck2σ coth

(√
−σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (46)

For σ > 0,

v8(x, y, t) = −6ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (47)

or

v9(x, y, t) = −6ck2σ

b
−

6ck2σ cot

(
√
σ

(
tθ(−ak2+4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (48)

For σ = 0,

v10(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (49)
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Case 5.

A0 = −2ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = 0,

m =
−ak2 − 4ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 5.
For σ < 0,

v11(x, y, t) = −2ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (50)

or

v12(x, y, t) = −2ck2σ

b
+

6ck2σ coth

(√
−σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (51)

For σ > 0,

v13(x, y, t) = −2ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (52)

or

v14(x, y, t) = −2ck2σ

b
−

6ck2σ cot

(
√
σ

(
tθ(−ak2−4ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (53)

For σ = 0,

v15(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (54)

Case 6.

A0 =
4ck2σ

b
, A1 = 0, B1 = 0, A2 = −6ck2

b
, B2 = −6ck2σ2

b
,

m =
−ak2 − 16ck4σ − dl2

Ak
, ξ = kx+ ly +

mtθ

θ
.

Set 6.
For σ < 0,

v16(x, y, t) =
4ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

2

Aθk + kx+ ly

))
b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (55)

or

v17(x, y, t) =
4ck2σ

b
+

6ck2σ tanh

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

+

6ck2σ coth

(√
−σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (56)
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For σ > 0,

v18(x, y, t) =
4ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (57)

or

v19(x, y, t) =
4ck2σ

b
−

6ck2σ tan

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b

−
6ck2σ cot

(
√
σ

(
tθ(−ak2−16ck4σ−dl2)

Aθk + kx+ ly

))2

b
, (58)

For σ = 0,

v20(x, y, t) = − 6ck2

b
(

tθ(−ak2−dl2)
Aθk + kx+ ly

)2 . (59)

Next we present 3D, contour, and 2D plots of some of the obtained analytical solutions.

6.3. Approximate solutions by RPSM. First, we assume an initial condition for t = 0, using an
exact solutions found previously. Thus, from Eq. (45), the initial condition is taken as

v6(x, y, 0) = −6ck2σ

b
+

6ck2σ tanh
(√

−σ (kx+ ly)
)2

b
. (60)

For the approximate solutions to the (2+1)-dimensional shallow water wave equation (26), where t ≥ 0,
0 < θ ≤ 1, the RPSM solution is in the form of Eq. (24). Thus, Eq. (25) can be written as,

Resuk(x, y, t) = ADθ
t (uk)x + a(uk)xx + b(uk)

2
xx + c(uk)xxxx + d(uk)yy = 0. (61)

Hence, Resu1(x, y, t) is obtained as,

Resu1(x, y, t) = A (f1)x + a

(
fxx +

tθ (f1)xx
θ

)
+b

(
2

(
fx +

tθ (f1)x
θ

)2

+ 2

(
f +

tθf1
θ

)(
fxx +

tθ (f1)xx
θ

))

+c

(
fxxxx +

tθ (f1)xxxx
θ

)
+ d

(
fyy +

tθ (f1)yy
θ

)
, (62)

where f = f(x, y) and f1 = f1(x, y). The first unknown parameter is obtained by setting t = 0 as,

f1 =

12ckσ2
(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
×sech2

(√
−σ(kx+ ly)

)
Ab

√
−σ

, (63)

is determined, and consequently, u1 = u1(x, y, t) is obtained as

u1 =
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (64)

Similarly, the next residual term is
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Resu2 = d

(
fyy +

tθ (f1)yy
θ

+
t2θ (f2)yy

2θ2

)

+At1−θ

(
tθ−1 (f1)x +

t2θ−1 (f2)x
θ

)
+a

(
fxx +

tθ (f1) xx
θ

+
t2θ (f2)xx

2θ2

)
+2b

(
fx +

tθ (f1)x
θ

+
t2θ (f2)x

2θ2

)2

+2b

(
f +

tθ (f1)

θ
+

t2θ (f2)

2θ2

)(
fxx +

tθ (f1)xx
θ

+
t2θ (f2)xx

2θ2

)
+c

(
fxxxx +

tθ (f1)xxxx
θ

+
t2θ (f2)xxxx

2θ2

)
, (65)

where f2 = f2(x, y) is written. For t = 0, the second unknown parameter can be obtained as follows by
taking the first order derivative,

f2 =

12cσ2
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2b
, (66)

Thus, u2 = u2(x, y, t) solution becomes

u2 =

6cσ2t2θ
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2bθ2

+
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (67)

Similarly, the other solution is calculated as

u3 = −

4cσ3t3θ
(
ak2 − 4ck4σ + dl2

)3 (
cosh

(
2
√
−σ(kx+ ly)

)
− 5
)

× tanh
(√

−σ(kx+ ly)
)
sech4

(√
−σ(kx+ ly)

)
A3bθ3k

√
−σ

+

6cσ2t2θ
(
ak2 − 4ck4σ + dl2

)2 (
cosh

(
2
√
−σ(kx+ ly)

)
− 2
)

×sech4
(√

−σ(kx+ ly)
)

A2bθ2

+
12ckσ2tθ

(
ak2 − 4ck4σ + dl2

)
tanh

(√
−σ(kx+ ly)

)
sech2

(√
−σ(kx+ ly)

)
Abθ

√
−σ

+
6ck2σ tanh2

(√
−σ(kx+ ly)

)
b

− 6ck2σ

b
. (68)

Next we present a comparison table and some 3D comparison plots with RPSM and the exact solutions.
Figure 1 and Figure 2 display the surface graphics of the analytical solutions, whereas Figures 3, 4,

and 5 displays the surface graphics of the approximate solutions. Meanwhile, by taking the following
values and ranges, approximate and exact solution were compared in Table 1.
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Table 1. Comparing exact and RPSM solutions of Eq. (68) with exact solution of Eq.
(45).

θ = 0.75 θ = 0.85 θ = 0.95
t RPSM Exact Abs. Error RPSM Exact Abs. Error RPSM Exact Abs. Error

0.0 0.575491 0.575491 0.00000 0.575491 0.575491 0.00000 0.575491 0.575491 0.00000

0.1 0.583687 0.583687 5.29179 × 10−9 0.581233 0.581233 1.27760 × 10−9 0.579571 0.579571 3.2607 × 10−10

0.2 0.589284 0.589284 4.22828 × 10−8 0.585848 0.585848 1.34733 × 10−8 0.583378 0.583378 4.53833 × 10−9

0.3 0.594195 0.594195 1.42543 × 10−7 0.590117 0.590116 5.34286 × 10−8 0.587089 0.587089 2.11688 × 10−8

0.4 0.598709 0.598709 3.37514 × 10−7 0.594176 0.594176 1.41958 × 10−7 0.590740 0.590740 6.31116 × 10−8

0.5 0.602949 0.602948 6.58507 × 10−7 0.598087 0.598086 3.02863 × 10−7 0.594348 0.594348 1.47233 × 10−7

0.6 0.606981 0.606980 1.13671 × 10−6 0.601883 0.601882 5.62409 × 10−7 0.597921 0.597921 2.94118 × 10−7

0.7 0.610850 0.610848 1.80317 × 10−6 0.605586 0.605585 9.48980 × 10−7 0.601467 0.601466 5.27882 × 10−7

0.8 0.614582 0.614579 2.68881 × 10−6 0.609212 0.609210 1.49283 × 10−6 0.604988 0.604987 8.76021 × 10−7

0.9 0.618200 0.618196 3.82442 × 10−6 0.612770 0.612768 2.22590 × 10−6 0.608488 0.608487 1.36928 × 10−6

1.0 0.621718 0.621712 5.24064 × 10−6 0.616270 0.616267 3.18163 × 10−6 0.611970 0.611967 2.04154 × 10−6

• Figure 1 k = 0.2, c = 1, b = 0.01, y = 0.1, z = 0.5, h = 0.1, η = 0.05, λ = 0.5, d = 0.1, l = 0.5,
a = 0.1, A = 0.1 and θ = 0.95, −50 ≤ x ≤ 50 for (A), (B), and t = 0.99 for (C).

• Figure 2 c = 0.0001, k = 0.202, b = 0.001, σ = −1.21, l = 0.45, a = 0.221, d = 0.05, A = −1.01,
y = 0.55 and θ = 0.98, −10 ≤ x ≤ 10 for (A), (B), and t = 0.99 for (C).

• Table 1 x = 2, y = 1, c = 0.99, k = 0.22, b = 0.2, σ = −0.64, l = 0.45, a = 0.05, d = 0.006,
A = 0.71 and 0 ≤ t ≤ 1.

• Figure 3 x = −1, y = 1, c = 0.45, k = 0.01, b = 0.1, σ = 0.9, l = 0.01, a = 0.001, d = 0.6, A = 1
and θ = 0.75, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.

• Figure 4 x = 2, y = 1, c = 0.57, k = 0.12, b = 0.2, σ = −0.12, l = 0.01, a = 0.03, d = 0.01,
A = 0.7 and θ = 0.85, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.

• Figure 5 x = 2, y = 1, c = 0.99, k = 0.22, b = 0.2, σ = −0.64, l = 0.45, a = 0.05, d = 0.006,
A = 0.71 and θ = 0.95, −50 ≤ x ≤ 50 for (A) and (B) 0 ≤ t ≤ 1.
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Figure 1. (A) 3D, (B) contour and (C) 2D plots of the exp(−ϕ(ξ))-expansion method
solution u1(x, y, t) of Eq. (29).
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Figure 2. (A) 3D, (B) contour and (C) 2D plots of the modified extended tanh-function
method solution v11(x, y, t) of Eq. (50).
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(a) RPSM solution
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Figure 3. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.
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Figure 4. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.
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Figure 5. Comparison plots of the u3 solution according to Eq. (68) with the exact
solution.

Some new solutions to the present equation are displayed in the surface plots, which can be helpful in
solving additional differential equations of arbitrary order.

7. Conclusion

This study investigated solutions to the (2+1)-dimensional shallow water wave equation with con-
formable derivative by use of the modified extended tanh-function and the exp(−ϕ(ξ))-expansion meth-
ods. Additionally, the RPSM was used to get approximations of the solutions. Many exact solutions
with low computational complexity were obtained using the mentioned analytical approaches. Moreover,
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the RPSM is a straightforward method, and its independent calculation for each iteration step facilitates
computations up to higher-order iterations. We also compared our analytical solutions with the numerical
solutions to verify the validity of the results. This provide insights into the applicability of these methods
for real-world modeling.

To visually represent the obtained solutions, 3D, contour, and 2D plots were generated. Analytical and
approximate results, surface plots, and a comparison table illustrate the accuracy of the techniques. The
solutions exhibit distinct features with important physical attributes not previously addressed before.
In some interpretations of the figures, the physical behavior of the exact solutions is illustrated for
specific numerical values. Understanding these applications is essential for their potential real-world
implementations.

The accomplished solutions are crucial for comprehending the physical behavior of the problem. The
suggested techniques are reliable and beneficial, providing light on the physical properties of various
complicated non-linear models. This study contributes to understanding of higher-dimensional wave phe-
nomena under fractional calculus, paving the way for future research on fractional fluid models.
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